SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("pankajrajdeo/BioForge-bioformer-16L-umls-integration")
# Run inference
sentences = [
'Congenital fibrinogen abnormality',
'Congenital disease',
'An application of magnetic resonance imaging that uses spin refocusing and spin echo generation, resulting in shorter repetition times and faster imaging.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
umls_sota_eval - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.9579 |
| cosine_accuracy@3 | 0.9792 |
| cosine_accuracy@5 | 0.9829 |
| cosine_accuracy@10 | 0.9886 |
| cosine_precision@1 | 0.9579 |
| cosine_precision@3 | 0.5356 |
| cosine_precision@5 | 0.3658 |
| cosine_precision@10 | 0.206 |
| cosine_recall@1 | 0.6671 |
| cosine_recall@3 | 0.8833 |
| cosine_recall@5 | 0.9236 |
| cosine_recall@10 | 0.9553 |
| cosine_ndcg@10 | 0.9525 |
| cosine_mrr@10 | 0.9692 |
| cosine_map@100 | 0.9383 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,945,832 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 12.11 tokens
- max: 62 tokens
- min: 3 tokens
- mean: 39.97 tokens
- max: 256 tokens
- Samples:
anchor positive Cranial nerve structureCranial neuropathy due to petrous infectionPhenylalanine racemase (ATP-hydrolysing)Phenylalanine racemase (adenosine triphosphate-hydrolysing) (substance)Denibulin HydrochlorideThe hydrochloride salt of denibulin, a small molecular vascular disrupting agent, with potential antimitotic and antineoplastic activities. Denibulin selectively targets and reversibly binds to the colchicine-binding site on tubulin and inhibits microtubule assembly. This results in the disruption of the cytoskeleton of tumor endothelial cells, ultimately leading to cell cycle arrest, blockage of cell division and apoptosis. This causes inadequate blood flow to the tumor and eventually leads to a decrease in tumor cell proliferation., a small molecule vascular disrupting agent (VDA), with potential antimitotic and antineoplastic activity. Denibulin selectively targets and reversibly binds to the colchicine-binding site on tubulin and inhibits microtubule assembly. This results in the disruption of the cytoskeleton of tumor endothelial cells (EC), ultimately leading to cell cycle arrest, blockage of cell division and apoptosis. This causes inadequate blood flow to the tumor and eventual... - Loss:
main.MultipleNegativesSymmetricMarginLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 512gradient_accumulation_steps: 4learning_rate: 1.5e-05num_train_epochs: 4lr_scheduler_type: cosinewarmup_ratio: 0.05bf16: Truedataloader_num_workers: 16load_best_model_at_end: Truegradient_checkpointing: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 512per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 4eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1.5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.05warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 16dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Truegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | umls_sota_eval_cosine_ndcg@10 |
|---|---|---|---|
| 0.0695 | 100 | 0.8266 | - |
| 0.1390 | 200 | 0.5384 | - |
| 0.2086 | 300 | 0.4742 | - |
| 0.2781 | 400 | 0.4355 | - |
| 0.3295 | 474 | - | 0.9295 |
| 0.3476 | 500 | 0.4137 | - |
| 0.4171 | 600 | 0.3961 | - |
| 0.4866 | 700 | 0.3817 | - |
| 0.5561 | 800 | 0.3739 | - |
| 0.6257 | 900 | 0.3564 | - |
| 0.6590 | 948 | - | 0.9384 |
| 0.6952 | 1000 | 0.3587 | - |
| 0.7647 | 1100 | 0.3525 | - |
| 0.8342 | 1200 | 0.3463 | - |
| 0.9037 | 1300 | 0.3395 | - |
| 0.9732 | 1400 | 0.3329 | - |
| 0.9885 | 1422 | - | 0.9434 |
| 1.0424 | 1500 | 0.3228 | - |
| 1.1119 | 1600 | 0.318 | - |
| 1.1814 | 1700 | 0.3141 | - |
| 1.2510 | 1800 | 0.3101 | - |
| 1.3177 | 1896 | - | 0.9463 |
| 1.3205 | 1900 | 0.3134 | - |
| 1.3900 | 2000 | 0.3097 | - |
| 1.4595 | 2100 | 0.3006 | - |
| 1.5290 | 2200 | 0.303 | - |
| 1.5985 | 2300 | 0.3003 | - |
| 1.6472 | 2370 | - | 0.9484 |
| 1.6681 | 2400 | 0.2949 | - |
| 1.7376 | 2500 | 0.2951 | - |
| 1.8071 | 2600 | 0.2939 | - |
| 1.8766 | 2700 | 0.2908 | - |
| 1.9461 | 2800 | 0.2912 | - |
| 1.9767 | 2844 | - | 0.9502 |
| 2.0153 | 2900 | 0.2869 | - |
| 2.0848 | 3000 | 0.2807 | - |
| 2.1543 | 3100 | 0.2771 | - |
| 2.2238 | 3200 | 0.2795 | - |
| 2.2934 | 3300 | 0.2756 | - |
| 2.3059 | 3318 | - | 0.9510 |
| 2.3629 | 3400 | 0.2758 | - |
| 2.4324 | 3500 | 0.2765 | - |
| 2.5019 | 3600 | 0.2752 | - |
| 2.5714 | 3700 | 0.2745 | - |
| 2.6354 | 3792 | - | 0.9515 |
| 2.6409 | 3800 | 0.2714 | - |
| 2.7105 | 3900 | 0.2732 | - |
| 2.7800 | 4000 | 0.2735 | - |
| 2.8495 | 4100 | 0.2722 | - |
| 2.9190 | 4200 | 0.2713 | - |
| 2.9649 | 4266 | - | 0.9520 |
| 2.9885 | 4300 | 0.2721 | - |
| 3.0577 | 4400 | 0.2662 | - |
| 3.1272 | 4500 | 0.2654 | - |
| 3.1967 | 4600 | 0.2683 | - |
| 3.2662 | 4700 | 0.2687 | - |
| 3.2941 | 4740 | - | 0.9523 |
| 3.3358 | 4800 | 0.2665 | - |
| 3.4053 | 4900 | 0.2686 | - |
| 3.4748 | 5000 | 0.2612 | - |
| 3.5443 | 5100 | 0.263 | - |
| 3.6138 | 5200 | 0.264 | - |
| 3.6236 | 5214 | - | 0.9523 |
| 3.6834 | 5300 | 0.2672 | - |
| 3.7529 | 5400 | 0.2674 | - |
| 3.8224 | 5500 | 0.2631 | - |
| 3.8919 | 5600 | 0.2631 | - |
| 3.9531 | 5688 | - | 0.9525 |
| 3.9614 | 5700 | 0.2642 | - |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.53.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
Evaluation results
- Cosine Accuracy@1 on umls sota evalself-reported0.958
- Cosine Accuracy@3 on umls sota evalself-reported0.979
- Cosine Accuracy@5 on umls sota evalself-reported0.983
- Cosine Accuracy@10 on umls sota evalself-reported0.989
- Cosine Precision@1 on umls sota evalself-reported0.958
- Cosine Precision@3 on umls sota evalself-reported0.536
- Cosine Precision@5 on umls sota evalself-reported0.366
- Cosine Precision@10 on umls sota evalself-reported0.206
- Cosine Recall@1 on umls sota evalself-reported0.667
- Cosine Recall@3 on umls sota evalself-reported0.883