|
|
--- |
|
|
base_model: Qwen/Qwen2-7B-Instruct |
|
|
library_name: peft |
|
|
license: apache-2.0 |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
model-index: |
|
|
- name: workspace/axolotl/vinh/Qwen_Qwen2-7B-Instruct-lora-2024-06-29-17-30-14 |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
|
<details><summary>See axolotl config</summary> |
|
|
|
|
|
axolotl version: `0.4.1` |
|
|
```yaml |
|
|
base_model: Qwen/Qwen2-7B-Instruct |
|
|
model_type: AutoModelForCausalLM |
|
|
tokenizer_type: AutoTokenizer |
|
|
|
|
|
load_in_8bit: false |
|
|
load_in_4bit: false |
|
|
strict: false |
|
|
|
|
|
datasets: |
|
|
- path: /workspace/axolotl/vinh/PAL/input_output_qwen.json |
|
|
type: input_output |
|
|
- path: /workspace/axolotl/vinh/INSTRUCT/input_output_qwen.json |
|
|
type: input_output |
|
|
dataset_prepared_path: |
|
|
val_set_size: 0.05 |
|
|
eval_sample_packing: false |
|
|
output_dir: /workspace/axolotl/vinh/Qwen_Qwen2-7B-Instruct-lora-2024-06-29-17-30-14 |
|
|
|
|
|
sequence_len: 2048 |
|
|
sample_packing: false |
|
|
pad_to_sequence_len: false |
|
|
|
|
|
adapter: lora |
|
|
lora_model_dir: |
|
|
lora_r: 64 |
|
|
lora_alpha: 128 |
|
|
lora_dropout: 0.05 |
|
|
lora_target_linear: true |
|
|
lora_fan_in_fan_out: |
|
|
|
|
|
wandb_project: |
|
|
wandb_entity: |
|
|
wandb_watch: |
|
|
wandb_name: |
|
|
wandb_log_model: |
|
|
|
|
|
gradient_accumulation_steps: 128 |
|
|
micro_batch_size: 1 |
|
|
num_epochs: 3 |
|
|
optimizer: paged_adamw_32bit |
|
|
lr_scheduler: cosine |
|
|
learning_rate: 2e-4 |
|
|
|
|
|
train_on_inputs: false |
|
|
group_by_length: false |
|
|
bf16: auto |
|
|
fp16: |
|
|
tf32: false |
|
|
|
|
|
gradient_checkpointing: false |
|
|
early_stopping_patience: |
|
|
resume_from_checkpoint: |
|
|
local_rank: |
|
|
logging_steps: 1 |
|
|
xformers_attention: |
|
|
flash_attention: true |
|
|
s2_attention: |
|
|
|
|
|
loss_watchdog_threshold: 5.0 |
|
|
loss_watchdog_patience: 3 |
|
|
|
|
|
warmup_steps: 10 |
|
|
evals_per_epoch: 10 |
|
|
eval_table_size: |
|
|
eval_max_new_tokens: 512 |
|
|
saves_per_epoch: 2 |
|
|
save_total_limit: 20 |
|
|
debug: |
|
|
deepspeed: |
|
|
weight_decay: 0.0 |
|
|
fsdp: |
|
|
fsdp_config: |
|
|
|
|
|
``` |
|
|
|
|
|
</details><br> |
|
|
|
|
|
# workspace/axolotl/vinh/Qwen_Qwen2-7B-Instruct-lora-2024-06-29-17-30-14 |
|
|
|
|
|
This model is a fine-tuned version of [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) on the None dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.0911 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 0.0002 |
|
|
- train_batch_size: 1 |
|
|
- eval_batch_size: 1 |
|
|
- seed: 42 |
|
|
- gradient_accumulation_steps: 128 |
|
|
- total_train_batch_size: 128 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: cosine |
|
|
- lr_scheduler_warmup_steps: 10 |
|
|
- num_epochs: 3 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|
|:-------------:|:------:|:----:|:---------------:| |
|
|
| 0.5558 | 0.0063 | 1 | 0.5296 | |
|
|
| 0.1574 | 0.1011 | 16 | 0.1632 | |
|
|
| 0.1279 | 0.2023 | 32 | 0.1379 | |
|
|
| 0.1166 | 0.3034 | 48 | 0.1265 | |
|
|
| 0.1335 | 0.4045 | 64 | 0.1188 | |
|
|
| 0.1145 | 0.5056 | 80 | 0.1134 | |
|
|
| 0.1036 | 0.6068 | 96 | 0.1082 | |
|
|
| 0.0937 | 0.7079 | 112 | 0.1063 | |
|
|
| 0.0934 | 0.8090 | 128 | 0.1029 | |
|
|
| 0.0975 | 0.9101 | 144 | 0.1008 | |
|
|
| 0.0657 | 1.0113 | 160 | 0.0980 | |
|
|
| 0.0671 | 1.1124 | 176 | 0.0990 | |
|
|
| 0.0664 | 1.2135 | 192 | 0.0986 | |
|
|
| 0.0735 | 1.3146 | 208 | 0.0965 | |
|
|
| 0.0694 | 1.4158 | 224 | 0.0944 | |
|
|
| 0.0555 | 1.5169 | 240 | 0.0923 | |
|
|
| 0.0719 | 1.6180 | 256 | 0.0914 | |
|
|
| 0.071 | 1.7191 | 272 | 0.0894 | |
|
|
| 0.073 | 1.8203 | 288 | 0.0876 | |
|
|
| 0.0543 | 1.9214 | 304 | 0.0869 | |
|
|
| 0.043 | 2.0225 | 320 | 0.0866 | |
|
|
| 0.0333 | 2.1236 | 336 | 0.0934 | |
|
|
| 0.0392 | 2.2248 | 352 | 0.0924 | |
|
|
| 0.0453 | 2.3259 | 368 | 0.0919 | |
|
|
| 0.0488 | 2.4270 | 384 | 0.0920 | |
|
|
| 0.0361 | 2.5281 | 400 | 0.0915 | |
|
|
| 0.0357 | 2.6293 | 416 | 0.0912 | |
|
|
| 0.0364 | 2.7304 | 432 | 0.0912 | |
|
|
| 0.0365 | 2.8315 | 448 | 0.0912 | |
|
|
| 0.0338 | 2.9326 | 464 | 0.0911 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- PEFT 0.11.1 |
|
|
- Transformers 4.41.1 |
|
|
- Pytorch 2.1.2+cu118 |
|
|
- Datasets 2.19.1 |
|
|
- Tokenizers 0.19.1 |