Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| 0 |
|
| 1 |
|
| Label | Accuracy |
|---|---|
| all | 0.8099 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("pEpOo/catastrophy")
# Run inference
preds = model("Heat wave warning aa? Ayyo dei. Just when I plan to visit friends after a year.")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 2 | 15.3737 | 31 |
| Label | Training Sample Count |
|---|---|
| 0 | 222 |
| 1 | 158 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0005 | 1 | 0.3038 | - |
| 0.0263 | 50 | 0.1867 | - |
| 0.0526 | 100 | 0.2578 | - |
| 0.0789 | 150 | 0.2298 | - |
| 0.1053 | 200 | 0.1253 | - |
| 0.1316 | 250 | 0.0446 | - |
| 0.1579 | 300 | 0.1624 | - |
| 0.1842 | 350 | 0.0028 | - |
| 0.2105 | 400 | 0.0059 | - |
| 0.2368 | 450 | 0.0006 | - |
| 0.2632 | 500 | 0.0287 | - |
| 0.2895 | 550 | 0.003 | - |
| 0.3158 | 600 | 0.0004 | - |
| 0.3421 | 650 | 0.0014 | - |
| 0.3684 | 700 | 0.0002 | - |
| 0.3947 | 750 | 0.0001 | - |
| 0.4211 | 800 | 0.0002 | - |
| 0.4474 | 850 | 0.0002 | - |
| 0.4737 | 900 | 0.0002 | - |
| 0.5 | 950 | 0.0826 | - |
| 0.5263 | 1000 | 0.0002 | - |
| 0.5526 | 1050 | 0.0001 | - |
| 0.5789 | 1100 | 0.0003 | - |
| 0.6053 | 1150 | 0.0303 | - |
| 0.6316 | 1200 | 0.0001 | - |
| 0.6579 | 1250 | 0.0 | - |
| 0.6842 | 1300 | 0.0001 | - |
| 0.7105 | 1350 | 0.0 | - |
| 0.7368 | 1400 | 0.0001 | - |
| 0.7632 | 1450 | 0.0002 | - |
| 0.7895 | 1500 | 0.0434 | - |
| 0.8158 | 1550 | 0.0001 | - |
| 0.8421 | 1600 | 0.0 | - |
| 0.8684 | 1650 | 0.0001 | - |
| 0.8947 | 1700 | 0.0001 | - |
| 0.9211 | 1750 | 0.0001 | - |
| 0.9474 | 1800 | 0.0001 | - |
| 0.9737 | 1850 | 0.0001 | - |
| 1.0 | 1900 | 0.0 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
Base model
sentence-transformers/all-mpnet-base-v2