Llama-3.1-70B-Instruct-FP8-block
Model Overview
- Model Architecture: LlamaForCausalLM- Input: Text
- Output: Text
 
- Model Optimizations:- Weight quantization: FP8
- Activation quantization: FP8
 
- Release Date:
- Version: 1.0
- Model Developers:: Red Hat
Quantized version of meta-llama/Llama-3.1-70B-Instruct.
Model Optimizations
This model was obtained by quantizing the weights and activations of meta-llama/Llama-3.1-70B-Instruct to FP8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.
Deployment
Use with vLLM
- Initialize vLLM server:
vllm serve nm-testing/Llama-3.1-70B-Instruct-FP8-block --tensor_parallel_size 4
- Send requests to the server:
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)
model = "nm-testing/Llama-3.1-70B-Instruct-FP8-block"
messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image_url",
                "image_url": {"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"},
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]
outputs = client.chat.completions.create(
    model=model,
    messages=messages,
)
generated_text = outputs.choices[0].message.content
print(generated_text)
Creation
This model was quantized using the llm-compressor library as shown below.
Creation details
from transformers import AutoProcessor, LlamaForCausalLM
from llmcompressor import oneshot
from llmcompressor.modeling import replace_modules_for_calibration
from llmcompressor.modifiers.quantization import QuantizationModifier
MODEL_ID = "meta-llama/Llama-3.1-70B-Instruct"
# Load model.
model = LlamaForCausalLM.from_pretrained(MODEL_ID, dtype="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = replace_modules_for_calibration(model)
# Configure the quantization algorithm and scheme.
# In this case, we:
#   * quantize the weights to fp8 with per-block quantization
#   * quantize the activations to fp8 with dynamic token activations
recipe = QuantizationModifier(
    targets="Linear",
    scheme="FP8_BLOCK",
    ignore=["lm_head"],
)
# Apply quantization.
oneshot(model=model, recipe=recipe)
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block"
model.save_pretrained(SAVE_DIR)
processor.save_pretrained(SAVE_DIR)
Evaluation
The model was evaluated on the OpenLLMv1 leaderboard task, using lm-evaluation-harness, on reasoning tasks using lighteval. vLLM was used for all evaluations.
Evaluation details
lm-evaluation-harness
lm_eval \
  --model vllm \
  --model_args pretrained="nm-testing/Llama-3.1-70B-Instruct-FP8-block",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=4,gpu_memory_utilization=0.8,enable_chunked_prefill=True \
  --tasks openllm \
  --write_out \
  --batch_size auto \
  --output_path output_dir \
  --show_config
lighteval
lighteval_model_arguments.yaml
model_parameters:
  model_name: nm-testing/Llama-3.1-70B-Instruct-FP8-block
  dtype: auto
  gpu_memory_utilization: 0.9
  generation_parameters:
    temperature: 0.6
    min_p: 0.0
    top_p: 0.95
    top_k: 20
    max_new_tokens: 32768
lighteval vllm \
  --model_args lighteval_model_arguments.yaml \
  --tasks lighteval|aime25|0 \
Accuracy
| Category | Metric | meta-llama/Llama-3.1-70B-Instruct | nm-testing/Llama-3.1-70B-Instruct-FP8-block | Recovery (%) | 
|---|---|---|---|---|
| OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | abc | ijk | xyz | 
| GSM8K (Strict-Match, 5-shot) | abc | ijk | xyz | |
| HellaSwag (Acc-Norm, 10-shot) | abc | ijk | xyz | |
| MMLU (Acc, 5-shot) | abc | ijk | xyz | |
| TruthfulQA (MC2, 0-shot) | abc | ijk | xyz | |
| Winogrande (Acc, 5-shot) | abc | ijk | xyz | |
| Average Score | abc | ijk | xyz | |
| OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | abc | ijk | xyz | 
| BBH (Acc-Norm, 3-shot) | abc | ijk | xyz | |
| Math-Hard (Exact-Match, 4-shot) | abc | ijk | xyz | |
| GPQA (Acc-Norm, 0-shot) | abc | ijk | xyz | |
| MUSR (Acc-Norm, 0-shot) | abc | ijk | xyz | |
| MMLU-Pro (Acc, 5-shot) | abc | ijk | xyz | |
| Average Score | abc | ijk | xyz | |
| Coding | HumanEval Pass@1 | abc | ijk | xyz | 
Model tree for nm-testing/Llama-3.1-70B-Instruct-FP8-block
Base model
meta-llama/Llama-3.1-70B