https://huggingface.co/facebook/dinov2-with-registers-large-imagenet1k-1-layer with ONNX weights to be compatible with Transformers.js.
Usage (Transformers.js)
If you haven't already, you can install the Transformers.js JavaScript library from NPM using:
npm i @huggingface/transformers
Example: Image classification w/ onnx-community/dinov2-with-registers-large-imagenet1k-1-layer.
import { pipeline } from '@huggingface/transformers';
// Create image classification pipeline
const classifier = await pipeline('image-classification', 'onnx-community/dinov2-with-registers-large-imagenet1k-1-layer');
// Classify an image
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
const output = await classifier(url);
console.log(output);
// [
// { label: 'tabby, tabby cat', score: 0.5210835337638855 },
// { label: 'Egyptian cat', score: 0.313551127910614 },
// { label: 'tiger cat', score: 0.14324277639389038 },
// { label: 'lynx, catamount', score: 0.005053747445344925 },
// { label: 'remote control, remote', score: 0.001643550000153482 }
// ]
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using ๐ค Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).
- Downloads last month
- 4