|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from einops import rearrange |
|
|
from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel |
|
|
|
|
|
class SoundMultimodalProjectorConfig(PretrainedConfig): |
|
|
"""Configuration for sound multimodal projector.""" |
|
|
|
|
|
model_type = "sound_mm_projector" |
|
|
|
|
|
def __init__(self, sound_mm_projector_type: str = None, **kwargs): |
|
|
super().__init__() |
|
|
self.sound_mm_projector_type = sound_mm_projector_type |
|
|
|
|
|
|
|
|
class AudioDownSampleBlock(nn.Module): |
|
|
"""Downsample audio features using 1D convolution.""" |
|
|
def __init__(self, embed_dim): |
|
|
super().__init__() |
|
|
self.conv1 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1) |
|
|
|
|
|
def forward(self, x): |
|
|
x = rearrange(x, "b t c -> b c t") |
|
|
x = self.conv1(x) |
|
|
x = rearrange(x, "b c t -> b t c") |
|
|
return x |
|
|
|
|
|
class AudioDownSamplePoolBlock(nn.Module): |
|
|
"""Downsample audio features using average pooling.""" |
|
|
|
|
|
def __init__(self, embed_dim): |
|
|
super().__init__() |
|
|
self.pool = nn.AvgPool1d(kernel_size=2) |
|
|
|
|
|
def forward(self, x): |
|
|
x = rearrange(x, "b t c -> b c t") |
|
|
x = self.pool(x) |
|
|
x = rearrange(x, "b c t -> b t c") |
|
|
return x |
|
|
|
|
|
|
|
|
class AudioDownSampleMaxPoolBlock(nn.Module): |
|
|
"""Downsample audio features using max pooling.""" |
|
|
|
|
|
def __init__(self, embed_dim): |
|
|
super().__init__() |
|
|
self.pool = nn.MaxPool1d(kernel_size=2) |
|
|
|
|
|
def forward(self, x): |
|
|
x = rearrange(x, "b t c -> b c t") |
|
|
x = self.pool(x) |
|
|
x = rearrange(x, "b c t -> b t c") |
|
|
return x |
|
|
|
|
|
|
|
|
class SoundMultimodalProjector(PreTrainedModel): |
|
|
"""Sound multimodal projector for mapping audio features to LLM space.""" |
|
|
config_class = SoundMultimodalProjectorConfig |
|
|
|
|
|
def __init__(self, sound_mm_projector_cfg: SoundMultimodalProjectorConfig, config: PretrainedConfig): |
|
|
super().__init__(sound_mm_projector_cfg) |
|
|
if hasattr(config, "sound_mm_projector"): |
|
|
sound_mm_projector_type = config.sound_mm_projector |
|
|
else: |
|
|
sound_mm_projector_type = sound_mm_projector_cfg.sound_mm_projector_type |
|
|
self.sound_mm_projector_type = sound_mm_projector_type |
|
|
self.config.sound_mm_projector_type = sound_mm_projector_type |
|
|
|
|
|
if hasattr(config, "sound_mm_projector_cfg") and type(config.sound_mm_projector_cfg) == dict: |
|
|
config.sound_mm_projector_cfg["sound_mm_projector_type"] = sound_mm_projector_type |
|
|
|
|
|
if sound_mm_projector_type == "mlp": |
|
|
self.layers = nn.Sequential( |
|
|
nn.Linear(config.sound_hidden_size, config.hidden_size), |
|
|
nn.GELU(), |
|
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
|
) |
|
|
elif sound_mm_projector_type == "mlp_downsample": |
|
|
self.downsample_block = AudioDownSampleBlock(config.sound_hidden_size) |
|
|
self.layers = nn.Sequential( |
|
|
nn.Linear(config.sound_hidden_size, config.hidden_size), |
|
|
nn.GELU(), |
|
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
|
) |
|
|
elif sound_mm_projector_type == "mlp_downsample_pool": |
|
|
self.downsample_block = AudioDownSamplePoolBlock(config.sound_hidden_size) |
|
|
self.layers = nn.Sequential( |
|
|
nn.Linear(config.sound_hidden_size, config.hidden_size), |
|
|
nn.GELU(), |
|
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
|
) |
|
|
elif sound_mm_projector_type == "mlp_downsample_pool_max": |
|
|
self.downsample_block = AudioDownSampleMaxPoolBlock(config.sound_hidden_size) |
|
|
self.layers = nn.Sequential( |
|
|
nn.Linear(config.sound_hidden_size, config.hidden_size), |
|
|
nn.GELU(), |
|
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
|
) |
|
|
else: |
|
|
raise ValueError(f"Unknown projector type: {sound_mm_projector_type}") |
|
|
|
|
|
|
|
|
def forward(self, x, *args, **kwargs): |
|
|
if self.sound_mm_projector_type in ["mlp_downsample", "mlp_downsample_pool", "mlp_downsample_pool_max"]: |
|
|
x = self.downsample_block(x) |
|
|
return self.layers(x) |
|
|
|
|
|
|
|
|
AutoConfig.register("sound_mm_projector", SoundMultimodalProjectorConfig) |
|
|
AutoModel.register(SoundMultimodalProjectorConfig, SoundMultimodalProjector) |
|
|
|