Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeProximal Policy Optimization Algorithms
We propose a new family of policy gradient methods for reinforcement learning, which alternate between sampling data through interaction with the environment, and optimizing a "surrogate" objective function using stochastic gradient ascent. Whereas standard policy gradient methods perform one gradient update per data sample, we propose a novel objective function that enables multiple epochs of minibatch updates. The new methods, which we call proximal policy optimization (PPO), have some of the benefits of trust region policy optimization (TRPO), but they are much simpler to implement, more general, and have better sample complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, including simulated robotic locomotion and Atari game playing, and we show that PPO outperforms other online policy gradient methods, and overall strikes a favorable balance between sample complexity, simplicity, and wall-time.
Beyond the 80/20 Rule: High-Entropy Minority Tokens Drive Effective Reinforcement Learning for LLM Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful approach to enhancing the reasoning capabilities of Large Language Models (LLMs), while its mechanisms are not yet well understood. In this work, we undertake a pioneering exploration of RLVR through the novel perspective of token entropy patterns, comprehensively analyzing how different tokens influence reasoning performance. By examining token entropy patterns in Chain-of-Thought (CoT) reasoning, we observe that only a small fraction of tokens exhibit high entropy, and these tokens act as critical forks that steer the model toward diverse reasoning pathways. Furthermore, studying how entropy patterns evolve during RLVR training reveals that RLVR largely adheres to the base model's entropy patterns, primarily adjusting the entropy of high-entropy tokens. These findings highlight the significance of high-entropy tokens (i.e., forking tokens) to RLVR. We ultimately improve RLVR by restricting policy gradient updates to forking tokens and uncover a finding even beyond the 80/20 rule: utilizing only 20% of the tokens while maintaining performance comparable to full-gradient updates on the Qwen3-8B base model and significantly surpassing full-gradient updates on the Qwen3-32B (+11.04 on AIME'25 and +7.71 on AIME'24) and Qwen3-14B (+4.79 on AIME'25 and +5.21 on AIME'24) base models, highlighting a strong scaling trend. In contrast, training exclusively on the 80% lowest-entropy tokens leads to a marked decline in performance. These findings indicate that the efficacy of RLVR primarily arises from optimizing the high-entropy tokens that decide reasoning directions. Collectively, our results highlight the potential to understand RLVR through a token-entropy perspective and optimize RLVR by leveraging high-entropy minority tokens to further improve LLM reasoning.
Implicit Actor Critic Coupling via a Supervised Learning Framework for RLVR
Recent advances in Reinforcement Learning with Verifiable Rewards (RLVR) have empowered large language models (LLMs) to tackle challenging reasoning tasks such as mathematics and programming. RLVR leverages verifiable outcome rewards to guide policy optimization, enabling LLMs to progressively improve output quality in a grounded and reliable manner. Despite its promise, the RLVR paradigm poses significant challenges, as existing methods often suffer from sparse reward signals and unstable policy gradient updates, particularly in RL-based approaches. To address the challenges, we propose PACS, a novel RLVR framework that achieves imPlicit Actor Critic coupling via a Supervised learning framework. By treating the outcome reward as a predictable label, we reformulate the RLVR problem into a supervised learning task over a score function parameterized by the policy model and optimized using cross-entropy loss. A detailed gradient analysis shows that this supervised formulation inherently recovers the classical policy gradient update while implicitly coupling actor and critic roles, yielding more stable and efficient training. Benchmarking on challenging mathematical reasoning tasks, PACS outperforms strong RLVR baselines, such as PPO and GRPO, achieving superior reasoning performance. For instance, PACS achieves 59.78\% at pass@256 on AIME 2025, representing improvements of 13.32 and 14.36 points over PPO and GRPO. This simple yet powerful framework offers a promising avenue for LLMs post-training with verifiable rewards. Our code and data are available as open source at https://github.com/ritzz-ai/PACS.
TabNAS: Rejection Sampling for Neural Architecture Search on Tabular Datasets
The best neural architecture for a given machine learning problem depends on many factors: not only the complexity and structure of the dataset, but also on resource constraints including latency, compute, energy consumption, etc. Neural architecture search (NAS) for tabular datasets is an important but under-explored problem. Previous NAS algorithms designed for image search spaces incorporate resource constraints directly into the reinforcement learning (RL) rewards. However, for NAS on tabular datasets, this protocol often discovers suboptimal architectures. This paper develops TabNAS, a new and more effective approach to handle resource constraints in tabular NAS using an RL controller motivated by the idea of rejection sampling. TabNAS immediately discards any architecture that violates the resource constraints without training or learning from that architecture. TabNAS uses a Monte-Carlo-based correction to the RL policy gradient update to account for this extra filtering step. Results on several tabular datasets demonstrate the superiority of TabNAS over previous reward-shaping methods: it finds better models that obey the constraints.
RAPID: An Efficient Reinforcement Learning Algorithm for Small Language Models
Reinforcement learning (RL) has emerged as a promising strategy for finetuning small language models (SLMs) to solve targeted tasks such as math and coding. However, RL algorithms tend to be resource-intensive, taking a significant amount of time to train. We propose RAPID, a novel RL algorithm that can substantially reduce the running time of RL. Our key insight is that RL tends to be costly due to the need to perform both inference and backpropagation during training. To maximize use of computational resources, our algorithm performs inference in large batches, and then performs off-policy policy gradient updates in mini-batches. For off-policy updates, we incorporate group advantage estimation into the policy gradient algorithm, and derive an importance weighted estimator to correct for the bias arising from off-policy learning. Our experiments demonstrate that our algorithm can reduce running time by 11%-34% on three benchmarks compared to state-of-the-art RL algorithms while maintaining similar or better accuracy.
Reinforcement Learning for Machine Learning Engineering Agents
Existing agents for solving tasks such as ML engineering rely on prompting powerful language models. As a result, these agents do not improve with more experience. In this paper, we show that agents backed by weaker models that improve via reinforcement learning (RL) can outperform agents backed by much larger, but static models. We identify two major challenges with RL in this setting. First, actions can take a variable amount of time (e.g., executing code for different solutions), which leads to asynchronous policy gradient updates that favor faster but suboptimal solutions. To tackle variable-duration actions, we propose duration-aware gradient updates in a distributed asynchronous RL framework to amplify high-cost but high-reward actions. Second, using only test split performance as a reward provides limited feedback. A program that is nearly correct is treated the same as one that fails entirely. To address this, we propose environment instrumentation to offer partial credit, distinguishing almost-correct programs from those that fail early (e.g., during data loading). Environment instrumentation uses a separate static language model to insert print statement to an existing program to log the agent's experimental progress, from which partial credit can be extracted as reward signals for learning. Our experimental results on MLEBench suggest that performing gradient updates on a much smaller model (Qwen2.5-3B) trained with RL outperforms prompting a much larger model (Claude-3.5-Sonnet) with agent scaffolds, by an average of 22% across 12 Kaggle tasks.
Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space
Reasoning ability, a core component of human intelligence, continues to pose a significant challenge for Large Language Models (LLMs) in the pursuit of AGI. Although model performance has improved under the training scaling law, significant challenges remain, particularly with respect to training algorithms, such as catastrophic forgetting, and the limited availability of novel training data. As an alternative, test-time scaling enhances reasoning performance by increasing test-time computation without parameter updating. Unlike prior methods in this paradigm focused on token space, we propose leveraging latent space for more effective reasoning and better adherence to the test-time scaling law. We introduce LatentSeek, a novel framework that enhances LLM reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space. Specifically, LatentSeek leverages policy gradient to iteratively update latent representations, guided by self-generated reward signals. LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024, across multiple LLM architectures. Results show that LatentSeek consistently outperforms strong baselines, such as Chain-of-Thought prompting and fine-tuning-based methods. Furthermore, our analysis demonstrates that LatentSeek is highly efficient, typically converging within a few iterations for problems of average complexity, while also benefiting from additional iterations, thereby highlighting the potential of test-time scaling in the latent space. These findings position LatentSeek as a lightweight, scalable, and effective solution for enhancing the reasoning capabilities of LLMs.
Deep Policy Gradient Methods Without Batch Updates, Target Networks, or Replay Buffers
Modern deep policy gradient methods achieve effective performance on simulated robotic tasks, but they all require large replay buffers or expensive batch updates, or both, making them incompatible for real systems with resource-limited computers. We show that these methods fail catastrophically when limited to small replay buffers or during incremental learning, where updates only use the most recent sample without batch updates or a replay buffer. We propose a novel incremental deep policy gradient method -- Action Value Gradient (AVG) and a set of normalization and scaling techniques to address the challenges of instability in incremental learning. On robotic simulation benchmarks, we show that AVG is the only incremental method that learns effectively, often achieving final performance comparable to batch policy gradient methods. This advancement enabled us to show for the first time effective deep reinforcement learning with real robots using only incremental updates, employing a robotic manipulator and a mobile robot.
On-Policy Policy Gradient Reinforcement Learning Without On-Policy Sampling
On-policy reinforcement learning (RL) algorithms perform policy updates using i.i.d. trajectories collected by the current policy. However, after observing only a finite number of trajectories, on-policy sampling may produce data that fails to match the expected on-policy data distribution. This sampling error leads to noisy updates and data inefficient on-policy learning. Recent work in the policy evaluation setting has shown that non-i.i.d., off-policy sampling can produce data with lower sampling error than on-policy sampling can produce. Motivated by this observation, we introduce an adaptive, off-policy sampling method to improve the data efficiency of on-policy policy gradient algorithms. Our method, Proximal Robust On-Policy Sampling (PROPS), reduces sampling error by collecting data with a behavior policy that increases the probability of sampling actions that are under-sampled with respect to the current policy. Rather than discarding data from old policies -- as is commonly done in on-policy algorithms -- PROPS uses data collection to adjust the distribution of previously collected data to be approximately on-policy. We empirically evaluate PROPS on both continuous-action MuJoCo benchmark tasks as well as discrete-action tasks and demonstrate that (1) PROPS decreases sampling error throughout training and (2) improves the data efficiency of on-policy policy gradient algorithms. Our work improves the RL community's understanding of a nuance in the on-policy vs off-policy dichotomy: on-policy learning requires on-policy data, not on-policy sampling.
Slow-Fast Policy Optimization: Reposition-Before-Update for LLM Reasoning
Reinforcement learning (RL) has become central to enhancing reasoning in large language models (LLMs). Yet on-policy algorithms such as Group Relative Policy Optimization (GRPO) often suffer in early training: noisy gradients from low-quality rollouts lead to unstable updates and inefficient exploration. We introduce Slow-Fast Policy Optimization (SFPO), a simple yet efficient framework to address these limitations via decomposing each step into three stages: a short fast trajectory of inner steps on the same batch, a reposition mechanism to control off-policy drift, and a final slow correction. This reposition-before-update design preserves the objective and rollout process unchanged, making SFPO plug-compatible with existing policy-gradient pipelines. Extensive experiments demonstrate that SFPO consistently improves stability, reduces rollouts, and accelerates convergence of reasoning RL training. Specifically, it outperforms GRPO by up to 2.80 points in average on math reasoning benchmarks. It also achieves up to 4.93 fewer rollouts and a 4.19 reduction in wall-clock time to match GRPO's best accuracy.
Squeeze the Soaked Sponge: Efficient Off-policy Reinforcement Finetuning for Large Language Model
Reinforcement Learning (RL) has demonstrated its potential to improve the reasoning ability of Large Language Models (LLMs). One major limitation of most existing Reinforcement Finetuning (RFT) methods is that they are on-policy RL in nature, i.e., data generated during the past learning process is not fully utilized. This inevitably comes at a significant cost of compute and time, posing a stringent bottleneck on continuing economic and efficient scaling. To this end, we launch the renaissance of off-policy RL and propose Reincarnating Mix-policy Proximal Policy Gradient (ReMix), a general approach to enable on-policy RFT methods like PPO and GRPO to leverage off-policy data. ReMix consists of three major components: (1) Mix-policy proximal policy gradient with an increased Update-To-Data (UTD) ratio for efficient training; (2) KL-Convex policy constraint to balance the trade-off between stability and flexibility; (3) Policy reincarnation to achieve a seamless transition from efficient early-stage learning to steady asymptotic improvement. In our experiments, we train a series of ReMix models upon PPO, GRPO and 1.5B, 7B base models. ReMix shows an average Pass@1 accuracy of 52.10% (for 1.5B model) with 0.079M response rollouts, 350 training steps and achieves 63.27%/64.39% (for 7B model) with 0.007M/0.011M response rollouts, 50/75 training steps, on five math reasoning benchmarks (i.e., AIME'24, AMC'23, Minerva, OlympiadBench, and MATH500). Compared with 15 recent advanced models, ReMix shows SOTA-level performance with an over 30x to 450x reduction in training cost in terms of rollout data volume. In addition, we reveal insightful findings via multifaceted analysis, including the implicit preference for shorter responses due to the Whipping Effect of off-policy discrepancy, the collapse mode of self-reflection behavior under the presence of severe off-policyness, etc.
DCPO: Dynamic Clipping Policy Optimization
Reinforcement Learning from Verifiable Rewards (RLVR) has emerged as a promising framework for enhancing the reasoning capabilities of large language models. However, existing approaches such as GRPO often suffer from zero gradients. This problem arises primarily due to fixed clipping bounds for token-level probability ratios and the standardization of identical rewards, which can lead to ineffective gradient updates and underutilization of generated responses. In this work, we propose Dynamic Clipping Policy Optimization (DCPO), which introduces a dynamic clipping strategy that adaptively adjusts the clipping bounds based on token-specific prior probabilities to enhance token-level exploration, and a smooth advantage standardization technique that standardizes rewards across cumulative training steps to improve the response-level effective utilization of generated responses. DCPO achieved state-of-the-art performance on four benchmarks based on four different models. In particular, DCPO achieved an Avg@1 of 46.7 under greedy decoding and an Avg@32 of 38.8 under 32 times sampling on the AIME24 benchmark, surpassing both DAPO (36.7/31.6) and GRPO (36.7/32.1) on the Qwen2.5-Math-7B model. On the AIME25 benchmark based on Qwen2.5-14B, DCPO achieves a performance of (23.3/19.0), surpassing GRPO (13.3/10.5) and DAPO (20.0/15.3). Furthermore, DCPO achieved an average 28% improvement in the nonzero advantage over GRPO in four models, doubled the training efficiency over DAPO, and significantly reduced the token clipping ratio by an order of magnitude compared to both GRPO and DAPO, while achieving superior performance. These results highlight DCPO's effectiveness in leveraging generated data more efficiently for reinforcement learning in large language models.
GTPO: Trajectory-Based Policy Optimization in Large Language Models
Policy-based optimizations are widely adopted today for the training and alignment of language models, where one of the most recent and effective approaches is Group-relative Policy Optimization (GRPO). In this paper, we reveals and analyze two major limitations of GRPO: (i) tokens frequently appear in completions with both positive and negative rewards, leading to conflicting gradient updates that can reduce their output probability, even though can be essential for maintaining proper structure; (ii) negatively rewarded completions may penalize confident responses and shift model decisions toward unlikely tokens, progressively flattening the output distribution and degrading learning. To address these issues and provide a more stable and effective policy optimization strategy, we introduce GTPO (Group-relative Trajectory-based Policy Optimization), which identifies conflict tokens, tokens appearing in the same position across completions with opposite rewards, protects them by skipping negative updates, while amplifying positive ones. To further prevent policy collapse, GTPO filters out completions whose entropy exceeds a provable threshold. Unlike GRPO, GTPO does not rely on KL-divergence regularization, eliminating the need for a reference model during training, while still ensuring greater training stability and improved performance, validated through multiple experiments on GSM8K, MATH and AIME 2024 benchmarks.
BAPO: Stabilizing Off-Policy Reinforcement Learning for LLMs via Balanced Policy Optimization with Adaptive Clipping
Reinforcement learning (RL) has recently become the core paradigm for aligning and strengthening large language models (LLMs). Yet, applying RL in off-policy settings--where stale data from past policies are used for training--improves sample efficiency, but remains challenging: policy entropy declines sharply, optimization often becomes unstable and may even collapse. Through theoretical and empirical analysis, we identify two key insights: (i) an imbalance in optimization, where negative-advantage samples dominate the policy gradient, suppressing useful behaviors and risking gradient explosions; and (ii) the derived Entropy-Clip Rule, which reveals that the fixed clipping mechanism in PPO-like objectives systematically blocks entropy-increasing updates, thereby driving the policy toward over-exploitation at the expense of exploration. Building on these insights, we propose BAlanced Policy Optimization with Adaptive Clipping (BAPO), a simple yet effective method that dynamically adjusts clipping bounds to adaptively re-balance positive and negative contributions, preserve entropy, and stabilize RL optimization. Across diverse off-policy scenarios--including sample replay and partial rollout--BAPO achieves fast, stable, and data-efficient training. On AIME 2024 and AIME 2025 benchmarks, our 7B BAPO model surpasses open-source counterparts such as SkyWork-OR1-7B, while our 32B BAPO model not only achieves state-of-the-art results among models of the same scale but also outperforms leading proprietary systems like o3-mini and Gemini-2.5-Flash-Thinking.
ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
We introduce Adjoint Sampling, a highly scalable and efficient algorithm for learning diffusion processes that sample from unnormalized densities, or energy functions. It is the first on-policy approach that allows significantly more gradient updates than the number of energy evaluations and model samples, allowing us to scale to much larger problem settings than previously explored by similar methods. Our framework is theoretically grounded in stochastic optimal control and shares the same theoretical guarantees as Adjoint Matching, being able to train without the need for corrective measures that push samples towards the target distribution. We show how to incorporate key symmetries, as well as periodic boundary conditions, for modeling molecules in both cartesian and torsional coordinates. We demonstrate the effectiveness of our approach through extensive experiments on classical energy functions, and further scale up to neural network-based energy models where we perform amortized conformer generation across many molecular systems. To encourage further research in developing highly scalable sampling methods, we plan to open source these challenging benchmarks, where successful methods can directly impact progress in computational chemistry.
CPPO: Accelerating the Training of Group Relative Policy Optimization-Based Reasoning Models
This paper introduces Completion Pruning Policy Optimization (CPPO) to accelerate the training of reasoning models based on Group Relative Policy Optimization (GRPO). GRPO, while effective, incurs high training costs due to the need for sampling multiple completions for each question. Our experiment and theoretical analysis reveals that the number of completions impacts model accuracy yet increases training time multiplicatively, and not all completions contribute equally to policy training -- their contribution depends on their relative advantage. To address these issues, we propose CPPO, which prunes completions with low absolute advantages, significantly reducing the number needed for gradient calculation and updates. Additionally, we introduce a dynamic completion allocation strategy to maximize GPU utilization by incorporating additional questions, further enhancing training efficiency. Experimental results demonstrate that CPPO achieves up to 8.32times speedup on GSM8K and 3.51times on Math while preserving or even enhancing the accuracy compared to the original GRPO. We release our code at https://github.com/lzhxmu/CPPO.
Mirror Descent Policy Optimization
Mirror descent (MD), a well-known first-order method in constrained convex optimization, has recently been shown as an important tool to analyze trust-region algorithms in reinforcement learning (RL). However, there remains a considerable gap between such theoretically analyzed algorithms and the ones used in practice. Inspired by this, we propose an efficient RL algorithm, called {\em mirror descent policy optimization} (MDPO). MDPO iteratively updates the policy by {\em approximately} solving a trust-region problem, whose objective function consists of two terms: a linearization of the standard RL objective and a proximity term that restricts two consecutive policies to be close to each other. Each update performs this approximation by taking multiple gradient steps on this objective function. We derive {\em on-policy} and {\em off-policy} variants of MDPO, while emphasizing important design choices motivated by the existing theory of MD in RL. We highlight the connections between on-policy MDPO and two popular trust-region RL algorithms: TRPO and PPO, and show that explicitly enforcing the trust-region constraint is in fact {\em not} a necessity for high performance gains in TRPO. We then show how the popular soft actor-critic (SAC) algorithm can be derived by slight modifications of off-policy MDPO. Overall, MDPO is derived from the MD principles, offers a unified approach to viewing a number of popular RL algorithms, and performs better than or on-par with TRPO, PPO, and SAC in a number of continuous control tasks. Code is available at https://github.com/manantomar/Mirror-Descent-Policy-Optimization.
ASPO: Asymmetric Importance Sampling Policy Optimization
Recent Large Language Model (LLM) post-training methods rely on token-level clipping mechanisms during Reinforcement Learning (RL). However, we identify a fundamental flaw in this Outcome-Supervised RL (OSRL) paradigm: the Importance Sampling (IS) ratios of positive-advantage tokens are mismatched, leading to unbalanced token weighting for positive and negative tokens. This mismatch suppresses the update of low-probability tokens while over-amplifying already high-probability ones. To address this, we propose Asymmetric Importance Sampling Policy Optimization (ASPO), which uses a simple yet effective strategy that flips the IS ratios of positive-advantage tokens, aligning their update direction with the learning dynamics of negative ones. AIS further incorporates a soft dual-clipping mechanism to stabilize extreme updates while maintaining gradient flow. Comprehensive experiments on coding and mathematical reasoning benchmarks demonstrate that ASPO significantly mitigates premature convergence, improves training stability, and enhances final performance over strong GRPO-based baselines. Our analysis provides new insights into the role of token-level weighting in OSRL and highlights the critical importance of correcting IS in LLM RL. The code and models of ASPO are available at https://github.com/wizard-III/Archer2.0.
Test-Time Policy Adaptation for Enhanced Multi-Turn Interactions with LLMs
Large Language Models (LLMs) employ multi-turn interaction as a fundamental paradigm for completing complex tasks. However, their performance often degrades in extended interactions, as they are typically trained on static, single-turn data, which hinders their ability to adapt to real-time user feedback. To address this limitation, we first propose a new paradigm: Test-Time Policy Adaptation for Multi-Turn Interactions (T2PAM), which utilizes user feedback from the ongoing interaction as a reward signal to estimate a latent optimal policy aligned with user preferences, then updates a small subset of parameters to steer the model toward this policy, ultimately enabling efficient in-conversation self-correction. We then introduce Optimum-Referenced One-Step Adaptation (ROSA), a lightweight algorithm that operationalizes T2PAM. ROSA guides the model parameters toward a theoretical optimal policy in a single, efficient update step, avoiding costly iterative gradient-based optimization and minimizing computational overhead. We provide a rigorous theoretical analysis guaranteeing that the policy of ROSA converges to the preference of user as the number of interactions increases. Extensive experiments on challenging benchmark demonstrate that ROSA achieves significant improvements in both task effectiveness and efficiency.
Time-Efficient Reinforcement Learning with Stochastic Stateful Policies
Stateful policies play an important role in reinforcement learning, such as handling partially observable environments, enhancing robustness, or imposing an inductive bias directly into the policy structure. The conventional method for training stateful policies is Backpropagation Through Time (BPTT), which comes with significant drawbacks, such as slow training due to sequential gradient propagation and the occurrence of vanishing or exploding gradients. The gradient is often truncated to address these issues, resulting in a biased policy update. We present a novel approach for training stateful policies by decomposing the latter into a stochastic internal state kernel and a stateless policy, jointly optimized by following the stateful policy gradient. We introduce different versions of the stateful policy gradient theorem, enabling us to easily instantiate stateful variants of popular reinforcement learning and imitation learning algorithms. Furthermore, we provide a theoretical analysis of our new gradient estimator and compare it with BPTT. We evaluate our approach on complex continuous control tasks, e.g., humanoid locomotion, and demonstrate that our gradient estimator scales effectively with task complexity while offering a faster and simpler alternative to BPTT.
Reinforcement Learning Finetunes Small Subnetworks in Large Language Models
Reinforcement learning (RL) yields substantial improvements in large language models (LLMs) downstream task performance and alignment with human values. Surprisingly, such large gains result from updating only a small subnetwork comprising just 5 percent to 30 percent of the parameters, with the rest effectively unchanged. We refer to this phenomenon as parameter update sparsity induced by RL. It is observed across all 7 widely used RL algorithms (e.g., PPO, GRPO, DPO) and all 10 LLMs from different families in our experiments. This sparsity is intrinsic and occurs without any explicit sparsity promoting regularizations or architectural constraints. Finetuning the subnetwork alone recovers the test accuracy, and, remarkably, produces a model nearly identical to the one obtained via full finetuning. The subnetworks from different random seeds, training data, and even RL algorithms show substantially greater overlap than expected by chance. Our analysis suggests that this sparsity is not due to updating only a subset of layers, instead, nearly all parameter matrices receive similarly sparse updates. Moreover, the updates to almost all parameter matrices are nearly full-rank, suggesting RL updates a small subset of parameters that nevertheless span almost the full subspaces that the parameter matrices can represent. We conjecture that the this update sparsity can be primarily attributed to training on data that is near the policy distribution, techniques that encourage the policy to remain close to the pretrained model, such as the KL regularization and gradient clipping, have limited impact.
Guaranteed Trust Region Optimization via Two-Phase KL Penalization
On-policy reinforcement learning (RL) has become a popular framework for solving sequential decision problems due to its computational efficiency and theoretical simplicity. Some on-policy methods guarantee every policy update is constrained to a trust region relative to the prior policy to ensure training stability. These methods often require computationally intensive non-linear optimization or require a particular form of action distribution. In this work, we show that applying KL penalization alone is nearly sufficient to enforce such trust regions. Then, we show that introducing a "fixup" phase is sufficient to guarantee a trust region is enforced on every policy update while adding fewer than 5% additional gradient steps in practice. The resulting algorithm, which we call FixPO, is able to train a variety of policy architectures and action spaces, is easy to implement, and produces results competitive with other trust region methods.
Fine-tuning Flow Matching Generative Models with Intermediate Feedback
Flow-based generative models have shown remarkable success in text-to-image generation, yet fine-tuning them with intermediate feedback remains challenging, especially for continuous-time flow matching models. Most existing approaches solely learn from outcome rewards, struggling with the credit assignment problem. Alternative methods that attempt to learn a critic via direct regression on cumulative rewards often face training instabilities and model collapse in online settings. We present AC-Flow, a robust actor-critic framework that addresses these challenges through three key innovations: (1) reward shaping that provides well-normalized learning signals to enable stable intermediate value learning and gradient control, (2) a novel dual-stability mechanism that combines advantage clipping to prevent destructive policy updates with a warm-up phase that allows the critic to mature before influencing the actor, and (3) a scalable generalized critic weighting scheme that extends traditional reward-weighted methods while preserving model diversity through Wasserstein regularization. Through extensive experiments on Stable Diffusion 3, we demonstrate that AC-Flow achieves state-of-the-art performance in text-to-image alignment tasks and generalization to unseen human preference models. Our results demonstrate that even with a computationally efficient critic model, we can robustly finetune flow models without compromising generative quality, diversity, or stability.
The Definitive Guide to Policy Gradients in Deep Reinforcement Learning: Theory, Algorithms and Implementations
In recent years, various powerful policy gradient algorithms have been proposed in deep reinforcement learning. While all these algorithms build on the Policy Gradient Theorem, the specific design choices differ significantly across algorithms. We provide a holistic overview of on-policy policy gradient algorithms to facilitate the understanding of both their theoretical foundations and their practical implementations. In this overview, we include a detailed proof of the continuous version of the Policy Gradient Theorem, convergence results and a comprehensive discussion of practical algorithms. We compare the most prominent algorithms on continuous control environments and provide insights on the benefits of regularization. All code is available at https://github.com/Matt00n/PolicyGradientsJax.
Adaptive Policy Learning to Additional Tasks
This paper develops a policy learning method for tuning a pre-trained policy to adapt to additional tasks without altering the original task. A method named Adaptive Policy Gradient (APG) is proposed in this paper, which combines Bellman's principle of optimality with the policy gradient approach to improve the convergence rate. This paper provides theoretical analysis which guarantees the convergence rate and sample complexity of O(1/T) and O(1/epsilon), respectively, where T denotes the number of iterations and epsilon denotes the accuracy of the resulting stationary policy. Furthermore, several challenging numerical simulations, including cartpole, lunar lander, and robot arm, are provided to show that APG obtains similar performance compared to existing deterministic policy gradient methods while utilizing much less data and converging at a faster rate.
Harnessing Uncertainty: Entropy-Modulated Policy Gradients for Long-Horizon LLM Agents
In long-horizon tasks, recent agents based on Large Language Models (LLMs) face a significant challenge that sparse, outcome-based rewards make it difficult to assign credit to intermediate steps. Previous methods mainly focus on creating dense reward signals to guide learning, either through traditional reinforcement learning techniques like inverse reinforcement learning or by using Process Reward Models for step-by-step feedback. In this paper, we identify a fundamental problem in the learning dynamics of LLMs: the magnitude of policy gradients is inherently coupled with the entropy, which leads to inefficient small updates for confident correct actions and potentially destabilizes large updates for uncertain ones. To resolve this, we propose Entropy-Modulated Policy Gradients (EMPG), a framework that re-calibrates the learning signal based on step-wise uncertainty and the final task outcome. EMPG amplifies updates for confident correct actions, penalizes confident errors, and attenuates updates from uncertain steps to stabilize exploration. We further introduce a bonus term for future clarity that encourages agents to find more predictable solution paths. Through comprehensive experiments on three challenging agent tasks, WebShop, ALFWorld, and Deep Search, we demonstrate that EMPG achieves substantial performance gains and significantly outperforms strong policy gradient baselines. Project page is at https://empgseed-seed.github.io/
Identifying Policy Gradient Subspaces
Policy gradient methods hold great potential for solving complex continuous control tasks. Still, their training efficiency can be improved by exploiting structure within the optimization problem. Recent work indicates that supervised learning can be accelerated by leveraging the fact that gradients lie in a low-dimensional and slowly-changing subspace. In this paper, we conduct a thorough evaluation of this phenomenon for two popular deep policy gradient methods on various simulated benchmark tasks. Our results demonstrate the existence of such gradient subspaces despite the continuously changing data distribution inherent to reinforcement learning. These findings reveal promising directions for future work on more efficient reinforcement learning, e.g., through improving parameter-space exploration or enabling second-order optimization.
High-Dimensional Continuous Control Using Generalized Advantage Estimation
Policy gradient methods are an appealing approach in reinforcement learning because they directly optimize the cumulative reward and can straightforwardly be used with nonlinear function approximators such as neural networks. The two main challenges are the large number of samples typically required, and the difficulty of obtaining stable and steady improvement despite the nonstationarity of the incoming data. We address the first challenge by using value functions to substantially reduce the variance of policy gradient estimates at the cost of some bias, with an exponentially-weighted estimator of the advantage function that is analogous to TD(lambda). We address the second challenge by using trust region optimization procedure for both the policy and the value function, which are represented by neural networks. Our approach yields strong empirical results on highly challenging 3D locomotion tasks, learning running gaits for bipedal and quadrupedal simulated robots, and learning a policy for getting the biped to stand up from starting out lying on the ground. In contrast to a body of prior work that uses hand-crafted policy representations, our neural network policies map directly from raw kinematics to joint torques. Our algorithm is fully model-free, and the amount of simulated experience required for the learning tasks on 3D bipeds corresponds to 1-2 weeks of real time.
Enhancing Policy Gradient with the Polyak Step-Size Adaption
Policy gradient is a widely utilized and foundational algorithm in the field of reinforcement learning (RL). Renowned for its convergence guarantees and stability compared to other RL algorithms, its practical application is often hindered by sensitivity to hyper-parameters, particularly the step-size. In this paper, we introduce the integration of the Polyak step-size in RL, which automatically adjusts the step-size without prior knowledge. To adapt this method to RL settings, we address several issues, including unknown f* in the Polyak step-size. Additionally, we showcase the performance of the Polyak step-size in RL through experiments, demonstrating faster convergence and the attainment of more stable policies.
Feedback is All You Need: Real-World Reinforcement Learning with Approximate Physics-Based Models
We focus on developing efficient and reliable policy optimization strategies for robot learning with real-world data. In recent years, policy gradient methods have emerged as a promising paradigm for training control policies in simulation. However, these approaches often remain too data inefficient or unreliable to train on real robotic hardware. In this paper we introduce a novel policy gradient-based policy optimization framework which systematically leverages a (possibly highly simplified) first-principles model and enables learning precise control policies with limited amounts of real-world data. Our approach 1) uses the derivatives of the model to produce sample-efficient estimates of the policy gradient and 2) uses the model to design a low-level tracking controller, which is embedded in the policy class. Theoretical analysis provides insight into how the presence of this feedback controller addresses overcomes key limitations of stand-alone policy gradient methods, while hardware experiments with a small car and quadruped demonstrate that our approach can learn precise control strategies reliably and with only minutes of real-world data.
DPOK: Reinforcement Learning for Fine-tuning Text-to-Image Diffusion Models
Learning from human feedback has been shown to improve text-to-image models. These techniques first learn a reward function that captures what humans care about in the task and then improve the models based on the learned reward function. Even though relatively simple approaches (e.g., rejection sampling based on reward scores) have been investigated, fine-tuning text-to-image models with the reward function remains challenging. In this work, we propose using online reinforcement learning (RL) to fine-tune text-to-image models. We focus on diffusion models, defining the fine-tuning task as an RL problem, and updating the pre-trained text-to-image diffusion models using policy gradient to maximize the feedback-trained reward. Our approach, coined DPOK, integrates policy optimization with KL regularization. We conduct an analysis of KL regularization for both RL fine-tuning and supervised fine-tuning. In our experiments, we show that DPOK is generally superior to supervised fine-tuning with respect to both image-text alignment and image quality.
Text2Grad: Reinforcement Learning from Natural Language Feedback
Traditional RLHF optimizes language models with coarse, scalar rewards that mask the fine-grained reasons behind success or failure, leading to slow and opaque learning. Recent work augments RL with textual critiques through prompting or reflection, improving interpretability but leaving model parameters untouched. We introduce Text2Grad, a reinforcement-learning paradigm that turns free-form textual feedback into span-level gradients. Given human (or programmatic) critiques, Text2Grad aligns each feedback phrase with the relevant token spans, converts these alignments into differentiable reward signals, and performs gradient updates that directly refine the offending portions of the model's policy. This yields precise, feedback-conditioned adjustments instead of global nudges. Text2Grad is realized through three components: (1) a high-quality feedback-annotation pipeline that pairs critiques with token spans; (2) a fine-grained reward model that predicts span-level reward on answer while generating explanatory critiques; and (3) a span-level policy optimizer that back-propagates natural-language gradients. Across summarization, code generation, and question answering, Text2Grad consistently surpasses scalar-reward RL and prompt-only baselines, providing both higher task metrics and richer interpretability. Our results demonstrate that natural-language feedback, when converted to gradients, is a powerful signal for fine-grained policy optimization. The code for our method is available at https://github.com/microsoft/Text2Grad
Learning More with Less: A Dynamic Dual-Level Down-Sampling Framework for Efficient Policy Optimization
Critic-free methods like GRPO reduce memory demands by estimating advantages from multiple rollouts but tend to converge slowly, as critical learning signals are diluted by an abundance of uninformative samples and tokens. To tackle this challenge, we propose the Dynamic Dual-Level Down-Sampling (D^3S) framework that prioritizes the most informative samples and tokens across groups to improve the efficient of policy optimization. D^3S operates along two levels: (1) the sample-level, which selects a subset of rollouts to maximize advantage variance (Var(A)). We theoretically proven that this selection is positively correlated with the upper bound of the policy gradient norms, yielding higher policy gradients. (2) the token-level, which prioritizes tokens with a high product of advantage magnitude and policy entropy (|A_{i,t}|times H_{i,t}), focusing updates on tokens where the policy is both uncertain and impactful. Moreover, to prevent overfitting to high-signal data, D^3S employs a dynamic down-sampling schedule inspired by curriculum learning. This schedule starts with aggressive down-sampling to accelerate early learning and gradually relaxes to promote robust generalization. Extensive experiments on Qwen2.5 and Llama3.1 demonstrate that integrating D^3S into advanced RL algorithms achieves state-of-the-art performance and generalization while requiring fewer samples and tokens across diverse reasoning benchmarks. Our code is added in the supplementary materials and will be made publicly available.
On the Design of KL-Regularized Policy Gradient Algorithms for LLM Reasoning
Policy gradient algorithms have been successfully applied to enhance the reasoning capabilities of large language models (LLMs). Despite the widespread use of Kullback-Leibler (KL) regularization in policy gradient algorithms to stabilize training, the systematic exploration of how different KL divergence formulations can be estimated and integrated into surrogate loss functions for online reinforcement learning (RL) presents a nuanced and systematically explorable design space. In this paper, we propose regularized policy gradient (RPG), a systematic framework for deriving and analyzing KL-regularized policy gradient methods in the online RL setting. We derive policy gradients and corresponding surrogate loss functions for objectives regularized by both forward and reverse KL divergences, considering both normalized and unnormalized policy distributions. Furthermore, we present derivations for fully differentiable loss functions as well as REINFORCE-style gradient estimators, accommodating diverse algorithmic needs. We conduct extensive experiments on RL for LLM reasoning using these methods, showing improved or competitive results in terms of training stability and performance compared to strong baselines such as GRPO, REINFORCE++, and DAPO. The code is available at https://github.com/complex-reasoning/RPG.
GPG: A Simple and Strong Reinforcement Learning Baseline for Model Reasoning
Reinforcement Learning (RL) can directly enhance the reasoning capabilities of large language models without extensive reliance on Supervised Fine-Tuning (SFT). In this work, we revisit the traditional Policy Gradient (PG) mechanism and propose a minimalist RL approach termed Group Policy Gradient (GPG). Unlike conventional methods, GPG directly optimize the original RL objective, thus obviating the need for surrogate loss functions. As illustrated in our paper, by eliminating both the critic and reference models, and avoiding KL divergence constraints, our approach significantly simplifies the training process when compared to Group Relative Policy Optimization (GRPO). Our approach achieves superior performance without relying on auxiliary techniques or adjustments. Extensive experiments demonstrate that our method not only reduces computational costs but also consistently outperforms GRPO across various unimodal and multimodal tasks. Our code is available at https://github.com/AMAP-ML/GPG.
Stochastic Policy Gradient Methods: Improved Sample Complexity for Fisher-non-degenerate Policies
Recently, the impressive empirical success of policy gradient (PG) methods has catalyzed the development of their theoretical foundations. Despite the huge efforts directed at the design of efficient stochastic PG-type algorithms, the understanding of their convergence to a globally optimal policy is still limited. In this work, we develop improved global convergence guarantees for a general class of Fisher-non-degenerate parameterized policies which allows to address the case of continuous state action spaces. First, we propose a Normalized Policy Gradient method with Implicit Gradient Transport (N-PG-IGT) and derive a mathcal{O}(varepsilon^{-2.5}) sample complexity of this method for finding a global varepsilon-optimal policy. Improving over the previously known mathcal{O}(varepsilon^{-3}) complexity, this algorithm does not require the use of importance sampling or second-order information and samples only one trajectory per iteration. Second, we further improve this complexity to mathcal{mathcal{O} }(varepsilon^{-2}) by considering a Hessian-Aided Recursive Policy Gradient ((N)-HARPG) algorithm enhanced with a correction based on a Hessian-vector product. Interestingly, both algorithms are (i) simple and easy to implement: single-loop, do not require large batches of trajectories and sample at most two trajectories per iteration; (ii) computationally and memory efficient: they do not require expensive subroutines at each iteration and can be implemented with memory linear in the dimension of parameters.
ODICE: Revealing the Mystery of Distribution Correction Estimation via Orthogonal-gradient Update
In this study, we investigate the DIstribution Correction Estimation (DICE) methods, an important line of work in offline reinforcement learning (RL) and imitation learning (IL). DICE-based methods impose state-action-level behavior constraint, which is an ideal choice for offline learning. However, they typically perform much worse than current state-of-the-art (SOTA) methods that solely use action-level behavior constraint. After revisiting DICE-based methods, we find there exist two gradient terms when learning the value function using true-gradient update: forward gradient (taken on the current state) and backward gradient (taken on the next state). Using forward gradient bears a large similarity to many offline RL methods, and thus can be regarded as applying action-level constraint. However, directly adding the backward gradient may degenerate or cancel out its effect if these two gradients have conflicting directions. To resolve this issue, we propose a simple yet effective modification that projects the backward gradient onto the normal plane of the forward gradient, resulting in an orthogonal-gradient update, a new learning rule for DICE-based methods. We conduct thorough theoretical analyses and find that the projected backward gradient brings state-level behavior regularization, which reveals the mystery of DICE-based methods: the value learning objective does try to impose state-action-level constraint, but needs to be used in a corrected way. Through toy examples and extensive experiments on complex offline RL and IL tasks, we demonstrate that DICE-based methods using orthogonal-gradient updates (O-DICE) achieve SOTA performance and great robustness.
Reinforcement Learning with General Utilities: Simpler Variance Reduction and Large State-Action Space
We consider the reinforcement learning (RL) problem with general utilities which consists in maximizing a function of the state-action occupancy measure. Beyond the standard cumulative reward RL setting, this problem includes as particular cases constrained RL, pure exploration and learning from demonstrations among others. For this problem, we propose a simpler single-loop parameter-free normalized policy gradient algorithm. Implementing a recursive momentum variance reduction mechanism, our algorithm achieves mathcal{O}(epsilon^{-3}) and mathcal{O}(epsilon^{-2}) sample complexities for epsilon-first-order stationarity and epsilon-global optimality respectively, under adequate assumptions. We further address the setting of large finite state action spaces via linear function approximation of the occupancy measure and show a mathcal{O}(epsilon^{-4}) sample complexity for a simple policy gradient method with a linear regression subroutine.
Policy gradient learning methods for stochastic control with exit time and applications to share repurchase pricing
We develop policy gradients methods for stochastic control with exit time in a model-free setting. We propose two types of algorithms for learning either directly the optimal policy or by learning alternately the value function (critic) and the optimal control (actor). The use of randomized policies is crucial for overcoming notably the issue related to the exit time in the gradient computation. We demonstrate the effectiveness of our approach by implementing our numerical schemes in the application to the problem of share repurchase pricing. Our results show that the proposed policy gradient methods outperform PDE or other neural networks techniques in a model-based setting. Furthermore, our algorithms are flexible enough to incorporate realistic market conditions like e.g. price impact or transaction costs.
BNPO: Beta Normalization Policy Optimization
Recent studies, including DeepSeek-R1 and Kimi-k1.5, have demonstrated that reinforcement learning with rule-based, binary-valued reward functions can significantly enhance the reasoning capabilities of large language models. These models primarily utilize REINFORCE-based policy optimization techniques, such as REINFORCE with baseline and group relative policy optimization (GRPO). However, a key limitation remains: current policy optimization methods either neglect reward normalization or employ static normalization strategies, which fail to adapt to the dynamic nature of policy updates during training. This may result in unstable gradient estimates and hinder training stability. To address this issue, we propose Beta Normalization Policy Optimization (BNPO), a novel policy optimization method that adaptively normalizes rewards using a Beta distribution with dynamically updated parameters. BNPO aligns the normalization with the changing policy distribution, enabling more precise and lower-variance gradient estimation, which in turn promotes stable training dynamics. We provide theoretical analysis demonstrating BNPO's variance-reducing properties and show that it generalizes both REINFORCE and GRPO under binary-valued reward settings. Furthermore, we introduce an advantage decomposition mechanism to extend BNPO's applicability to more complex reward systems. Experimental results confirm that BNPO achieves state-of-the-art performance among policy optimization methods on reasoning tasks. The code is available at https://github.com/changyi7231/BNPO.
Towards a Unified View of Large Language Model Post-Training
Two major sources of training data exist for post-training modern language models: online (model-generated rollouts) data, and offline (human or other-model demonstrations) data. These two types of data are typically used by approaches like Reinforcement Learning (RL) and Supervised Fine-Tuning (SFT), respectively. In this paper, we show that these approaches are not in contradiction, but are instances of a single optimization process. We derive a Unified Policy Gradient Estimator, and present the calculations of a wide spectrum of post-training approaches as the gradient of a common objective under different data distribution assumptions and various bias-variance tradeoffs. The gradient estimator is constructed with four interchangeable parts: stabilization mask, reference policy denominator, advantage estimate, and likelihood gradient. Motivated by our theoretical findings, we propose Hybrid Post-Training (HPT), an algorithm that dynamically selects different training signals. HPT is designed to yield both effective exploitation of demonstration and stable exploration without sacrificing learned reasoning patterns. We provide extensive experiments and ablation studies to verify the effectiveness of our unified theoretical framework and HPT. Across six mathematical reasoning benchmarks and two out-of-distribution suites, HPT consistently surpasses strong baselines across models of varying scales and families.
Revisiting the Weaknesses of Reinforcement Learning for Neural Machine Translation
Policy gradient algorithms have found wide adoption in NLP, but have recently become subject to criticism, doubting their suitability for NMT. Choshen et al. (2020) identify multiple weaknesses and suspect that their success is determined by the shape of output distributions rather than the reward. In this paper, we revisit these claims and study them under a wider range of configurations. Our experiments on in-domain and cross-domain adaptation reveal the importance of exploration and reward scaling, and provide empirical counter-evidence to these claims.
CPGD: Toward Stable Rule-based Reinforcement Learning for Language Models
Recent advances in rule-based reinforcement learning (RL) have significantly improved the reasoning capability of language models (LMs) with rule-based rewards. However, existing RL methods -- such as GRPO, REINFORCE++, and RLOO -- often suffer from training instability, where large policy updates and improper clipping can lead to training collapse. To address this issue, we propose Clipped Policy Gradient Optimization with Policy Drift (CPGD), a novel algorithm designed to stabilize policy learning in LMs. CPGD introduces a policy drift constraint based on KL divergence to dynamically regularize policy updates, and leverages a clip mechanism on the logarithm of the ratio to prevent excessive policy updates. We provide theoretical justification for CPGD and demonstrate through empirical analysis that it mitigates the instability observed in prior approaches. Furthermore, we show that CPGD significantly improves performance while maintaining training stability. Our implementation balances theoretical rigor with practical usability, offering a robust alternative for RL in the post-training of LMs. We release our code at https://github.com/ModalMinds/MM-EUREKA.
Beyond Stationarity: Convergence Analysis of Stochastic Softmax Policy Gradient Methods
Markov Decision Processes (MDPs) are a formal framework for modeling and solving sequential decision-making problems. In finite-time horizons such problems are relevant for instance for optimal stopping or specific supply chain problems, but also in the training of large language models. In contrast to infinite horizon MDPs optimal policies are not stationary, policies must be learned for every single epoch. In practice all parameters are often trained simultaneously, ignoring the inherent structure suggested by dynamic programming. This paper introduces a combination of dynamic programming and policy gradient called dynamic policy gradient, where the parameters are trained backwards in time. For the tabular softmax parametrisation we carry out the convergence analysis for simultaneous and dynamic policy gradient towards global optima, both in the exact and sampled gradient settings without regularisation. It turns out that the use of dynamic policy gradient training much better exploits the structure of finite-time problems which is reflected in improved convergence bounds.
Offline Reinforcement Learning with Closed-Form Policy Improvement Operators
Behavior constrained policy optimization has been demonstrated to be a successful paradigm for tackling Offline Reinforcement Learning. By exploiting historical transitions, a policy is trained to maximize a learned value function while constrained by the behavior policy to avoid a significant distributional shift. In this paper, we propose our closed-form policy improvement operators. We make a novel observation that the behavior constraint naturally motivates the use of first-order Taylor approximation, leading to a linear approximation of the policy objective. Additionally, as practical datasets are usually collected by heterogeneous policies, we model the behavior policies as a Gaussian Mixture and overcome the induced optimization difficulties by leveraging the LogSumExp's lower bound and Jensen's Inequality, giving rise to a closed-form policy improvement operator. We instantiate offline RL algorithms with our novel policy improvement operators and empirically demonstrate their effectiveness over state-of-the-art algorithms on the standard D4RL benchmark. Our code is available at https://cfpi-icml23.github.io/.
Trust Region Policy Optimization
We describe an iterative procedure for optimizing policies, with guaranteed monotonic improvement. By making several approximations to the theoretically-justified procedure, we develop a practical algorithm, called Trust Region Policy Optimization (TRPO). This algorithm is similar to natural policy gradient methods and is effective for optimizing large nonlinear policies such as neural networks. Our experiments demonstrate its robust performance on a wide variety of tasks: learning simulated robotic swimming, hopping, and walking gaits; and playing Atari games using images of the screen as input. Despite its approximations that deviate from the theory, TRPO tends to give monotonic improvement, with little tuning of hyperparameters.
Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion
Reinforcement Learning (RL) has been used to finetune Large Language Models (LLMs) using a reward model trained from preference data, to better align with human judgment. The recently introduced direct alignment methods, which are often simpler, more stable, and computationally lighter, can more directly achieve this. However, these approaches cannot optimize arbitrary rewards, and the preference-based ones are not the only rewards of interest for LLMs (eg., unit tests for code generation or textual entailment for summarization, among others). RL-finetuning is usually done with a variation of policy gradient, which calls for on-policy or near-on-policy samples, requiring costly generations. We introduce Contrastive Policy Gradient, or CoPG, a simple and mathematically principled new RL algorithm that can estimate the optimal policy even from off-policy data. It can be seen as an off-policy policy gradient approach that does not rely on important sampling techniques and highlights the importance of using (the right) state baseline. We show this approach to generalize the direct alignment method IPO (identity preference optimization) and classic policy gradient. We experiment with the proposed CoPG on a toy bandit problem to illustrate its properties, as well as for finetuning LLMs on a summarization task, using a learned reward function considered as ground truth for the purpose of the experiments.
Don't Waste Mistakes: Leveraging Negative RL-Groups via Confidence Reweighting
Reinforcement learning with verifiable rewards (RLVR) has become a standard recipe for improving large language models (LLMs) on reasoning tasks, with Group Relative Policy Optimization (GRPO) widely used in practice. Yet GRPO wastes substantial compute on negative groups: groups in which no sampled response is correct yield zero advantage and thus no gradient. We ask whether negative groups can be leveraged without extra supervision. Starting from a maximum-likelihood (MLE) objective in reward modeling, we show that the MLE gradient is equivalent to a policy gradient for a modified value function. This value function adds a confidence-weighted penalty on incorrect responses, imposing larger penalties on more confident mistakes. We refer to this as Likelihood Estimation with Negative Samples (LENS). LENS modifies GRPO to assign non-zero, confidence-dependent rewards to incorrect generations, making negative groups informative and converting previously wasted samples into useful gradient updates. On the MATH benchmark with Llama-3.1-8B and Qwen-2.5-3B, the proposed variant consistently outperforms GRPO baseline, with significant gains on harder items. These results demonstrate a principled and practical way to "rescue" negative groups, improving efficiency and performance in RLVR.
Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization
Recent months have seen the emergence of a powerful new trend in which large language models (LLMs) are augmented to become autonomous language agents capable of performing objective oriented multi-step tasks on their own, rather than merely responding to queries from human users. Most existing language agents, however, are not optimized using environment-specific rewards. Although some agents enable iterative refinement through verbal feedback, they do not reason and plan in ways that are compatible with gradient-based learning from rewards. This paper introduces a principled framework for reinforcing large language agents by learning a retrospective model, which automatically tunes the language agent prompts from environment feedback through policy gradient. Specifically, our proposed agent architecture learns from rewards across multiple environments and tasks, for fine-tuning a pre-trained language model which refines the language agent prompt by summarizing the root cause of prior failed attempts and proposing action plans. Experimental results on various tasks demonstrate that the language agents improve over time and that our approach considerably outperforms baselines that do not properly leverage gradients from the environment. This demonstrates that using policy gradient optimization to improve language agents, for which we believe our work is one of the first, seems promising and can be applied to optimize other models in the agent architecture to enhance agent performances over time.
SPG: Sandwiched Policy Gradient for Masked Diffusion Language Models
Diffusion large language models (dLLMs) are emerging as an efficient alternative to autoregressive models due to their ability to decode multiple tokens in parallel. However, aligning dLLMs with human preferences or task-specific rewards via reinforcement learning (RL) is challenging because their intractable log-likelihood precludes the direct application of standard policy gradient methods. While prior work uses surrogates like the evidence lower bound (ELBO), these one-sided approximations can introduce significant policy gradient bias. To address this, we propose the Sandwiched Policy Gradient (SPG) that leverages both an upper and a lower bound of the true log-likelihood. Experiments show that SPG significantly outperforms baselines based on ELBO or one-step estimation. Specifically, SPG improves the accuracy over state-of-the-art RL methods for dLLMs by 3.6% in GSM8K, 2.6% in MATH500, 18.4% in Countdown and 27.0% in Sudoku.
PG-Rainbow: Using Distributional Reinforcement Learning in Policy Gradient Methods
This paper introduces PG-Rainbow, a novel algorithm that incorporates a distributional reinforcement learning framework with a policy gradient algorithm. Existing policy gradient methods are sample inefficient and rely on the mean of returns when calculating the state-action value function, neglecting the distributional nature of returns in reinforcement learning tasks. To address this issue, we use an Implicit Quantile Network that provides the quantile information of the distribution of rewards to the critic network of the Proximal Policy Optimization algorithm. We show empirical results that through the integration of reward distribution information into the policy network, the policy agent acquires enhanced capabilities to comprehensively evaluate the consequences of potential actions in a given state, facilitating more sophisticated and informed decision-making processes. We evaluate the performance of the proposed algorithm in the Atari-2600 game suite, simulated via the Arcade Learning Environment (ALE).
Improving Generalization in Visual Reinforcement Learning via Conflict-aware Gradient Agreement Augmentation
Learning a policy with great generalization to unseen environments remains challenging but critical in visual reinforcement learning. Despite the success of augmentation combination in the supervised learning generalization, naively applying it to visual RL algorithms may damage the training efficiency, suffering from serve performance degradation. In this paper, we first conduct qualitative analysis and illuminate the main causes: (i) high-variance gradient magnitudes and (ii) gradient conflicts existed in various augmentation methods. To alleviate these issues, we propose a general policy gradient optimization framework, named Conflict-aware Gradient Agreement Augmentation (CG2A), and better integrate augmentation combination into visual RL algorithms to address the generalization bias. In particular, CG2A develops a Gradient Agreement Solver to adaptively balance the varying gradient magnitudes, and introduces a Soft Gradient Surgery strategy to alleviate the gradient conflicts. Extensive experiments demonstrate that CG2A significantly improves the generalization performance and sample efficiency of visual RL algorithms.
Recomposing the Reinforcement Learning Building Blocks with Hypernetworks
The Reinforcement Learning (RL) building blocks, i.e. Q-functions and policy networks, usually take elements from the cartesian product of two domains as input. In particular, the input of the Q-function is both the state and the action, and in multi-task problems (Meta-RL) the policy can take a state and a context. Standard architectures tend to ignore these variables' underlying interpretations and simply concatenate their features into a single vector. In this work, we argue that this choice may lead to poor gradient estimation in actor-critic algorithms and high variance learning steps in Meta-RL algorithms. To consider the interaction between the input variables, we suggest using a Hypernetwork architecture where a primary network determines the weights of a conditional dynamic network. We show that this approach improves the gradient approximation and reduces the learning step variance, which both accelerates learning and improves the final performance. We demonstrate a consistent improvement across different locomotion tasks and different algorithms both in RL (TD3 and SAC) and in Meta-RL (MAML and PEARL).
Fine-Tuning Discrete Diffusion Models with Policy Gradient Methods
Discrete diffusion models have recently gained significant attention due to their ability to process complex discrete structures for language modeling. However, fine-tuning these models with policy gradient methods, as is commonly done in Reinforcement Learning from Human Feedback (RLHF), remains a challenging task. We propose an efficient, broadly applicable, and theoretically justified policy gradient algorithm, called Score Entropy Policy Optimization (SEPO), for fine-tuning discrete diffusion models over non-differentiable rewards. Our numerical experiments across several discrete generative tasks demonstrate the scalability and efficiency of our method. Our code is available at https://github.com/ozekri/SEPO.
On-Policy Model Errors in Reinforcement Learning
Model-free reinforcement learning algorithms can compute policy gradients given sampled environment transitions, but require large amounts of data. In contrast, model-based methods can use the learned model to generate new data, but model errors and bias can render learning unstable or suboptimal. In this paper, we present a novel method that combines real-world data and a learned model in order to get the best of both worlds. The core idea is to exploit the real-world data for on-policy predictions and use the learned model only to generalize to different actions. Specifically, we use the data as time-dependent on-policy correction terms on top of a learned model, to retain the ability to generate data without accumulating errors over long prediction horizons. We motivate this method theoretically and show that it counteracts an error term for model-based policy improvement. Experiments on MuJoCo- and PyBullet-benchmarks show that our method can drastically improve existing model-based approaches without introducing additional tuning parameters.
Diffusion Policy Policy Optimization
We introduce Diffusion Policy Policy Optimization, DPPO, an algorithmic framework including best practices for fine-tuning diffusion-based policies (e.g. Diffusion Policy) in continuous control and robot learning tasks using the policy gradient (PG) method from reinforcement learning (RL). PG methods are ubiquitous in training RL policies with other policy parameterizations; nevertheless, they had been conjectured to be less efficient for diffusion-based policies. Surprisingly, we show that DPPO achieves the strongest overall performance and efficiency for fine-tuning in common benchmarks compared to other RL methods for diffusion-based policies and also compared to PG fine-tuning of other policy parameterizations. Through experimental investigation, we find that DPPO takes advantage of unique synergies between RL fine-tuning and the diffusion parameterization, leading to structured and on-manifold exploration, stable training, and strong policy robustness. We further demonstrate the strengths of DPPO in a range of realistic settings, including simulated robotic tasks with pixel observations, and via zero-shot deployment of simulation-trained policies on robot hardware in a long-horizon, multi-stage manipulation task. Website with code: diffusion-ppo.github.io
Polychromic Objectives for Reinforcement Learning
Reinforcement learning fine-tuning (RLFT) is a dominant paradigm for improving pretrained policies for downstream tasks. These pretrained policies, trained on large datasets, produce generations with a broad range of promising but unrefined behaviors. Often, a critical failure mode of RLFT arises when policies lose this diversity and collapse into a handful of easily exploitable outputs. This convergence hinders exploration, which is essential for expanding the capabilities of the pretrained policy and for amplifying the benefits of test-time compute scaling. To address this, we introduce an objective for policy gradient methods that explicitly enforces the exploration and refinement of diverse generations, which we call a polychromic objective. We then show how proximal policy optimization (PPO) can be adapted to optimize this objective. Our method (1) employs vine sampling to collect on-policy rollouts and (2) modifies the advantage function to reflect the advantage under our new objective. Experiments on BabyAI, Minigrid, and Algorithmic Creativity show that our method improves success rates by reliably solving a larger set of environment configurations and generalizes better under large perturbations. Moreover, when given multiple attempts in pass@k experiments, the policy achieves substantially higher coverage, demonstrating its ability to maintain and exploit a diverse repertoire of strategies.
A Policy Gradient Method for Confounded POMDPs
In this paper, we propose a policy gradient method for confounded partially observable Markov decision processes (POMDPs) with continuous state and observation spaces in the offline setting. We first establish a novel identification result to non-parametrically estimate any history-dependent policy gradient under POMDPs using the offline data. The identification enables us to solve a sequence of conditional moment restrictions and adopt the min-max learning procedure with general function approximation for estimating the policy gradient. We then provide a finite-sample non-asymptotic bound for estimating the gradient uniformly over a pre-specified policy class in terms of the sample size, length of horizon, concentratability coefficient and the measure of ill-posedness in solving the conditional moment restrictions. Lastly, by deploying the proposed gradient estimation in the gradient ascent algorithm, we show the global convergence of the proposed algorithm in finding the history-dependent optimal policy under some technical conditions. To the best of our knowledge, this is the first work studying the policy gradient method for POMDPs under the offline setting.
Offline Data Enhanced On-Policy Policy Gradient with Provable Guarantees
Hybrid RL is the setting where an RL agent has access to both offline data and online data by interacting with the real-world environment. In this work, we propose a new hybrid RL algorithm that combines an on-policy actor-critic method with offline data. On-policy methods such as policy gradient and natural policy gradient (NPG) have shown to be more robust to model misspecification, though sometimes it may not be as sample efficient as methods that rely on off-policy learning. On the other hand, offline methods that depend on off-policy training often require strong assumptions in theory and are less stable to train in practice. Our new approach integrates a procedure of off-policy training on the offline data into an on-policy NPG framework. We show that our approach, in theory, can obtain a best-of-both-worlds type of result -- it achieves the state-of-art theoretical guarantees of offline RL when offline RL-specific assumptions hold, while at the same time maintaining the theoretical guarantees of on-policy NPG regardless of the offline RL assumptions' validity. Experimentally, in challenging rich-observation environments, we show that our approach outperforms a state-of-the-art hybrid RL baseline which only relies on off-policy policy optimization, demonstrating the empirical benefit of combining on-policy and off-policy learning. Our code is publicly available at https://github.com/YifeiZhou02/HNPG.
Variance Reduced Policy Gradient Method for Multi-Objective Reinforcement Learning
Multi-Objective Reinforcement Learning (MORL) is a generalization of traditional Reinforcement Learning (RL) that aims to optimize multiple, often conflicting objectives simultaneously rather than focusing on a single reward. This approach is crucial in complex decision-making scenarios where agents must balance trade-offs between various goals, such as maximizing performance while minimizing costs. We consider the problem of MORL where the objectives are combined using a non-linear scalarization function. Just like in standard RL, policy gradient methods (PGMs) are amongst the most effective for handling large and continuous state-action spaces in MORL. However, existing PGMs for MORL suffer from high sample inefficiency, requiring large amounts of data to be effective. Previous attempts to solve this problem rely on overly strict assumptions, losing PGMs' benefits in scalability to large state-action spaces. In this work, we address the issue of sample efficiency by implementing variance-reduction techniques to reduce the sample complexity of policy gradients while maintaining general assumptions.
Sequential Policy Gradient for Adaptive Hyperparameter Optimization
Reinforcement learning is essential for neural architecture search and hyperparameter optimization, but the conventional approaches impede widespread use due to prohibitive time and computational costs. Inspired by DeepSeek-V3 multi-token prediction architecture, we propose Sequential Policy Gradient modeling (SPG), a novel trajectory generation paradigm for lightweight online hyperparameter optimization. In contrast to conventional policy gradient methods, SPG extends the base model with temporary modules, enabling it to generate state-action (padded) trajectories in a single forward pass. Our experiments demonstrate that models gain performance when retrained with SPG on their original datasets and also outperform standard transfer fine-tuning. We evaluate on five datasets spanning computer vision (ImageNet, COCO), natural language processing (GLUE, SQuAD), and audio (SUPERB) to assess the industrial applicability of SPG. The proposed method demonstrates consistent improvements across widely adopted models, achieving performance gains of +0.2sim7%, with significantly low computational costs. Fully reproducible code and pre-trained models: https://huggingface.co/UniversalAlgorithmic/SPG.
Large Language Models can Implement Policy Iteration
This work presents In-Context Policy Iteration, an algorithm for performing Reinforcement Learning (RL), in-context, using foundation models. While the application of foundation models to RL has received considerable attention, most approaches rely on either (1) the curation of expert demonstrations (either through manual design or task-specific pretraining) or (2) adaptation to the task of interest using gradient methods (either fine-tuning or training of adapter layers). Both of these techniques have drawbacks. Collecting demonstrations is labor-intensive, and algorithms that rely on them do not outperform the experts from which the demonstrations were derived. All gradient techniques are inherently slow, sacrificing the "few-shot" quality that made in-context learning attractive to begin with. In this work, we present an algorithm, ICPI, that learns to perform RL tasks without expert demonstrations or gradients. Instead we present a policy-iteration method in which the prompt content is the entire locus of learning. ICPI iteratively updates the contents of the prompt from which it derives its policy through trial-and-error interaction with an RL environment. In order to eliminate the role of in-weights learning (on which approaches like Decision Transformer rely heavily), we demonstrate our algorithm using Codex, a language model with no prior knowledge of the domains on which we evaluate it.
Policy Regularization with Dataset Constraint for Offline Reinforcement Learning
We consider the problem of learning the best possible policy from a fixed dataset, known as offline Reinforcement Learning (RL). A common taxonomy of existing offline RL works is policy regularization, which typically constrains the learned policy by distribution or support of the behavior policy. However, distribution and support constraints are overly conservative since they both force the policy to choose similar actions as the behavior policy when considering particular states. It will limit the learned policy's performance, especially when the behavior policy is sub-optimal. In this paper, we find that regularizing the policy towards the nearest state-action pair can be more effective and thus propose Policy Regularization with Dataset Constraint (PRDC). When updating the policy in a given state, PRDC searches the entire dataset for the nearest state-action sample and then restricts the policy with the action of this sample. Unlike previous works, PRDC can guide the policy with proper behaviors from the dataset, allowing it to choose actions that do not appear in the dataset along with the given state. It is a softer constraint but still keeps enough conservatism from out-of-distribution actions. Empirical evidence and theoretical analysis show that PRDC can alleviate offline RL's fundamentally challenging value overestimation issue with a bounded performance gap. Moreover, on a set of locomotion and navigation tasks, PRDC achieves state-of-the-art performance compared with existing methods. Code is available at https://github.com/LAMDA-RL/PRDC
Proximal Supervised Fine-Tuning
Supervised fine-tuning (SFT) of foundation models often leads to poor generalization, where prior capabilities deteriorate after tuning on new tasks or domains. Inspired by trust-region policy optimization (TRPO) and proximal policy optimization (PPO) in reinforcement learning (RL), we propose Proximal SFT (PSFT). This fine-tuning objective incorporates the benefits of trust-region, effectively constraining policy drift during SFT while maintaining competitive tuning. By viewing SFT as a special case of policy gradient methods with constant positive advantages, we derive PSFT that stabilizes optimization and leads to generalization, while leaving room for further optimization in subsequent post-training stages. Experiments across mathematical and human-value domains show that PSFT matches SFT in-domain, outperforms it in out-of-domain generalization, remains stable under prolonged training without causing entropy collapse, and provides a stronger foundation for the subsequent optimization.
Accelerating RL for LLM Reasoning with Optimal Advantage Regression
Reinforcement learning (RL) has emerged as a powerful tool for fine-tuning large language models (LLMs) to improve complex reasoning abilities. However, state-of-the-art policy optimization methods often suffer from high computational overhead and memory consumption, primarily due to the need for multiple generations per prompt and the reliance on critic networks or advantage estimates of the current policy. In this paper, we propose A*-PO, a novel two-stage policy optimization framework that directly approximates the optimal advantage function and enables efficient training of LLMs for reasoning tasks. In the first stage, we leverage offline sampling from a reference policy to estimate the optimal value function V*, eliminating the need for costly online value estimation. In the second stage, we perform on-policy updates using a simple least-squares regression loss with only a single generation per prompt. Theoretically, we establish performance guarantees and prove that the KL-regularized RL objective can be optimized without requiring complex exploration strategies. Empirically, A*-PO achieves competitive performance across a wide range of mathematical reasoning benchmarks, while reducing training time by up to 2times and peak memory usage by over 30% compared to PPO, GRPO, and REBEL. Implementation of A*-PO can be found at https://github.com/ZhaolinGao/A-PO.
The Entropy Mechanism of Reinforcement Learning for Reasoning Language Models
This paper aims to overcome a major obstacle in scaling RL for reasoning with LLMs, namely the collapse of policy entropy. Such phenomenon is consistently observed across vast RL runs without entropy intervention, where the policy entropy dropped sharply at the early training stage, this diminished exploratory ability is always accompanied with the saturation of policy performance. In practice, we establish a transformation equation R=-a*e^H+b between entropy H and downstream performance R. This empirical law strongly indicates that, the policy performance is traded from policy entropy, thus bottlenecked by its exhaustion, and the ceiling is fully predictable H=0, R=-a+b. Our finding necessitates entropy management for continuous exploration toward scaling compute for RL. To this end, we investigate entropy dynamics both theoretically and empirically. Our derivation highlights that, the change in policy entropy is driven by the covariance between action probability and the change in logits, which is proportional to its advantage when using Policy Gradient-like algorithms. Empirical study shows that, the values of covariance term and entropy differences matched exactly, supporting the theoretical conclusion. Moreover, the covariance term stays mostly positive throughout training, further explaining why policy entropy would decrease monotonically. Through understanding the mechanism behind entropy dynamics, we motivate to control entropy by restricting the update of high-covariance tokens. Specifically, we propose two simple yet effective techniques, namely Clip-Cov and KL-Cov, which clip and apply KL penalty to tokens with high covariances respectively. Experiments show that these methods encourage exploration, thus helping policy escape entropy collapse and achieve better downstream performance.
ROCM: RLHF on consistency models
Diffusion models have revolutionized generative modeling in continuous domains like image, audio, and video synthesis. However, their iterative sampling process leads to slow generation and inefficient training, challenges that are further exacerbated when incorporating Reinforcement Learning from Human Feedback (RLHF) due to sparse rewards and long time horizons. Consistency models address these issues by enabling single-step or efficient multi-step generation, significantly reducing computational costs. In this work, we propose a direct reward optimization framework for applying RLHF to consistency models, incorporating distributional regularization to enhance training stability and prevent reward hacking. We investigate various f-divergences as regularization strategies, striking a balance between reward maximization and model consistency. Unlike policy gradient methods, our approach leverages first-order gradients, making it more efficient and less sensitive to hyperparameter tuning. Empirical results show that our method achieves competitive or superior performance compared to policy gradient based RLHF methods, across various automatic metrics and human evaluation. Additionally, our analysis demonstrates the impact of different regularization techniques in improving model generalization and preventing overfitting.
Unearthing Gems from Stones: Policy Optimization with Negative Sample Augmentation for LLM Reasoning
Recent advances in reasoning language models have witnessed a paradigm shift from short to long CoT pattern. Given the substantial computational cost of rollouts in long CoT models, maximizing the utility of fixed training datasets becomes crucial. Our analysis reveals that negative responses contain valuable components such as self-reflection and error-correction steps, yet primary existing methods either completely discard negative samples (RFT) or apply equal penalization across all tokens (RL), failing to leverage these potential learning signals. In light of this, we propose Behavior Constrained Policy Gradient with Negative Sample Augmentation (BCPG-NSA), a fine-grained offline RL framework that encompasses three stages: 1) sample segmentation, 2) consensus-based step correctness assessment combining LLM and PRM judgers, and 3) policy optimization with NSA designed to effectively mine positive steps within negative samples. Experimental results show that BCPG-NSA outperforms baselines on several challenging math/coding reasoning benchmarks using the same training dataset, achieving improved sample efficiency and demonstrating robustness and scalability when extended to multiple iterations.
Discovering Temporally-Aware Reinforcement Learning Algorithms
Recent advancements in meta-learning have enabled the automatic discovery of novel reinforcement learning algorithms parameterized by surrogate objective functions. To improve upon manually designed algorithms, the parameterization of this learned objective function must be expressive enough to represent novel principles of learning (instead of merely recovering already established ones) while still generalizing to a wide range of settings outside of its meta-training distribution. However, existing methods focus on discovering objective functions that, like many widely used objective functions in reinforcement learning, do not take into account the total number of steps allowed for training, or "training horizon". In contrast, humans use a plethora of different learning objectives across the course of acquiring a new ability. For instance, students may alter their studying techniques based on the proximity to exam deadlines and their self-assessed capabilities. This paper contends that ignoring the optimization time horizon significantly restricts the expressive potential of discovered learning algorithms. We propose a simple augmentation to two existing objective discovery approaches that allows the discovered algorithm to dynamically update its objective function throughout the agent's training procedure, resulting in expressive schedules and increased generalization across different training horizons. In the process, we find that commonly used meta-gradient approaches fail to discover such adaptive objective functions while evolution strategies discover highly dynamic learning rules. We demonstrate the effectiveness of our approach on a wide range of tasks and analyze the resulting learned algorithms, which we find effectively balance exploration and exploitation by modifying the structure of their learning rules throughout the agent's lifetime.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.
Maximum Entropy Reinforcement Learning via Energy-Based Normalizing Flow
Existing Maximum-Entropy (MaxEnt) Reinforcement Learning (RL) methods for continuous action spaces are typically formulated based on actor-critic frameworks and optimized through alternating steps of policy evaluation and policy improvement. In the policy evaluation steps, the critic is updated to capture the soft Q-function. In the policy improvement steps, the actor is adjusted in accordance with the updated soft Q-function. In this paper, we introduce a new MaxEnt RL framework modeled using Energy-Based Normalizing Flows (EBFlow). This framework integrates the policy evaluation steps and the policy improvement steps, resulting in a single objective training process. Our method enables the calculation of the soft value function used in the policy evaluation target without Monte Carlo approximation. Moreover, this design supports the modeling of multi-modal action distributions while facilitating efficient action sampling. To evaluate the performance of our method, we conducted experiments on the MuJoCo benchmark suite and a number of high-dimensional robotic tasks simulated by Omniverse Isaac Gym. The evaluation results demonstrate that our method achieves superior performance compared to widely-adopted representative baselines.
The Best of N Worlds: Aligning Reinforcement Learning with Best-of-N Sampling via max@k Optimisation
The application of Reinforcement Learning with Verifiable Rewards (RLVR) to mathematical and coding domains has demonstrated significant improvements in the reasoning and problem-solving abilities of Large Language Models. Despite its success in single generation problem solving, the reinforcement learning fine-tuning process may harm the model's exploration ability, as reflected in decreased diversity of generations and a resulting degradation of performance during Best-of-N sampling for large N values. In this work, we focus on optimizing the max@k metric, a continuous generalization of pass@k. We derive an unbiased on-policy gradient estimate for direct optimization of this metric. Furthermore, we extend our derivations to the off-policy updates, a common element in modern RLVR algorithms, that allows better sample efficiency. Empirically, we show that our objective effectively optimizes max@k metric in off-policy scenarios, aligning the model with the Best-of-N inference strategy.
One-Token Rollout: Guiding Supervised Fine-Tuning of LLMs with Policy Gradient
Supervised fine-tuning (SFT) is the predominant method for adapting large language models (LLMs), yet it often struggles with generalization compared to reinforcement learning (RL). In this work, we posit that this performance disparity stems not just from the loss function, but from a more fundamental difference: SFT learns from a fixed, pre-collected dataset, whereas RL utilizes on-policy data sampled from the current policy. Building on this hypothesis, we introduce one-token rollout (OTR), a novel fine-tuning algorithm that guides SFT with the policy gradient method. OTR reframes the autoregressive learning process by treating each token generation as a single-step reinforcement learning trajectory. At each step, it performs a Monte Carlo ``rollout'' by sampling multiple candidate tokens from the current policy's distribution. The ground-truth token from the supervised data is then used to provide a reward signal to these samples. Guided by policy gradient, our algorithm repurposes static, off-policy supervised data into a dynamic, on-policy signal at the token level, capturing the generalization benefits of on-policy learning while bypassing the costly overhead of full sentence generation. Through extensive experiments on a diverse suite of challenging benchmarks spanning mathematical reasoning, code generation, and general domain reasoning, we demonstrate that OTR consistently outperforms standard SFT. Our findings establish OTR as a powerful and practical alternative for fine-tuning LLMs and provide compelling evidence that the on-policy nature of data is a critical driver of generalization, offering a promising new direction for fine-tuning LLMs.
COPO: Consistency-Aware Policy Optimization
Reinforcement learning has significantly enhanced the reasoning capabilities of Large Language Models (LLMs) in complex problem-solving tasks. Recently, the introduction of DeepSeek R1 has inspired a surge of interest in leveraging rule-based rewards as a low-cost alternative for computing advantage functions and guiding policy optimization. However, a common challenge observed across many replication and extension efforts is that when multiple sampled responses under a single prompt converge to identical outcomes, whether correct or incorrect, the group-based advantage degenerates to zero. This leads to vanishing gradients and renders the corresponding samples ineffective for learning, ultimately limiting training efficiency and downstream performance. To address this issue, we propose a consistency-aware policy optimization framework that introduces a structured global reward based on outcome consistency, the global loss based on it ensures that, even when model outputs show high intra-group consistency, the training process still receives meaningful learning signals, which encourages the generation of correct and self-consistent reasoning paths from a global perspective. Furthermore, we incorporate an entropy-based soft blending mechanism that adaptively balances local advantage estimation with global optimization, enabling dynamic transitions between exploration and convergence throughout training. Our method introduces several key innovations in both reward design and optimization strategy. We validate its effectiveness through substantial performance gains on multiple mathematical reasoning benchmarks, highlighting the proposed framework's robustness and general applicability. Code of this work has been released at https://github.com/hijih/copo-code.git.
Actor-Critic based Improper Reinforcement Learning
We consider an improper reinforcement learning setting where a learner is given M base controllers for an unknown Markov decision process, and wishes to combine them optimally to produce a potentially new controller that can outperform each of the base ones. This can be useful in tuning across controllers, learnt possibly in mismatched or simulated environments, to obtain a good controller for a given target environment with relatively few trials. Towards this, we propose two algorithms: (1) a Policy Gradient-based approach; and (2) an algorithm that can switch between a simple Actor-Critic (AC) based scheme and a Natural Actor-Critic (NAC) scheme depending on the available information. Both algorithms operate over a class of improper mixtures of the given controllers. For the first case, we derive convergence rate guarantees assuming access to a gradient oracle. For the AC-based approach we provide convergence rate guarantees to a stationary point in the basic AC case and to a global optimum in the NAC case. Numerical results on (i) the standard control theoretic benchmark of stabilizing an cartpole; and (ii) a constrained queueing task show that our improper policy optimization algorithm can stabilize the system even when the base policies at its disposal are unstable.
Look Before You Leap: A GUI-Critic-R1 Model for Pre-Operative Error Diagnosis in GUI Automation
In recent years, Multimodal Large Language Models (MLLMs) have been extensively utilized for multimodal reasoning tasks, including Graphical User Interface (GUI) automation. Unlike general offline multimodal tasks, GUI automation is executed in online interactive environments, necessitating step-by-step decision-making based on real-time status of the environment. This task has a lower tolerance for decision-making errors at each step, as any mistakes may cumulatively disrupt the process and potentially lead to irreversible outcomes like deletions or payments. To address these issues, we introduce a pre-operative critic mechanism that provides effective feedback prior to the actual execution, by reasoning about the potential outcome and correctness of actions. Specifically, we propose a Suggestion-aware Gradient Relative Policy Optimization (S-GRPO) strategy to construct our pre-operative critic model GUI-Critic-R1, incorporating a novel suggestion reward to enhance the reliability of the model's feedback. Furthermore, we develop a reasoning-bootstrapping based data collection pipeline to create a GUI-Critic-Train and a GUI-Critic-Test, filling existing gaps in GUI critic data. Static experiments on the GUI-Critic-Test across both mobile and web domains reveal that our GUI-Critic-R1 offers significant advantages in critic accuracy compared to current MLLMs. Dynamic evaluation on GUI automation benchmark further highlights the effectiveness and superiority of our model, as evidenced by improved success rates and operational efficiency.
Do Not Let Low-Probability Tokens Over-Dominate in RL for LLMs
Reinforcement learning (RL) has become a cornerstone for enhancing the reasoning capabilities of large language models (LLMs), with recent innovations such as Group Relative Policy Optimization (GRPO) demonstrating exceptional effectiveness. In this study, we identify a critical yet underexplored issue in RL training: low-probability tokens disproportionately influence model updates due to their large gradient magnitudes. This dominance hinders the effective learning of high-probability tokens, whose gradients are essential for LLMs' performance but are substantially suppressed. To mitigate this interference, we propose two novel methods: Advantage Reweighting and Low-Probability Token Isolation (Lopti), both of which effectively attenuate gradients from low-probability tokens while emphasizing parameter updates driven by high-probability tokens. Our approaches promote balanced updates across tokens with varying probabilities, thereby enhancing the efficiency of RL training. Experimental results demonstrate that they substantially improve the performance of GRPO-trained LLMs, achieving up to a 46.2% improvement in K&K Logic Puzzle reasoning tasks. Our implementation is available at https://github.com/zhyang2226/AR-Lopti.
Knapsack RL: Unlocking Exploration of LLMs via Optimizing Budget Allocation
Large Language Models (LLMs) can self-improve through reinforcement learning, where they generate trajectories to explore and discover better solutions. However, this exploration process is computationally expensive, often forcing current methods to assign limited exploration budgets to each task. This uniform allocation creates problematic edge cases: easy tasks consistently succeed while difficult tasks consistently fail, both producing zero gradients during training updates for the widely used Group Relative Policy Optimization (GRPO). We address this problem from the lens of exploration budget allocation. Viewing each task's exploration as an "item" with a distinct "value" and "cost", we establish a connection to the classical knapsack problem. This formulation allows us to derive an optimal assignment rule that adaptively distributes resources based on the model's current learning status. When applied to GRPO, our method increases the effective ratio of non-zero policy gradients by 20-40% during training. Acting as a computational "free lunch", our approach could reallocate exploration budgets from tasks where learning is saturated to those where it is most impactful. This enables significantly larger budgets (e.g., 93 rollouts) for especially challenging problems, which would be computationally prohibitive under a uniform allocation. These improvements translate to meaningful gains on mathematical reasoning benchmarks, with average improvements of 2-4 points and peak gains of 9 points on specific tasks. Notably, achieving comparable performance with traditional homogeneous allocation would require about 2x the computational resources.
Low-Switching Policy Gradient with Exploration via Online Sensitivity Sampling
Policy optimization methods are powerful algorithms in Reinforcement Learning (RL) for their flexibility to deal with policy parameterization and ability to handle model misspecification. However, these methods usually suffer from slow convergence rates and poor sample complexity. Hence it is important to design provably sample efficient algorithms for policy optimization. Yet, recent advances for this problems have only been successful in tabular and linear setting, whose benign structures cannot be generalized to non-linearly parameterized policies. In this paper, we address this problem by leveraging recent advances in value-based algorithms, including bounded eluder-dimension and online sensitivity sampling, to design a low-switching sample-efficient policy optimization algorithm, LPO, with general non-linear function approximation. We show that, our algorithm obtains an varepsilon-optimal policy with only O(text{poly(d)}{varepsilon^3}) samples, where varepsilon is the suboptimality gap and d is a complexity measure of the function class approximating the policy. This drastically improves previously best-known sample bound for policy optimization algorithms, O(text{poly(d)}{varepsilon^8}). Moreover, we empirically test our theory with deep neural nets to show the benefits of the theoretical inspiration.
CRAFT-GUI: Curriculum-Reinforced Agent For GUI Tasks
As autonomous agents become adept at understanding and interacting with graphical user interface (GUI) environments, a new era of automated task execution is emerging. Recent studies have demonstrated that Reinforcement Learning (RL) can effectively enhance agents' performance in dynamic interactive GUI environments. However, these methods face two key limitations: (1) they overlook the significant variation in difficulty across different GUI tasks by treating the entire training data as a uniform set, which hampers the agent's ability to adapt its learning process; and (2) most approaches collapse task-specific nuances into a single, coarse reward, leaving the agent with a uniform signal that yields inefficient policy updates. To address these limitations, we propose CRAFT-GUI, a curriculum learning framework based on Group Relative Policy Optimization (GRPO) that explicitly accounts for the varying difficulty across trajectories. To enable more fine-grained policy optimization, we design a reward function that combines simple rule-based signals with model-judged evaluation, providing richer and more nuanced feedback during training. Experimental results demonstrate that our method achieves significant improvements over previous state-of-the-art approaches, outperforming them by 5.6% on public benchmarks Android Control and 10.3% on our internal online benchmarks, respectively. These findings empirically validate the effectiveness of integrating reinforcement learning with curriculum learning in GUI interaction tasks.
Hundreds Guide Millions: Adaptive Offline Reinforcement Learning with Expert Guidance
Offline reinforcement learning (RL) optimizes the policy on a previously collected dataset without any interactions with the environment, yet usually suffers from the distributional shift problem. To mitigate this issue, a typical solution is to impose a policy constraint on a policy improvement objective. However, existing methods generally adopt a ``one-size-fits-all'' practice, i.e., keeping only a single improvement-constraint balance for all the samples in a mini-batch or even the entire offline dataset. In this work, we argue that different samples should be treated with different policy constraint intensities. Based on this idea, a novel plug-in approach named Guided Offline RL (GORL) is proposed. GORL employs a guiding network, along with only a few expert demonstrations, to adaptively determine the relative importance of the policy improvement and policy constraint for every sample. We theoretically prove that the guidance provided by our method is rational and near-optimal. Extensive experiments on various environments suggest that GORL can be easily installed on most offline RL algorithms with statistically significant performance improvements.
Diffusion Guidance Is a Controllable Policy Improvement Operator
At the core of reinforcement learning is the idea of learning beyond the performance in the data. However, scaling such systems has proven notoriously tricky. In contrast, techniques from generative modeling have proven remarkably scalable and are simple to train. In this work, we combine these strengths, by deriving a direct relation between policy improvement and guidance of diffusion models. The resulting framework, CFGRL, is trained with the simplicity of supervised learning, yet can further improve on the policies in the data. On offline RL tasks, we observe a reliable trend -- increased guidance weighting leads to increased performance. Of particular importance, CFGRL can operate without explicitly learning a value function, allowing us to generalize simple supervised methods (e.g., goal-conditioned behavioral cloning) to further prioritize optimality, gaining performance for "free" across the board.
Policy Gradient in Robust MDPs with Global Convergence Guarantee
Robust Markov decision processes (RMDPs) provide a promising framework for computing reliable policies in the face of model errors. Many successful reinforcement learning algorithms build on variations of policy-gradient methods, but adapting these methods to RMDPs has been challenging. As a result, the applicability of RMDPs to large, practical domains remains limited. This paper proposes a new Double-Loop Robust Policy Gradient (DRPG), the first generic policy gradient method for RMDPs. In contrast with prior robust policy gradient algorithms, DRPG monotonically reduces approximation errors to guarantee convergence to a globally optimal policy in tabular RMDPs. We introduce a novel parametric transition kernel and solve the inner loop robust policy via a gradient-based method. Finally, our numerical results demonstrate the utility of our new algorithm and confirm its global convergence properties.
MMR1: Enhancing Multimodal Reasoning with Variance-Aware Sampling and Open Resources
Large multimodal reasoning models have achieved rapid progress, but their advancement is constrained by two major limitations: the absence of open, large-scale, high-quality long chain-of-thought (CoT) data, and the instability of reinforcement learning (RL) algorithms in post-training. Group Relative Policy Optimization (GRPO), the standard framework for RL fine-tuning, is prone to gradient vanishing when reward variance is low, which weakens optimization signals and impairs convergence. This work makes three contributions: (1) We propose Variance-Aware Sampling (VAS), a data selection strategy guided by Variance Promotion Score (VPS) that combines outcome variance and trajectory diversity to promote reward variance and stabilize policy optimization. (2) We release large-scale, carefully curated resources containing ~1.6M long CoT cold-start data and ~15k RL QA pairs, designed to ensure quality, difficulty, and diversity, along with a fully reproducible end-to-end training codebase. (3) We open-source a family of multimodal reasoning models in multiple scales, establishing standardized baselines for the community. Experiments across mathematical reasoning benchmarks demonstrate the effectiveness of both the curated data and the proposed VAS. Comprehensive ablation studies and analyses provide further insight into the contributions of each component. In addition, we theoretically establish that reward variance lower-bounds the expected policy gradient magnitude, with VAS serving as a practical mechanism to realize this guarantee. Our code, data, and checkpoints are available at https://github.com/LengSicong/MMR1.
Pairwise Proximal Policy Optimization: Harnessing Relative Feedback for LLM Alignment
Large Language Models (LLMs) can acquire extensive world knowledge through pre-training on large corpora. However, due to exposure to low-quality data, LLMs may exhibit harmful behavior without aligning with human values. The dominant approach for steering LLMs towards beneficial behavior involves Reinforcement Learning with Human Feedback (RLHF), with Proximal Policy Optimization (PPO) serving as the default RL optimizer. Despite its effectiveness, PPO has limitations when optimizing rewards trained from comparison-based loss. Primarily, PPO is not invariant to equivalent reward functions containing identical preference information due to the need to calibrate the reward scale. Additionally, PPO's necessity for token-wise updates introduces complexity in both function approximation and algorithm design compared to trajectory-wise optimization. This paper proposes a new framework, reinforcement learning with relative feedback, and a novel trajectory-wise policy gradient algorithm, Pairwise Proximal Policy Optimization (P3O) that operates directly on comparative rewards. We show theoretically that P3O is invariant to equivalent rewards and avoids the complexity of PPO. Empirical evaluations demonstrate that P3O outperforms PPO in the KL-Reward trade-off and can align with human preferences as well as or better than prior methods. In summary, this work introduces a simpler yet effective approach for aligning LLMs to human preferences through relative feedback.
Discovering General Reinforcement Learning Algorithms with Adversarial Environment Design
The past decade has seen vast progress in deep reinforcement learning (RL) on the back of algorithms manually designed by human researchers. Recently, it has been shown that it is possible to meta-learn update rules, with the hope of discovering algorithms that can perform well on a wide range of RL tasks. Despite impressive initial results from algorithms such as Learned Policy Gradient (LPG), there remains a generalization gap when these algorithms are applied to unseen environments. In this work, we examine how characteristics of the meta-training distribution impact the generalization performance of these algorithms. Motivated by this analysis and building on ideas from Unsupervised Environment Design (UED), we propose a novel approach for automatically generating curricula to maximize the regret of a meta-learned optimizer, in addition to a novel approximation of regret, which we name algorithmic regret (AR). The result is our method, General RL Optimizers Obtained Via Environment Design (GROOVE). In a series of experiments, we show that GROOVE achieves superior generalization to LPG, and evaluate AR against baseline metrics from UED, identifying it as a critical component of environment design in this setting. We believe this approach is a step towards the discovery of truly general RL algorithms, capable of solving a wide range of real-world environments.
ReLOAD: Reinforcement Learning with Optimistic Ascent-Descent for Last-Iterate Convergence in Constrained MDPs
In recent years, Reinforcement Learning (RL) has been applied to real-world problems with increasing success. Such applications often require to put constraints on the agent's behavior. Existing algorithms for constrained RL (CRL) rely on gradient descent-ascent, but this approach comes with a caveat. While these algorithms are guaranteed to converge on average, they do not guarantee last-iterate convergence, i.e., the current policy of the agent may never converge to the optimal solution. In practice, it is often observed that the policy alternates between satisfying the constraints and maximizing the reward, rarely accomplishing both objectives simultaneously. Here, we address this problem by introducing Reinforcement Learning with Optimistic Ascent-Descent (ReLOAD), a principled CRL method with guaranteed last-iterate convergence. We demonstrate its empirical effectiveness on a wide variety of CRL problems including discrete MDPs and continuous control. In the process we establish a benchmark of challenging CRL problems.
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL). One of the key shortcomings of existing Thompson sampling algorithms is the need to perform a Gaussian approximation of the posterior distribution, which is not a good surrogate in most practical settings. We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo, an efficient type of Markov Chain Monte Carlo (MCMC) method. Our method only needs to perform noisy gradient descent updates to learn the exact posterior distribution of the Q function, which makes our approach easy to deploy in deep RL. We provide a rigorous theoretical analysis for the proposed method and demonstrate that, in the linear Markov decision process (linear MDP) setting, it has a regret bound of O(d^{3/2}H^{3/2}T), where d is the dimension of the feature mapping, H is the planning horizon, and T is the total number of steps. We apply this approach to deep RL, by using Adam optimizer to perform gradient updates. Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.
Simple Policy Optimization
Model-free reinforcement learning algorithms have seen remarkable progress, but key challenges remain. Trust Region Policy Optimization (TRPO) is known for ensuring monotonic policy improvement through conservative updates within a trust region, backed by strong theoretical guarantees. However, its reliance on complex second-order optimization limits its practical efficiency. Proximal Policy Optimization (PPO) addresses this by simplifying TRPO's approach using ratio clipping, improving efficiency but sacrificing some theoretical robustness. This raises a natural question: Can we combine the strengths of both methods? In this paper, we introduce Simple Policy Optimization (SPO), a novel unconstrained first-order algorithm. By slightly modifying the policy loss used in PPO, SPO can achieve the best of both worlds. Our new objective improves upon ratio clipping, offering stronger theoretical properties and better constraining the probability ratio within the trust region. Empirical results demonstrate that SPO outperforms PPO with a simple implementation, particularly for training large, complex network architectures end-to-end.
Mutual-Taught for Co-adapting Policy and Reward Models
During the preference optimization of large language models (LLMs), distribution shifts may arise between newly generated model samples and the data used to train the reward model (RM). This shift reduces the efficacy of the RM, which in turn negatively impacts the performance of the policy model (PM). To address this challenge, we propose Mutual-Taught, a self-training method that iteratively improves both the PM and RM without requiring additional human annotation. Our approach mirrors the expectation-maximization (EM) algorithm. In the E-step, the PM is updated using feedback from the current RM, guiding the PM toward a better approximation of the latent optimal preference distribution. In the M-step, we update the RM by constructing training data from the outputs of the PM before and after the E-step update. This process ensures that the RM adapts to the evolving policy distribution. Experimental results demonstrate that this iterative approach leads to consistent improvements in both models. Specifically, our 8B policy model, LLaMA-3-8B-Instruct-MT, achieves a length-controlled win rate of 54.1\% on AlpacaEval-2, while our 8B reward model, FsfairX-LLaMA3-RM-MT, performs on par with GPT-4o-2024-08-06 on RewardBench.
Generalized Munchausen Reinforcement Learning using Tsallis KL Divergence
Many policy optimization approaches in reinforcement learning incorporate a Kullback-Leilbler (KL) divergence to the previous policy, to prevent the policy from changing too quickly. This idea was initially proposed in a seminal paper on Conservative Policy Iteration, with approximations given by algorithms like TRPO and Munchausen Value Iteration (MVI). We continue this line of work by investigating a generalized KL divergence -- called the Tsallis KL divergence -- which use the q-logarithm in the definition. The approach is a strict generalization, as q = 1 corresponds to the standard KL divergence; q > 1 provides a range of new options. We characterize the types of policies learned under the Tsallis KL, and motivate when q >1 could be beneficial. To obtain a practical algorithm that incorporates Tsallis KL regularization, we extend MVI, which is one of the simplest approaches to incorporate KL regularization. We show that this generalized MVI(q) obtains significant improvements over the standard MVI(q = 1) across 35 Atari games.
Score Regularized Policy Optimization through Diffusion Behavior
Recent developments in offline reinforcement learning have uncovered the immense potential of diffusion modeling, which excels at representing heterogeneous behavior policies. However, sampling from diffusion policies is considerably slow because it necessitates tens to hundreds of iterative inference steps for one action. To address this issue, we propose to extract an efficient deterministic inference policy from critic models and pretrained diffusion behavior models, leveraging the latter to directly regularize the policy gradient with the behavior distribution's score function during optimization. Our method enjoys powerful generative capabilities of diffusion modeling while completely circumventing the computationally intensive and time-consuming diffusion sampling scheme, both during training and evaluation. Extensive results on D4RL tasks show that our method boosts action sampling speed by more than 25 times compared with various leading diffusion-based methods in locomotion tasks, while still maintaining state-of-the-art performance.
From Data to Rewards: a Bilevel Optimization Perspective on Maximum Likelihood Estimation
Generative models form the backbone of modern machine learning, underpinning state-of-the-art systems in text, vision, and multimodal applications. While Maximum Likelihood Estimation has traditionally served as the dominant training paradigm, recent work have highlighted its limitations, particularly in generalization and susceptibility to catastrophic forgetting compared to Reinforcement Learning techniques, such as Policy Gradient methods. However, these approaches depend on explicit reward signals, which are often unavailable in practice, leaving open the fundamental problem of how to align generative models when only high-quality datasets are accessible. In this work, we address this challenge via a Bilevel Optimization framework, where the reward function is treated as the optimization variable of an outer-level problem, while a policy gradient objective defines the inner-level. We then conduct a theoretical analysis of this optimization problem in a tractable setting and extract insights that, as we demonstrate, generalize to applications such as tabular classification and model-based reinforcement learning. We release the code at https://github.com/abenechehab/nll_to_po .
REBEL: Reinforcement Learning via Regressing Relative Rewards
While originally developed for continuous control problems, Proximal Policy Optimization (PPO) has emerged as the work-horse of a variety of reinforcement learning (RL) applications including the fine-tuning of generative models. Unfortunately, PPO requires multiple heuristics to enable stable convergence (e.g. value networks, clipping) and is notorious for its sensitivity to the precise implementation of these components. In response, we take a step back and ask what a minimalist RL algorithm for the era of generative models would look like. We propose REBEL, an algorithm that cleanly reduces the problem of policy optimization to regressing the relative rewards via a direct policy parameterization between two completions to a prompt, enabling strikingly lightweight implementation. In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL, which allows us to match the strongest known theoretical guarantees in terms of convergence and sample complexity in the RL literature. REBEL can also cleanly incorporate offline data and handle the intransitive preferences we frequently see in practice. Empirically, we find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO, all while being simpler to implement and more computationally tractable than PPO.
Arbitrary Entropy Policy Optimization: Entropy Is Controllable in Reinforcement Fine-tuning
Reinforcement fine-tuning (RFT) is essential for enhancing the reasoning capabilities of large language models (LLM), yet the widely adopted Group Relative Policy Optimization (GRPO) suffers from entropy collapse, where entropy monotonically decreases, exploration vanishes, and policies converge prematurely. Existing entropy-regularized methods only partially alleviate this issue while introducing bias and instability, leaving entropy control unresolved and the connection between entropy, exploration, and performance unclear. We propose Arbitrary Entropy Policy Optimization (AEPO), which eliminates entropy collapse by replacing entropy bonuses with REINFORCE policy gradient on temperature-adjusted distributions and stabilizing entropy through temperature regulation. AEPO integrates three key designs: policy gradient as regularization, distribution as regularization, and REINFORCE as regularization, enabling precise entropy control without distorting optimization. Experiments demonstrate three major contributions: AEPO (1) stabilizes entropy at arbitrary target levels, effectively removing collapse in GRPO; (2) reveals a non-monotonic relation where performance first improves then declines with increasing entropy, clarifying the link between entropy, exploration, and reasoning; and (3) generalizes beyond entropy, providing a broader RFT paradigm where superior target distributions can serve as REINFORCE regularizers.
Proximal Policy Gradient Arborescence for Quality Diversity Reinforcement Learning
Training generally capable agents that thoroughly explore their environment and learn new and diverse skills is a long-term goal of robot learning. Quality Diversity Reinforcement Learning (QD-RL) is an emerging research area that blends the best aspects of both fields -- Quality Diversity (QD) provides a principled form of exploration and produces collections of behaviorally diverse agents, while Reinforcement Learning (RL) provides a powerful performance improvement operator enabling generalization across tasks and dynamic environments. Existing QD-RL approaches have been constrained to sample efficient, deterministic off-policy RL algorithms and/or evolution strategies, and struggle with highly stochastic environments. In this work, we, for the first time, adapt on-policy RL, specifically Proximal Policy Optimization (PPO), to the Differentiable Quality Diversity (DQD) framework and propose additional improvements over prior work that enable efficient optimization and discovery of novel skills on challenging locomotion tasks. Our new algorithm, Proximal Policy Gradient Arborescence (PPGA), achieves state-of-the-art results, including a 4x improvement in best reward over baselines on the challenging humanoid domain.
Discovered Policy Optimisation
Tremendous progress has been made in reinforcement learning (RL) over the past decade. Most of these advancements came through the continual development of new algorithms, which were designed using a combination of mathematical derivations, intuitions, and experimentation. Such an approach of creating algorithms manually is limited by human understanding and ingenuity. In contrast, meta-learning provides a toolkit for automatic machine learning method optimisation, potentially addressing this flaw. However, black-box approaches which attempt to discover RL algorithms with minimal prior structure have thus far not outperformed existing hand-crafted algorithms. Mirror Learning, which includes RL algorithms, such as PPO, offers a potential middle-ground starting point: while every method in this framework comes with theoretical guarantees, components that differentiate them are subject to design. In this paper we explore the Mirror Learning space by meta-learning a "drift" function. We refer to the immediate result as Learnt Policy Optimisation (LPO). By analysing LPO we gain original insights into policy optimisation which we use to formulate a novel, closed-form RL algorithm, Discovered Policy Optimisation (DPO). Our experiments in Brax environments confirm state-of-the-art performance of LPO and DPO, as well as their transfer to unseen settings.
Addressing Loss of Plasticity and Catastrophic Forgetting in Continual Learning
Deep representation learning methods struggle with continual learning, suffering from both catastrophic forgetting of useful units and loss of plasticity, often due to rigid and unuseful units. While many methods address these two issues separately, only a few currently deal with both simultaneously. In this paper, we introduce Utility-based Perturbed Gradient Descent (UPGD) as a novel approach for the continual learning of representations. UPGD combines gradient updates with perturbations, where it applies smaller modifications to more useful units, protecting them from forgetting, and larger modifications to less useful units, rejuvenating their plasticity. We use a challenging streaming learning setup where continual learning problems have hundreds of non-stationarities and unknown task boundaries. We show that many existing methods suffer from at least one of the issues, predominantly manifested by their decreasing accuracy over tasks. On the other hand, UPGD continues to improve performance and surpasses or is competitive with all methods in all problems. Finally, in extended reinforcement learning experiments with PPO, we show that while Adam exhibits a performance drop after initial learning, UPGD avoids it by addressing both continual learning issues.
Adaptive Advantage-Guided Policy Regularization for Offline Reinforcement Learning
In offline reinforcement learning, the challenge of out-of-distribution (OOD) is pronounced. To address this, existing methods often constrain the learned policy through policy regularization. However, these methods often suffer from the issue of unnecessary conservativeness, hampering policy improvement. This occurs due to the indiscriminate use of all actions from the behavior policy that generates the offline dataset as constraints. The problem becomes particularly noticeable when the quality of the dataset is suboptimal. Thus, we propose Adaptive Advantage-guided Policy Regularization (A2PR), obtaining high-advantage actions from an augmented behavior policy combined with VAE to guide the learned policy. A2PR can select high-advantage actions that differ from those present in the dataset, while still effectively maintaining conservatism from OOD actions. This is achieved by harnessing the VAE capacity to generate samples matching the distribution of the data points. We theoretically prove that the improvement of the behavior policy is guaranteed. Besides, it effectively mitigates value overestimation with a bounded performance gap. Empirically, we conduct a series of experiments on the D4RL benchmark, where A2PR demonstrates state-of-the-art performance. Furthermore, experimental results on additional suboptimal mixed datasets reveal that A2PR exhibits superior performance. Code is available at https://github.com/ltlhuuu/A2PR.
Flow Matching Policy Gradients
Flow-based generative models, including diffusion models, excel at modeling continuous distributions in high-dimensional spaces. In this work, we introduce Flow Policy Optimization (FPO), a simple on-policy reinforcement learning algorithm that brings flow matching into the policy gradient framework. FPO casts policy optimization as maximizing an advantage-weighted ratio computed from the conditional flow matching loss, in a manner compatible with the popular PPO-clip framework. It sidesteps the need for exact likelihood computation while preserving the generative capabilities of flow-based models. Unlike prior approaches for diffusion-based reinforcement learning that bind training to a specific sampling method, FPO is agnostic to the choice of diffusion or flow integration at both training and inference time. We show that FPO can train diffusion-style policies from scratch in a variety of continuous control tasks. We find that flow-based models can capture multimodal action distributions and achieve higher performance than Gaussian policies, particularly in under-conditioned settings.
Off-Policy Primal-Dual Safe Reinforcement Learning
Primal-dual safe RL methods commonly perform iterations between the primal update of the policy and the dual update of the Lagrange Multiplier. Such a training paradigm is highly susceptible to the error in cumulative cost estimation since this estimation serves as the key bond connecting the primal and dual update processes. We show that this problem causes significant underestimation of cost when using off-policy methods, leading to the failure to satisfy the safety constraint. To address this issue, we propose conservative policy optimization, which learns a policy in a constraint-satisfying area by considering the uncertainty in cost estimation. This improves constraint satisfaction but also potentially hinders reward maximization. We then introduce local policy convexification to help eliminate such suboptimality by gradually reducing the estimation uncertainty. We provide theoretical interpretations of the joint coupling effect of these two ingredients and further verify them by extensive experiments. Results on benchmark tasks show that our method not only achieves an asymptotic performance comparable to state-of-the-art on-policy methods while using much fewer samples, but also significantly reduces constraint violation during training. Our code is available at https://github.com/ZifanWu/CAL.
TAG: Task-based Accumulated Gradients for Lifelong learning
When an agent encounters a continual stream of new tasks in the lifelong learning setting, it leverages the knowledge it gained from the earlier tasks to help learn the new tasks better. In such a scenario, identifying an efficient knowledge representation becomes a challenging problem. Most research works propose to either store a subset of examples from the past tasks in a replay buffer, dedicate a separate set of parameters to each task or penalize excessive updates over parameters by introducing a regularization term. While existing methods employ the general task-agnostic stochastic gradient descent update rule, we propose a task-aware optimizer that adapts the learning rate based on the relatedness among tasks. We utilize the directions taken by the parameters during the updates by accumulating the gradients specific to each task. These task-based accumulated gradients act as a knowledge base that is maintained and updated throughout the stream. We empirically show that our proposed adaptive learning rate not only accounts for catastrophic forgetting but also allows positive backward transfer. We also show that our method performs better than several state-of-the-art methods in lifelong learning on complex datasets with a large number of tasks.
From Uniform to Heterogeneous: Tailoring Policy Optimization to Every Token's Nature
Reinforcement Learning has emerged as the fundamental technique for enhancing reasoning in LLMs. However, existing algorithms apply uniform optimization to all tokens, ignoring their different roles in reasoning process. To address this limitation, we introduce Heterogeneous Adaptive Policy Optimization (HAPO), a comprehensive token-aware algorithm that dynamically adapts optimization based on token entropy. For rollout sampling, we propose Adaptive Temperature Sampling, which adjusts sampling temperature in real time, promoting exploration at high-entropy tokens while preserving coherence at low-entropy ones. For advantage calculation, we introduce Token Level Group Average that normalizes advantages at token level, jointly accounting for sequence-length as in token-mean loss while preserving non-biased treatment. We then develop Differential Advantage Redistribution that leverages entropy and importance ratios to modulate rewards-adjusting updates for tokens with clear signals. For clipping loss, we design Asymmetric Adaptive Clipping, allowing aggressive probability reduction for noisy low-entropy tokens while enabling exploration for high-entropy tokens. Through systematic investigation between entropy and training dynamics, we embedded token-level treatment into every stages to achieve fine-grained control. Extensive experiments demonstrate that HAPO consistently outperforms DAPO across multiple model scales. Our code can be found in https://github.com/starriver030515/HAPO.
Best of Both Worlds Policy Optimization
Policy optimization methods are popular reinforcement learning algorithms in practice. Recent works have built theoretical foundation for them by proving T regret bounds even when the losses are adversarial. Such bounds are tight in the worst case but often overly pessimistic. In this work, we show that in tabular Markov decision processes (MDPs), by properly designing the regularizer, the exploration bonus and the learning rates, one can achieve a more favorable polylog(T) regret when the losses are stochastic, without sacrificing the worst-case guarantee in the adversarial regime. To our knowledge, this is also the first time a gap-dependent polylog(T) regret bound is shown for policy optimization. Specifically, we achieve this by leveraging a Tsallis entropy or a Shannon entropy regularizer in the policy update. Then we show that under known transitions, we can further obtain a first-order regret bound in the adversarial regime by leveraging the log-barrier regularizer.
ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization
The varying significance of distinct primitive behaviors during the policy learning process has been overlooked by prior model-free RL algorithms. Leveraging this insight, we explore the causal relationship between different action dimensions and rewards to evaluate the significance of various primitive behaviors during training. We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration. Furthermore, to prevent excessive focus on specific primitive behaviors, we analyze the gradient dormancy phenomenon and introduce a dormancy-guided reset mechanism to further enhance the efficacy of our method. Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks spanning 7 domains compared to model-free RL baselines, which underscores the effectiveness, versatility, and efficient sample efficiency of our approach. Benchmark results and videos are available at https://ace-rl.github.io/.
Scaf-GRPO: Scaffolded Group Relative Policy Optimization for Enhancing LLM Reasoning
Reinforcement learning from verifiable rewards has emerged as a powerful technique for enhancing the complex reasoning abilities of Large Language Models (LLMs). However, these methods are fundamentally constrained by the ''learning cliff'' phenomenon: when faced with problems far beyond their current capabilities, models consistently fail, yielding a persistent zero-reward signal. In policy optimization algorithms like GRPO, this collapses the advantage calculation to zero, rendering these difficult problems invisible to the learning gradient and stalling progress. To overcome this, we introduce Scaf-GRPO (Scaffolded Group Relative Policy Optimization), a progressive training framework that strategically provides minimal guidance only when a model's independent learning has plateaued. The framework first diagnoses learning stagnation and then intervenes by injecting tiered in-prompt hints, ranging from abstract concepts to concrete steps, enabling the model to construct a valid solution by itself. Extensive experiments on challenging mathematics benchmarks demonstrate Scaf-GRPO's effectiveness, boosting the pass@1 score of the Qwen2.5-Math-7B model on the AIME24 benchmark by a relative 44.3% over a vanilla GRPO baseline. This result demonstrates our framework provides a robust and effective methodology for unlocking a model's ability to solve problems previously beyond its reach, a critical step towards extending the frontier of autonomous reasoning in LLM.
RiskPO: Risk-based Policy Optimization via Verifiable Reward for LLM Post-Training
Reinforcement learning with verifiable reward has recently emerged as a central paradigm for post-training large language models (LLMs); however, prevailing mean-based methods, such as Group Relative Policy Optimization (GRPO), suffer from entropy collapse and limited reasoning gains. We argue that these issues stem from overemphasizing high-probability output sequences while neglecting rare but informative reasoning paths. To address these challenges, we propose Risk-based Policy Optimization (RiskPO), which substitutes classical mean-based objectives with principled risk measures. Specifically, we introduce a Mixed Value-at-Risk objective that integrates weighted attention over multiple regions of the reward distribution, thereby amplifying gradient signals on challenging instances and preventing overconfident convergence. We further design a bundling scheme that aggregates multiple questions into bundles, thus enriching the feedback signal and yielding more stable and informative training dynamics. Theoretically, we prove that the risk-averse update alleviates entropy collapse and promotes exploration. Numerically, RiskPO achieves consistent and significant improvements in mathematical reasoning, multi-modal reasoning, and code generation benchmarks, surpassing GRPO and its variants on both Pass@1 and Pass@k metrics. Our results demonstrate that risk-based optimization provides a rigorous and effective paradigm for enhancing LLM reasoning capabilities.
Advantage Weighted Matching: Aligning RL with Pretraining in Diffusion Models
Reinforcement Learning (RL) has emerged as a central paradigm for advancing Large Language Models (LLMs), where pre-training and RL post-training share the same log-likelihood formulation. In contrast, recent RL approaches for diffusion models, most notably Denoising Diffusion Policy Optimization (DDPO), optimize an objective different from the pretraining objectives--score/flow matching loss. In this work, we establish a novel theoretical analysis: DDPO is an implicit form of score/flow matching with noisy targets, which increases variance and slows convergence. Building on this analysis, we introduce Advantage Weighted Matching (AWM), a policy-gradient method for diffusion. It uses the same score/flow-matching loss as pretraining to obtain a lower-variance objective and reweights each sample by its advantage. In effect, AWM raises the influence of high-reward samples and suppresses low-reward ones while keeping the modeling objective identical to pretraining. This unifies pretraining and RL conceptually and practically, is consistent with policy-gradient theory, reduces variance, and yields faster convergence. This simple yet effective design yields substantial benefits: on GenEval, OCR, and PickScore benchmarks, AWM delivers up to a 24times speedup over Flow-GRPO (which builds on DDPO), when applied to Stable Diffusion 3.5 Medium and FLUX, without compromising generation quality. Code is available at https://github.com/scxue/advantage_weighted_matching.
FLAG-Trader: Fusion LLM-Agent with Gradient-based Reinforcement Learning for Financial Trading
Large language models (LLMs) fine-tuned on multimodal financial data have demonstrated impressive reasoning capabilities in various financial tasks. However, they often struggle with multi-step, goal-oriented scenarios in interactive financial markets, such as trading, where complex agentic approaches are required to improve decision-making. To address this, we propose FLAG-Trader, a unified architecture integrating linguistic processing (via LLMs) with gradient-driven reinforcement learning (RL) policy optimization, in which a partially fine-tuned LLM acts as the policy network, leveraging pre-trained knowledge while adapting to the financial domain through parameter-efficient fine-tuning. Through policy gradient optimization driven by trading rewards, our framework not only enhances LLM performance in trading but also improves results on other financial-domain tasks. We present extensive empirical evidence to validate these enhancements.
Powerful and Flexible: Personalized Text-to-Image Generation via Reinforcement Learning
Personalized text-to-image models allow users to generate varied styles of images (specified with a sentence) for an object (specified with a set of reference images). While remarkable results have been achieved using diffusion-based generation models, the visual structure and details of the object are often unexpectedly changed during the diffusion process. One major reason is that these diffusion-based approaches typically adopt a simple reconstruction objective during training, which can hardly enforce appropriate structural consistency between the generated and the reference images. To this end, in this paper, we design a novel reinforcement learning framework by utilizing the deterministic policy gradient method for personalized text-to-image generation, with which various objectives, differential or even non-differential, can be easily incorporated to supervise the diffusion models to improve the quality of the generated images. Experimental results on personalized text-to-image generation benchmark datasets demonstrate that our proposed approach outperforms existing state-of-the-art methods by a large margin on visual fidelity while maintaining text-alignment. Our code is available at: https://github.com/wfanyue/DPG-T2I-Personalization.
TempSamp-R1: Effective Temporal Sampling with Reinforcement Fine-Tuning for Video LLMs
This paper introduces TempSamp-R1, a new reinforcement fine-tuning framework designed to improve the effectiveness of adapting multimodal large language models (MLLMs) to video temporal grounding tasks. We reveal that existing reinforcement learning methods, such as Group Relative Policy Optimization (GRPO), rely on on-policy sampling for policy updates. However, in tasks with large temporal search spaces, this strategy becomes both inefficient and limited in performance, as it often fails to identify temporally accurate solutions. To address this limitation, TempSamp-R1 leverages ground-truth annotations as off-policy supervision to provide temporally precise guidance, effectively compensating for the sparsity and misalignment in on-policy solutions. To further stabilize training and reduce variance in reward-based updates, TempSamp-R1 provides a non-linear soft advantage computation method that dynamically reshapes the reward feedback via an asymmetric transformation. By employing a hybrid Chain-of-Thought (CoT) training paradigm, TempSamp-R1 optimizes a single unified model to support both CoT and non-CoT inference modes, enabling efficient handling of queries with varying reasoning complexity. Experimental results demonstrate that TempSamp-R1 outperforms GRPO-based baselines, establishing new state-of-the-art performance on benchmark datasets: Charades-STA ([email protected]: 52.9%, +2.7%), ActivityNet Captions ([email protected]: 56.0%, +5.3%), and QVHighlights (mAP: 30.0%, +3.0%). Moreover, TempSamp-R1 shows robust few-shot generalization capabilities under limited data. Code: https://github.com/HVision-NKU/TempSamp-R1
Policy-Guided Diffusion
In many real-world settings, agents must learn from an offline dataset gathered by some prior behavior policy. Such a setting naturally leads to distribution shift between the behavior policy and the target policy being trained - requiring policy conservatism to avoid instability and overestimation bias. Autoregressive world models offer a different solution to this by generating synthetic, on-policy experience. However, in practice, model rollouts must be severely truncated to avoid compounding error. As an alternative, we propose policy-guided diffusion. Our method uses diffusion models to generate entire trajectories under the behavior distribution, applying guidance from the target policy to move synthetic experience further on-policy. We show that policy-guided diffusion models a regularized form of the target distribution that balances action likelihood under both the target and behavior policies, leading to plausible trajectories with high target policy probability, while retaining a lower dynamics error than an offline world model baseline. Using synthetic experience from policy-guided diffusion as a drop-in substitute for real data, we demonstrate significant improvements in performance across a range of standard offline reinforcement learning algorithms and environments. Our approach provides an effective alternative to autoregressive offline world models, opening the door to the controllable generation of synthetic training data.
Reinforcing Video Reasoning with Focused Thinking
Recent advancements in reinforcement learning, particularly through Group Relative Policy Optimization (GRPO), have significantly improved multimodal large language models for complex reasoning tasks. However, two critical limitations persist: 1) they often produce unfocused, verbose reasoning chains that obscure salient spatiotemporal cues and 2) binary rewarding fails to account for partially correct answers, resulting in high reward variance and inefficient learning. In this paper, we propose TW-GRPO, a novel framework that enhances visual reasoning with focused thinking and dense reward granularity. Specifically, we employs a token weighting mechanism that prioritizes tokens with high informational density (estimated by intra-group variance), suppressing redundant tokens like generic reasoning prefixes. Furthermore, we reformulate RL training by shifting from single-choice to multi-choice QA tasks, where soft rewards enable finer-grained gradient estimation by distinguishing partial correctness. Additionally, we propose question-answer inversion, a data augmentation strategy to generate diverse multi-choice samples from existing benchmarks. Experiments demonstrate state-of-the-art performance on several video reasoning and general understanding benchmarks. Notably, TW-GRPO achieves 50.4\% accuracy on CLEVRER (18.8\% improvement over Video-R1) and 65.8\% on MMVU. Our codes are available at https://github.com/longmalongma/TW-GRPO.
Understanding Reinforcement Learning for Model Training, and future directions with GRAPE
This paper provides a self-contained, from-scratch, exposition of key algorithms for instruction tuning of models: SFT, Rejection Sampling, REINFORCE, Trust Region Policy Optimization (TRPO), Proximal Policy Optimization (PPO), Group Relative Policy Optimization (GRPO), and Direct Preference Optimization (DPO). Explanations of these algorithms often assume prior knowledge, lack critical details, and/or are overly generalized and complex. Here, each method is discussed and developed step by step using simplified and explicit notation focused on LLMs, aiming to eliminate ambiguity and provide a clear and intuitive understanding of the concepts. By minimizing detours into the broader RL literature and connecting concepts to LLMs, we eliminate superfluous abstractions and reduce cognitive overhead. Following this exposition, we provide a literature review of new techniques and approaches beyond those detailed. Finally, new ideas for research and exploration in the form of GRAPE (Generalized Relative Advantage Policy Evolution) are presented.
Towards Constituting Mathematical Structures for Learning to Optimize
Learning to Optimize (L2O), a technique that utilizes machine learning to learn an optimization algorithm automatically from data, has gained arising attention in recent years. A generic L2O approach parameterizes the iterative update rule and learns the update direction as a black-box network. While the generic approach is widely applicable, the learned model can overfit and may not generalize well to out-of-distribution test sets. In this paper, we derive the basic mathematical conditions that successful update rules commonly satisfy. Consequently, we propose a novel L2O model with a mathematics-inspired structure that is broadly applicable and generalized well to out-of-distribution problems. Numerical simulations validate our theoretical findings and demonstrate the superior empirical performance of the proposed L2O model.
Prosperity before Collapse: How Far Can Off-Policy RL Reach with Stale Data on LLMs?
Reinforcement learning has been central to recent advances in large language model reasoning, but most algorithms rely on on-policy training that demands fresh rollouts at every update, limiting efficiency and scalability. Asynchronous RL systems alleviate this by decoupling rollout generation from training, yet their effectiveness hinges on tolerating large staleness in rollout data, a setting where existing methods either degrade in performance or collapse. We revisit this challenge and uncover a prosperity-before-collapse phenomenon: stale data can be as informative as on-policy data if exploited properly. Building on this insight, we introduce M2PO (Second-Moment Trust Policy Optimization), which constrains the second moment of importance weights to suppress only extreme outliers while preserving informative updates. Notably, M2PO sharply reduces the fraction of clipped tokens under high staleness (from 1.22% to 0.06% over training), precisely masking high-variance tokens while maintaining stable optimization. Extensive evaluation across six models (from 1.7B to 32B) and eight benchmarks shows that M2PO delivers stable off-policy training even with data stale by at least 256 model updates and matches on-policy performance.
Aligning Language Models with Preferences through f-divergence Minimization
Aligning language models with preferences can be posed as approximating a target distribution representing some desired behavior. Existing approaches differ both in the functional form of the target distribution and the algorithm used to approximate it. For instance, Reinforcement Learning from Human Feedback (RLHF) corresponds to minimizing a reverse KL from an implicit target distribution arising from a KL penalty in the objective. On the other hand, Generative Distributional Control (GDC) has an explicit target distribution and minimizes a forward KL from it using the Distributional Policy Gradient (DPG) algorithm. In this paper, we propose a new approach, f-DPG, which allows the use of any f-divergence to approximate any target distribution that can be evaluated. f-DPG unifies both frameworks (RLHF, GDC) and the approximation methods (DPG, RL with KL penalties). We show the practical benefits of various choices of divergence objectives and demonstrate that there is no universally optimal objective but that different divergences present different alignment and diversity trade-offs. We show that Jensen-Shannon divergence strikes a good balance between these objectives, and frequently outperforms forward KL divergence by a wide margin, leading to significant improvements over prior work. These distinguishing characteristics between divergences persist as the model size increases, highlighting the importance of selecting appropriate divergence objectives.
Off-Policy Average Reward Actor-Critic with Deterministic Policy Search
The average reward criterion is relatively less studied as most existing works in the Reinforcement Learning literature consider the discounted reward criterion. There are few recent works that present on-policy average reward actor-critic algorithms, but average reward off-policy actor-critic is relatively less explored. In this work, we present both on-policy and off-policy deterministic policy gradient theorems for the average reward performance criterion. Using these theorems, we also present an Average Reward Off-Policy Deep Deterministic Policy Gradient (ARO-DDPG) Algorithm. We first show asymptotic convergence analysis using the ODE-based method. Subsequently, we provide a finite time analysis of the resulting stochastic approximation scheme with linear function approximator and obtain an epsilon-optimal stationary policy with a sample complexity of Omega(epsilon^{-2.5}). We compare the average reward performance of our proposed ARO-DDPG algorithm and observe better empirical performance compared to state-of-the-art on-policy average reward actor-critic algorithms over MuJoCo-based environments.
Tree-OPO: Off-policy Monte Carlo Tree-Guided Advantage Optimization for Multistep Reasoning
Recent advances in reasoning with large language models (LLMs) have shown the effectiveness of Monte Carlo Tree Search (MCTS) for generating high-quality intermediate trajectories, particularly in math and symbolic domains. Inspired by this, we explore how MCTS-derived trajectories, traditionally used for training value or reward models, can be repurposed to improve policy optimization in preference-based reinforcement learning (RL). Specifically, we focus on Group Relative Policy Optimization (GRPO), a recent algorithm that enables preference-consistent policy learning without value networks. We propose a staged GRPO training paradigm where completions are derived from partially revealed MCTS rollouts, introducing a novel tree-structured setting for advantage estimation. This leads to a rich class of prefix-conditioned reward signals, which we analyze theoretically and empirically. Our initial results indicate that while structured advantage estimation can stabilize updates and better reflect compositional reasoning quality, challenges such as advantage saturation and reward signal collapse remain. We propose heuristic and statistical solutions to mitigate these issues and discuss open challenges for learning under staged or tree-like reward structures.
Dataset Reset Policy Optimization for RLHF
Reinforcement Learning (RL) from Human Preference-based feedback is a popular paradigm for fine-tuning generative models, which has produced impressive models such as GPT-4 and Claude3 Opus. This framework often consists of two steps: learning a reward model from an offline preference dataset followed by running online RL to optimize the learned reward model. In this work, leveraging the idea of reset, we propose a new RLHF algorithm with provable guarantees. Motivated by the fact that offline preference dataset provides informative states (i.e., data that is preferred by the labelers), our new algorithm, Dataset Reset Policy Optimization (DR-PO), integrates the existing offline preference dataset into the online policy training procedure via dataset reset: it directly resets the policy optimizer to the states in the offline dataset, instead of always starting from the initial state distribution. In theory, we show that DR-PO learns to perform at least as good as any policy that is covered by the offline dataset under general function approximation with finite sample complexity. In experiments, we demonstrate that on both the TL;DR summarization and the Anthropic Helpful Harmful (HH) dataset, the generation from DR-PO is better than that from Proximal Policy Optimization (PPO) and Direction Preference Optimization (DPO), under the metric of GPT4 win-rate. Code for this work can be found at https://github.com/Cornell-RL/drpo.
GCPO: When Contrast Fails, Go Gold
Reinforcement learning has been widely applied to enhance the reasoning capabilities of large language models. Extending the inference limits of smaller models has become a prominent research focus. However, algorithms such as Group Relative Policy Optimization (GRPO) suffer from a clear drawback: the upper bound of a model's rollout responses is entirely determined by the model itself, preventing the acquisition of knowledge from samples that are either all incorrect or all correct. In this paper, we introduce Group Contrastive Policy Optimization (GCPO), a method that incorporates external standard reference answers. When the model cannot solve a problem, the reference answer supplies the correct response, steering the model toward an unequivocally accurate update direction. This approach offers two main advantages: (1) it improves training efficiency by fully utilizing every sample; (2) it enables the model to emulate the problem solving strategy of the reference answer during training, thereby enhancing generalization in reasoning. GCPO achieves outstanding results across multiple benchmark datasets, yielding substantial improvements over the baseline model. Our code is available at: https://github.com/AchoWu/GCPO.
CE-GPPO: Controlling Entropy via Gradient-Preserving Clipping Policy Optimization in Reinforcement Learning
Reinforcement learning (RL) has become a powerful paradigm for optimizing large language models (LLMs) to handle complex reasoning tasks. A core challenge in this process lies in managing policy entropy, which reflects the balance between exploration and exploitation during training. Existing methods, such as proximal policy optimization (PPO) and its variants, discard valuable gradient signals from low-probability tokens due to the clipping mechanism. We systematically analyze the entropy dynamics and reveal that these clipped tokens play a critical yet overlooked role in regulating entropy evolution. We propose Controlling Entropy via Gradient-Preserving Policy Optimization (CE-GPPO), a novel algorithm that reintroduces gradients from clipped tokens in native PPO in a gentle and bounded manner. By controlling the magnitude of gradients from tokens outside the clipping interval, CE-GPPO is able to achieve an exploration-exploitation trade-off. We provide theoretical justification and empirical evidence showing that CE-GPPO effectively mitigates entropy instability. Extensive experiments on mathematical reasoning benchmarks show that CE-GPPO consistently outperforms strong baselines across different model scales.
MAP-Elites with Descriptor-Conditioned Gradients and Archive Distillation into a Single Policy
Quality-Diversity algorithms, such as MAP-Elites, are a branch of Evolutionary Computation generating collections of diverse and high-performing solutions, that have been successfully applied to a variety of domains and particularly in evolutionary robotics. However, MAP-Elites performs a divergent search based on random mutations originating from Genetic Algorithms, and thus, is limited to evolving populations of low-dimensional solutions. PGA-MAP-Elites overcomes this limitation by integrating a gradient-based variation operator inspired by Deep Reinforcement Learning which enables the evolution of large neural networks. Although high-performing in many environments, PGA-MAP-Elites fails on several tasks where the convergent search of the gradient-based operator does not direct mutations towards archive-improving solutions. In this work, we present two contributions: (1) we enhance the Policy Gradient variation operator with a descriptor-conditioned critic that improves the archive across the entire descriptor space, (2) we exploit the actor-critic training to learn a descriptor-conditioned policy at no additional cost, distilling the knowledge of the archive into one single versatile policy that can execute the entire range of behaviors contained in the archive. Our algorithm, DCG-MAP-Elites improves the QD score over PGA-MAP-Elites by 82% on average, on a set of challenging locomotion tasks.
EPO: Entropy-regularized Policy Optimization for LLM Agents Reinforcement Learning
Training LLM agents in multi-turn environments with sparse rewards, where completing a single task requires 30+ turns of interaction within an episode, presents a fundamental challenge for reinforcement learning. We identify a critical failure mode unique to this setting: the exploration-exploitation cascade failure. This cascade begins with early-stage policy premature convergence, where sparse feedback causes agents to commit to flawed, low-entropy strategies. Subsequently, agents enter late-stage policy collapse, where conventional entropy regularization becomes counterproductive, promoting chaotic exploration that destabilizes training. We propose Entropy-regularized Policy Optimization (EPO), a general framework that breaks this failure cycle through three synergistic mechanisms: (1) adopting entropy regularization in multi-turn settings to enhance exploration, (2) an entropy smoothing regularizer that bounds policy entropy within historical averages to prevent abrupt fluctuations, and (3) adaptive phase-based weighting that balances exploration and exploitation across training. Our analysis justifies that EPO guarantees monotonically decreasing entropy variance while maintaining convergence. EPO achieves up to 152% performance improvement on ScienceWorld and up to 19.8% on ALFWorld. Our work demonstrates that multi-turn sparse-reward settings require fundamentally different entropy control than traditional RL, with broad implications for LLM agent training.
Gradual Transition from Bellman Optimality Operator to Bellman Operator in Online Reinforcement Learning
For continuous action spaces, actor-critic methods are widely used in online reinforcement learning (RL). However, unlike RL algorithms for discrete actions, which generally model the optimal value function using the Bellman optimality operator, RL algorithms for continuous actions typically model Q-values for the current policy using the Bellman operator. These algorithms for continuous actions rely exclusively on policy updates for improvement, which often results in low sample efficiency. This study examines the effectiveness of incorporating the Bellman optimality operator into actor-critic frameworks. Experiments in a simple environment show that modeling optimal values accelerates learning but leads to overestimation bias. To address this, we propose an annealing approach that gradually transitions from the Bellman optimality operator to the Bellman operator, thereby accelerating learning while mitigating bias. Our method, combined with TD3 and SAC, significantly outperforms existing approaches across various locomotion and manipulation tasks, demonstrating improved performance and robustness to hyperparameters related to optimality. The code for this study is available at https://github.com/motokiomura/annealed-q-learning.
Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs
Reward models trained on human preference data have been proven to be effective for aligning Large Language Models (LLMs) with human intent within the reinforcement learning from human feedback (RLHF) framework. However, the generalization capabilities of current reward models to unseen prompts and responses are limited. This limitation can lead to an unexpected phenomenon known as reward over-optimization, where excessive optimization of rewards results in a decline in actual performance. While previous research has advocated for constraining policy optimization, our study proposes a novel approach to enhance the reward model's generalization ability against distribution shifts by regularizing the hidden states. Specifically, we retain the base model's language model head and incorporate a suite of text-generation losses to preserve the hidden states' text generation capabilities, while concurrently learning a reward head behind the same hidden states. Our experimental results demonstrate that the introduced regularization technique markedly improves the accuracy of learned reward models across a variety of out-of-distribution (OOD) tasks and effectively alleviate the over-optimization issue in RLHF, offering a more reliable and robust preference learning paradigm.
Optimizing ML Training with Metagradient Descent
A major challenge in training large-scale machine learning models is configuring the training process to maximize model performance, i.e., finding the best training setup from a vast design space. In this work, we unlock a gradient-based approach to this problem. We first introduce an algorithm for efficiently calculating metagradients -- gradients through model training -- at scale. We then introduce a "smooth model training" framework that enables effective optimization using metagradients. With metagradient descent (MGD), we greatly improve on existing dataset selection methods, outperform accuracy-degrading data poisoning attacks by an order of magnitude, and automatically find competitive learning rate schedules.
Entropy-guided sequence weighting for efficient exploration in RL-based LLM fine-tuning
We introduce Entropy-Guided Sequence Weighting (EGSW), a novel approach that enhances the exploration-exploitation tradeoff by dynamically assigning weights to generated outputs based on their advantage and entropy for Reinforcement Learning-based Large Language Model fine-tuning. EGSW integrates entropy regularization with advantage-based weighting to balance policy updates, enabling efficient exploration in high-dimensional state spaces. By employing temperature-scaled softmax weighting over sequences, EGSW prioritizing high-reward, high-uncertainty steps while maintaining training stability. Although originally developed to improve Group Relative Policy Optimization (GRPO) during large language model (LLM) fine-tuning, EGSW is generalizable to other reinforcement learning (RL) algorithms and can be implemented in both step-wise and trajectory-wise settings. Empirical evaluations demonstrate that EGSW enhances GRPO reasoning ability, yielding improvements in sample efficiency. Future work will explore the application of EGSW to advanced RL methodologies.
Performative Reinforcement Learning
We introduce the framework of performative reinforcement learning where the policy chosen by the learner affects the underlying reward and transition dynamics of the environment. Following the recent literature on performative prediction~Perdomo et. al., 2020, we introduce the concept of performatively stable policy. We then consider a regularized version of the reinforcement learning problem and show that repeatedly optimizing this objective converges to a performatively stable policy under reasonable assumptions on the transition dynamics. Our proof utilizes the dual perspective of the reinforcement learning problem and may be of independent interest in analyzing the convergence of other algorithms with decision-dependent environments. We then extend our results for the setting where the learner just performs gradient ascent steps instead of fully optimizing the objective, and for the setting where the learner has access to a finite number of trajectories from the changed environment. For both settings, we leverage the dual formulation of performative reinforcement learning and establish convergence to a stable solution. Finally, through extensive experiments on a grid-world environment, we demonstrate the dependence of convergence on various parameters e.g. regularization, smoothness, and the number of samples.
Policy Smoothing for Provably Robust Reinforcement Learning
The study of provable adversarial robustness for deep neural networks (DNNs) has mainly focused on static supervised learning tasks such as image classification. However, DNNs have been used extensively in real-world adaptive tasks such as reinforcement learning (RL), making such systems vulnerable to adversarial attacks as well. Prior works in provable robustness in RL seek to certify the behaviour of the victim policy at every time-step against a non-adaptive adversary using methods developed for the static setting. But in the real world, an RL adversary can infer the defense strategy used by the victim agent by observing the states, actions, etc., from previous time-steps and adapt itself to produce stronger attacks in future steps. We present an efficient procedure, designed specifically to defend against an adaptive RL adversary, that can directly certify the total reward without requiring the policy to be robust at each time-step. Our main theoretical contribution is to prove an adaptive version of the Neyman-Pearson Lemma -- a key lemma for smoothing-based certificates -- where the adversarial perturbation at a particular time can be a stochastic function of current and previous observations and states as well as previous actions. Building on this result, we propose policy smoothing where the agent adds a Gaussian noise to its observation at each time-step before passing it through the policy function. Our robustness certificates guarantee that the final total reward obtained by policy smoothing remains above a certain threshold, even though the actions at intermediate time-steps may change under the attack. Our experiments on various environments like Cartpole, Pong, Freeway and Mountain Car show that our method can yield meaningful robustness guarantees in practice.
Continuous control with deep reinforcement learning
We adapt the ideas underlying the success of Deep Q-Learning to the continuous action domain. We present an actor-critic, model-free algorithm based on the deterministic policy gradient that can operate over continuous action spaces. Using the same learning algorithm, network architecture and hyper-parameters, our algorithm robustly solves more than 20 simulated physics tasks, including classic problems such as cartpole swing-up, dexterous manipulation, legged locomotion and car driving. Our algorithm is able to find policies whose performance is competitive with those found by a planning algorithm with full access to the dynamics of the domain and its derivatives. We further demonstrate that for many of the tasks the algorithm can learn policies end-to-end: directly from raw pixel inputs.
Spectral Policy Optimization: Coloring your Incorrect Reasoning in GRPO
Reinforcement learning (RL) has demonstrated significant success in enhancing reasoning capabilities in large language models (LLMs). One of the most widely used RL methods is Group Relative Policy Optimization (GRPO)~Shao-2024-Deepseekmath, known for its memory efficiency and success in training DeepSeek-R1~Guo-2025-Deepseek. However, GRPO stalls when all sampled responses in a group are incorrect -- referred to as an all-negative-sample group -- as it fails to update the policy, hindering learning progress. The contributions of this paper are two-fold. First, we propose a simple yet effective framework that introduces response diversity within all-negative-sample groups in GRPO using AI feedback. We also provide a theoretical analysis, via a stylized model, showing how this diversification improves learning dynamics. Second, we empirically validate our approach, showing the improved performance across various model sizes (7B, 14B, 32B) in both offline and online learning settings with 10 benchmarks, including base and distilled variants. Our findings highlight that learning from all-negative-sample groups is not only feasible but beneficial, advancing recent insights from Xiong-2025-Minimalist.
It Takes Two: Your GRPO Is Secretly DPO
Group Relative Policy Optimization (GRPO) is a prominent reinforcement learning algorithm for post-training Large Language Models (LLMs). It is commonly believed that GRPO necessitates a large group size to ensure stable training via precise statistical estimation, which incurs substantial computational overhead. In this work, we challenge this assumption by reframing GRPO as a form of contrastive learning, which reveals a fundamental connection to Direct Preference Optimization (DPO). Motivated by DPO's empirical success, we investigate the minimal two-rollout case (2-GRPO), a configuration previously deemed infeasible. We provide a rigorous theoretical analysis to validate 2-GRPO and demonstrate empirically that it achieves performance on par with 16-GRPO, despite using only 1/8 of the rollouts and reducing training time by over 70%.
Why Target Networks Stabilise Temporal Difference Methods
Integral to recent successes in deep reinforcement learning has been a class of temporal difference methods that use infrequently updated target values for policy evaluation in a Markov Decision Process. Yet a complete theoretical explanation for the effectiveness of target networks remains elusive. In this work, we provide an analysis of this popular class of algorithms, to finally answer the question: `why do target networks stabilise TD learning'? To do so, we formalise the notion of a partially fitted policy evaluation method, which describes the use of target networks and bridges the gap between fitted methods and semigradient temporal difference algorithms. Using this framework we are able to uniquely characterise the so-called deadly triad - the use of TD updates with (nonlinear) function approximation and off-policy data - which often leads to nonconvergent algorithms. This insight leads us to conclude that the use of target networks can mitigate the effects of poor conditioning in the Jacobian of the TD update. Instead, we show that under mild regularity conditions and a well tuned target network update frequency, convergence can be guaranteed even in the extremely challenging off-policy sampling and nonlinear function approximation setting.
ΔL Normalization: Rethink Loss Aggregation in RLVR
We propose Delta L Normalization, a simple yet effective loss aggregation method tailored to the characteristic of dynamic generation lengths in Reinforcement Learning with Verifiable Rewards (RLVR). Recently, RLVR has demonstrated strong potential in improving the reasoning capabilities of large language models (LLMs), but a major challenge lies in the large variability of response lengths during training, which leads to high gradient variance and unstable optimization. Although previous methods such as GRPO, DAPO, and Dr. GRPO introduce different loss normalization terms to address this issue, they either produce biased estimates or still suffer from high gradient variance. By analyzing the effect of varying lengths on policy loss both theoretically and empirically, we reformulate the problem as finding a minimum-variance unbiased estimator. Our proposed Delta L Normalization not only provides an unbiased estimate of the true policy loss but also minimizes gradient variance in theory. Extensive experiments show that it consistently achieves superior results across different model sizes, maximum lengths, and tasks. Our code will be made public at https://github.com/zerolllin/Delta-L-Normalization.
Trajectory Bellman Residual Minimization: A Simple Value-Based Method for LLM Reasoning
Policy-based methods currently dominate reinforcement learning (RL) pipelines for large language model (LLM) reasoning, leaving value-based approaches largely unexplored. We revisit the classical paradigm of Bellman Residual Minimization and introduce Trajectory Bellman Residual Minimization (TBRM), an algorithm that naturally adapts this idea to LLMs, yielding a simple yet effective off-policy algorithm that optimizes a single trajectory-level Bellman objective using the model's own logits as Q-values. TBRM removes the need for critics, importance-sampling ratios, or clipping, and operates with only one rollout per prompt. We prove convergence to the near-optimal KL-regularized policy from arbitrary off-policy data via an improved change-of-trajectory-measure analysis. Experiments on standard mathematical-reasoning benchmarks show that TBRM consistently outperforms policy-based baselines, like PPO and GRPO, with comparable or lower computational and memory overhead. Our results indicate that value-based RL might be a principled and efficient alternative for enhancing reasoning capabilities in LLMs.
Policy Learning based on Deep Koopman Representation
This paper proposes a policy learning algorithm based on the Koopman operator theory and policy gradient approach, which seeks to approximate an unknown dynamical system and search for optimal policy simultaneously, using the observations gathered through interaction with the environment. The proposed algorithm has two innovations: first, it introduces the so-called deep Koopman representation into the policy gradient to achieve a linear approximation of the unknown dynamical system, all with the purpose of improving data efficiency; second, the accumulated errors for long-term tasks induced by approximating system dynamics are avoided by applying Bellman's principle of optimality. Furthermore, a theoretical analysis is provided to prove the asymptotic convergence of the proposed algorithm and characterize the corresponding sampling complexity. These conclusions are also supported by simulations on several challenging benchmark environments.
Leverage the Average: an Analysis of KL Regularization in RL
Recent Reinforcement Learning (RL) algorithms making use of Kullback-Leibler (KL) regularization as a core component have shown outstanding performance. Yet, only little is understood theoretically about why KL regularization helps, so far. We study KL regularization within an approximate value iteration scheme and show that it implicitly averages q-values. Leveraging this insight, we provide a very strong performance bound, the very first to combine two desirable aspects: a linear dependency to the horizon (instead of quadratic) and an error propagation term involving an averaging effect of the estimation errors (instead of an accumulation effect). We also study the more general case of an additional entropy regularizer. The resulting abstract scheme encompasses many existing RL algorithms. Some of our assumptions do not hold with neural networks, so we complement this theoretical analysis with an extensive empirical study.
CurES: From Gradient Analysis to Efficient Curriculum Learning for Reasoning LLMs
Curriculum learning plays a crucial role in enhancing the training efficiency of large language models (LLMs) on reasoning tasks. However, existing methods often fail to adequately account for variations in prompt difficulty or rely on simplistic filtering mechanisms to select prompt datasets within a narrow criterion range, resulting in significant computational waste. In this work, we approach the problem from the perspective of reinforcement learning gradient optimization, offering a systematic and theoretical investigation into how to improve the training efficiency of LLMs. We identify two key factors influencing training efficiency: the selection of training prompts and the allocation of rollout quantities across different prompts. Our theoretical analysis reveals that the sampling distribution of prompts dictates the convergence rate of gradient descent, while the allocation of the rollout quantity influences the consistency and stability of overall gradient updates. Based on these insights, we propose CurES, an efficient training method that accelerates convergence and employs Bayesian posterior estimation to minimize computational overhead. Experiments demonstrate that our CurES outperforms Group Relative Policy Optimization (GRPO) by +3.30 points and +4.82 points with 1.5B and 7B models, respectively. Additionally, CurES exhibits faster convergence compared to baselines, including GRPO.
CLPO: Curriculum Learning meets Policy Optimization for LLM Reasoning
Recently, online Reinforcement Learning with Verifiable Rewards (RLVR) has become a key paradigm for enhancing the reasoning capabilities of Large Language Models (LLMs). However, existing methods typically treat all training samples uniformly, overlooking the vast differences in problem difficulty relative to the model's current capabilities. This uniform training strategy leads to inefficient exploration of problems the model has already mastered, while concurrently lacking effective guidance on problems that are challenging its abilities the most, limiting both learning efficiency and upper-bound performance. To address this, we propose CLPO (Curriculum-guided Learning for Policy Optimization), a novel algorithm that creates a dynamic pedagogical feedback loop within the policy optimization process. The core of CLPO leverages the model's own rollout performance to conduct real-time difficulty assessment, thereby constructing an Online Curriculum. This curriculum then guides an Adaptive Problem Restructuring mechanism, where the model acts as its own teacher: it diversifies medium-difficulty problems to promote generalization and simplifies challenging problems to make them more attainable. Our approach transforms the static training procedure into a dynamic process that co-evolves with the model's capabilities. Experiments show that CLPO achieves state-of-the-art performance across eight challenging mathematical and general reasoning benchmarks, with an average pass@1 improvement of 6.96% over other methods, demonstrating its potential for more efficiently training more capable reasoning models.
Debiasing Meta-Gradient Reinforcement Learning by Learning the Outer Value Function
Meta-gradient Reinforcement Learning (RL) allows agents to self-tune their hyper-parameters in an online fashion during training. In this paper, we identify a bias in the meta-gradient of current meta-gradient RL approaches. This bias comes from using the critic that is trained using the meta-learned discount factor for the advantage estimation in the outer objective which requires a different discount factor. Because the meta-learned discount factor is typically lower than the one used in the outer objective, the resulting bias can cause the meta-gradient to favor myopic policies. We propose a simple solution to this issue: we eliminate this bias by using an alternative, outer value function in the estimation of the outer loss. To obtain this outer value function we add a second head to the critic network and train it alongside the classic critic, using the outer loss discount factor. On an illustrative toy problem, we show that the bias can cause catastrophic failure of current meta-gradient RL approaches, and show that our proposed solution fixes it. We then apply our method to a more complex environment and demonstrate that fixing the meta-gradient bias can significantly improve performance.
Diffusion Policy: Visuomotor Policy Learning via Action Diffusion
This paper introduces Diffusion Policy, a new way of generating robot behavior by representing a robot's visuomotor policy as a conditional denoising diffusion process. We benchmark Diffusion Policy across 11 different tasks from 4 different robot manipulation benchmarks and find that it consistently outperforms existing state-of-the-art robot learning methods with an average improvement of 46.9%. Diffusion Policy learns the gradient of the action-distribution score function and iteratively optimizes with respect to this gradient field during inference via a series of stochastic Langevin dynamics steps. We find that the diffusion formulation yields powerful advantages when used for robot policies, including gracefully handling multimodal action distributions, being suitable for high-dimensional action spaces, and exhibiting impressive training stability. To fully unlock the potential of diffusion models for visuomotor policy learning on physical robots, this paper presents a set of key technical contributions including the incorporation of receding horizon control, visual conditioning, and the time-series diffusion transformer. We hope this work will help motivate a new generation of policy learning techniques that are able to leverage the powerful generative modeling capabilities of diffusion models. Code, data, and training details will be publicly available.
Counterfactual Explanation Policies in RL
As Reinforcement Learning (RL) agents are increasingly employed in diverse decision-making problems using reward preferences, it becomes important to ensure that policies learned by these frameworks in mapping observations to a probability distribution of the possible actions are explainable. However, there is little to no work in the systematic understanding of these complex policies in a contrastive manner, i.e., what minimal changes to the policy would improve/worsen its performance to a desired level. In this work, we present COUNTERPOL, the first framework to analyze RL policies using counterfactual explanations in the form of minimal changes to the policy that lead to the desired outcome. We do so by incorporating counterfactuals in supervised learning in RL with the target outcome regulated using desired return. We establish a theoretical connection between Counterpol and widely used trust region-based policy optimization methods in RL. Extensive empirical analysis shows the efficacy of COUNTERPOL in generating explanations for (un)learning skills while keeping close to the original policy. Our results on five different RL environments with diverse state and action spaces demonstrate the utility of counterfactual explanations, paving the way for new frontiers in designing and developing counterfactual policies.
Bridging Supervised Learning and Reinforcement Learning in Math Reasoning
Reinforcement Learning (RL) has played a central role in the recent surge of LLMs' math abilities by enabling self-improvement through binary verifier signals. In contrast, Supervised Learning (SL) is rarely considered for such verification-driven training, largely due to its heavy reliance on reference answers and inability to reflect on mistakes. In this work, we challenge the prevailing notion that self-improvement is exclusive to RL and propose Negative-aware Fine-Tuning (NFT) -- a supervised approach that enables LLMs to reflect on their failures and improve autonomously with no external teachers. In online training, instead of throwing away self-generated negative answers, NFT constructs an implicit negative policy to model them. This implicit policy is parameterized with the same positive LLM we target to optimize on positive data, enabling direct policy optimization on all LLMs' generations. We conduct experiments on 7B and 32B models in math reasoning tasks. Results consistently show that through the additional leverage of negative feedback, NFT significantly improves over SL baselines like Rejection sampling Fine-Tuning, matching or even surpassing leading RL algorithms like GRPO and DAPO. Furthermore, we demonstrate that NFT and GRPO are actually equivalent in strict-on-policy training, even though they originate from entirely different theoretical foundations. Our experiments and theoretical findings bridge the gap between SL and RL methods in binary-feedback learning systems.
Bootstrapped Meta-Learning
Meta-learning empowers artificial intelligence to increase its efficiency by learning how to learn. Unlocking this potential involves overcoming a challenging meta-optimisation problem. We propose an algorithm that tackles this problem by letting the meta-learner teach itself. The algorithm first bootstraps a target from the meta-learner, then optimises the meta-learner by minimising the distance to that target under a chosen (pseudo-)metric. Focusing on meta-learning with gradients, we establish conditions that guarantee performance improvements and show that the metric can control meta-optimisation. Meanwhile, the bootstrapping mechanism can extend the effective meta-learning horizon without requiring backpropagation through all updates. We achieve a new state-of-the art for model-free agents on the Atari ALE benchmark and demonstrate that it yields both performance and efficiency gains in multi-task meta-learning. Finally, we explore how bootstrapping opens up new possibilities and find that it can meta-learn efficient exploration in an epsilon-greedy Q-learning agent, without backpropagating through the update rule.
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and Convergence Analysis
Bilevel optimization is an important formulation for many machine learning problems. Current bilevel optimization algorithms assume that the gradient of the upper-level function is Lipschitz. However, recent studies reveal that certain neural networks such as recurrent neural networks (RNNs) and long-short-term memory networks (LSTMs) exhibit potential unbounded smoothness, rendering conventional bilevel optimization algorithms unsuitable. In this paper, we design a new bilevel optimization algorithm, namely BO-REP, to address this challenge. This algorithm updates the upper-level variable using normalized momentum and incorporates two novel techniques for updating the lower-level variable: initialization refinement and periodic updates. Specifically, once the upper-level variable is initialized, a subroutine is invoked to obtain a refined estimate of the corresponding optimal lower-level variable, and the lower-level variable is updated only after every specific period instead of each iteration. When the upper-level problem is nonconvex and unbounded smooth, and the lower-level problem is strongly convex, we prove that our algorithm requires mathcal{O}(1/epsilon^4) iterations to find an epsilon-stationary point in the stochastic setting, where each iteration involves calling a stochastic gradient or Hessian-vector product oracle. Notably, this result matches the state-of-the-art complexity results under the bounded smoothness setting and without mean-squared smoothness of the stochastic gradient, up to logarithmic factors. Our proof relies on novel technical lemmas for the periodically updated lower-level variable, which are of independent interest. Our experiments on hyper-representation learning, hyperparameter optimization, and data hyper-cleaning for text classification tasks demonstrate the effectiveness of our proposed algorithm.
Prompt Curriculum Learning for Efficient LLM Post-Training
We introduce Prompt Curriculum Learning (PCL), a lightweight reinforcement learning (RL) algorithm that selects intermediate-difficulty prompts using a learned value model to post-train language models. Since post-training LLMs via RL remains sensitive to batching and prompt selection strategies, we first conduct a series of systematic experiments where we (1) determine the optimal training batch size that balances generation efficiency and gradient quality and (2) establish the importance of focusing on prompts of intermediate difficulty for the policy. We build upon these results to design PCL, which identifies prompts of intermediate difficulty for the current policy in an on-policy manner by using a value model that is concurrently updated based on the current policy. By focusing on informative prompts that yield high effective ratios, PCL achieves either the highest performance or requires significantly less time to reach comparable performance to its counterparts. Compared to rollout-based filtering methods, PCL avoids costly rollouts and achieves 12.1times and 16.9times faster speed on identifying intermediate-difficulty prompts when training on MATH and DeepScaleR, respectively. We further demonstrate that our value model accurately predicts prompt difficulty and allows PCL to focus on progressively more challenging prompts during RL. Our results present a new methodology that delivers improved tradeoff between upper-bound performance and efficiency for reasoning-focused RL.
Benefits and Pitfalls of Reinforcement Learning for Language Model Planning: A Theoretical Perspective
Recent reinforcement learning (RL) methods have substantially enhanced the planning capabilities of Large Language Models (LLMs), yet the theoretical basis for their effectiveness remains elusive. In this work, we investigate RL's benefits and limitations through a tractable graph-based abstraction, focusing on policy gradient (PG) and Q-learning methods. Our theoretical analyses reveal that supervised fine-tuning (SFT) may introduce co-occurrence-based spurious solutions, whereas RL achieves correct planning primarily through exploration, underscoring exploration's role in enabling better generalization. However, we also show that PG suffers from diversity collapse, where output diversity decreases during training and persists even after perfect accuracy is attained. By contrast, Q-learning provides two key advantages: off-policy learning and diversity preservation at convergence. We further demonstrate that careful reward design is necessary to prevent reward hacking in Q-learning. Finally, applying our framework to the real-world planning benchmark Blocksworld, we confirm that these behaviors manifest in practice.
Training Diffusion Models with Reinforcement Learning
Diffusion models are a class of flexible generative models trained with an approximation to the log-likelihood objective. However, most use cases of diffusion models are not concerned with likelihoods, but instead with downstream objectives such as human-perceived image quality or drug effectiveness. In this paper, we investigate reinforcement learning methods for directly optimizing diffusion models for such objectives. We describe how posing denoising as a multi-step decision-making problem enables a class of policy gradient algorithms, which we refer to as denoising diffusion policy optimization (DDPO), that are more effective than alternative reward-weighted likelihood approaches. Empirically, DDPO is able to adapt text-to-image diffusion models to objectives that are difficult to express via prompting, such as image compressibility, and those derived from human feedback, such as aesthetic quality. Finally, we show that DDPO can improve prompt-image alignment using feedback from a vision-language model without the need for additional data collection or human annotation.
GVPO: Group Variance Policy Optimization for Large Language Model Post-Training
Post-training plays a crucial role in refining and aligning large language models to meet specific tasks and human preferences. While recent advancements in post-training techniques, such as Group Relative Policy Optimization (GRPO), leverage increased sampling with relative reward scoring to achieve superior performance, these methods often suffer from training instability that limits their practical adoption. To address this challenge, we present Group Variance Policy Optimization (GVPO). GVPO incorporates the analytical solution to KL-constrained reward maximization directly into its gradient weights, ensuring alignment with the optimal policy. The method provides intuitive physical interpretations: its gradient mirrors the mean squared error between the central distance of implicit rewards and that of actual rewards. GVPO offers two key advantages: (1) it guarantees a unique optimal solution, exactly the KL-constrained reward maximization objective, (2) it supports flexible sampling distributions that avoids on-policy and importance sampling limitations. By unifying theoretical guarantees with practical adaptability, GVPO establishes a new paradigm for reliable and versatile LLM post-training.
Personalized Path Recourse
This paper introduces Personalized Path Recourse, a novel method that generates recourse paths for an agent. The objective is to achieve desired goals (e.g., better outcomes compared to the agent's original paths of action), while ensuring a high similarity to the agent's original paths and being personalized to the agent. Personalization refers to the extent to which the new path is tailored to the agent's observed behavior patterns from their policy function. We train a personalized recourse agent to generate such personalized paths, which are obtained using reward functions that consider the goal, similarity, and personalization. The proposed method is applicable to both reinforcement learning and supervised learning settings for correcting or improving sequences of actions or sequences of data to achieve a pre-determined goal. The method is evaluated in various settings and demonstrates promising results.
Rethinking Entropy Interventions in RLVR: An Entropy Change Perspective
While Reinforcement Learning with Verifiable Rewards (RLVR) can enhance LLM reasoning, its training process poses a critical risk: entropy collapse. This phenomenon is a rapid loss of policy diversity, stemming from the exploration-exploitation imbalance and leading to a lack of generalization. Recent entropy-intervention methods aim to prevent entropy collapse, yet their underlying mechanisms remain unclear. In this paper, we conduct a quantitative analysis to reveal token-level entropy changes and how existing entropy intervention methods help avoid entropy collapse. Our findings point out a fundamental limitation of existing methods: they attempt to control entropy dynamics indirectly. By only affecting related factors, such as the advantage signal and generation probability, their effectiveness is inherently limited and could potentially fail. To address this limitation, we introduce an entropy-change-aware reweighting scheme, namely Stabilizing Token-level Entropy-changE via Reweighting (STEER), that adaptively stabilizes entropy dynamics through fine-grained token-level adjustments. Our approach mitigates over-exploitation while fostering robust exploration. Extensive experiments demonstrate that STEER significantly mitigates entropy collapse, stabilizes entropy dynamics, and achieves stronger downstream performance across various mathematical reasoning benchmarks \footnote{Our code is available at https://github.com/zz-haooo/STEER.
HAEPO: History-Aggregated Exploratory Policy Optimization
Exploration is essential in modern learning, from reinforcement learning environments with small neural policies to large language models (LLMs). Existing work, such as DPO, leverages full sequence log-likelihoods to capture an entire trajectory of the model's decisions, while methods like GRPO aggregate per-token ratios into a trajectory-level update. However, both often limit exploration on long-horizon tasks. We introduce History-Aggregated Exploratory Policy Optimization (HAEPO), a history-aware exploratory loss to combat these shortcomings. HAEPO compresses each trajectory into the sum of its logarithmic probabilities (a cumulative logarithmic likelihood), and applies a Plackett-Luce softmax across trajectories to obtain normalized weights proportional to their returns, thus encouraging broader exploration. We add entropy regularization to stabilize the aggressive updates to prevent premature collapse and a soft KL penalty relative to a frozen copy of the previous (reference) policy. Empirically, HAEPO converges fast, explores thoroughly, aligns closely with true rewards, and demonstrates robust learning behavior better or at par with PPO, GRPO, and DPO across diverse tasks. Thus, HAEPO provides a stable and interpretable framework by explicitly leveraging full-trajectory history while balancing exploration and stability.
StaQ it! Growing neural networks for Policy Mirror Descent
In Reinforcement Learning (RL), regularization has emerged as a popular tool both in theory and practice, typically based either on an entropy bonus or a Kullback-Leibler divergence that constrains successive policies. In practice, these approaches have been shown to improve exploration, robustness and stability, giving rise to popular Deep RL algorithms such as SAC and TRPO. Policy Mirror Descent (PMD) is a theoretical framework that solves this general regularized policy optimization problem, however the closed-form solution involves the sum of all past Q-functions, which is intractable in practice. We propose and analyze PMD-like algorithms that only keep the last M Q-functions in memory, and show that for finite and large enough M, a convergent algorithm can be derived, introducing no error in the policy update, unlike prior deep RL PMD implementations. StaQ, the resulting algorithm, enjoys strong theoretical guarantees and is competitive with deep RL baselines, while exhibiting less performance oscillation, paving the way for fully stable deep RL algorithms and providing a testbed for experimentation with Policy Mirror Descent.
Group-Relative REINFORCE Is Secretly an Off-Policy Algorithm: Demystifying Some Myths About GRPO and Its Friends
Off-policy reinforcement learning (RL) for large language models (LLMs) is attracting growing interest, driven by practical constraints in real-world applications, the complexity of LLM-RL infrastructure, and the need for further innovations of RL methodologies. While classic REINFORCE and its modern variants like Group Relative Policy Optimization (GRPO) are typically regarded as on-policy algorithms with limited tolerance of off-policyness, we present in this work a first-principles derivation for group-relative REINFORCE without assuming a specific training data distribution, showing that it admits a native off-policy interpretation. This perspective yields two general principles for adapting REINFORCE to off-policy settings: regularizing policy updates, and actively shaping the data distribution. Our analysis demystifies some myths about the roles of importance sampling and clipping in GRPO, unifies and reinterprets two recent algorithms -- Online Policy Mirror Descent (OPMD) and Asymmetric REINFORCE (AsymRE) -- as regularized forms of the REINFORCE loss, and offers theoretical justification for seemingly heuristic data-weighting strategies. Our findings lead to actionable insights that are validated with extensive empirical studies, and open up new opportunities for principled algorithm design in off-policy RL for LLMs. Source code for this work is available at https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k.
Regularized Robust MDPs and Risk-Sensitive MDPs: Equivalence, Policy Gradient, and Sample Complexity
Robust Markov Decision Processes (MDPs) and risk-sensitive MDPs are both powerful tools for making decisions in the presence of uncertainties. Previous efforts have aimed to establish their connections, revealing equivalences in specific formulations. This paper introduces a new formulation for risk-sensitive MDPs, which assesses risk in a slightly different manner compared to the classical Markov risk measure (Ruszczy\'nski 2010), and establishes its equivalence with a class of regularized robust MDP (RMDP) problems, including the standard RMDP as a special case. Leveraging this equivalence, we further derive the policy gradient theorem for both problems, proving gradient domination and global convergence of the exact policy gradient method under the tabular setting with direct parameterization. This forms a sharp contrast to the Markov risk measure, known to be potentially non-gradient-dominant (Huang et al. 2021). We also propose a sample-based offline learning algorithm, namely the robust fitted-Z iteration (RFZI), for a specific regularized RMDP problem with a KL-divergence regularization term (or equivalently the risk-sensitive MDP with an entropy risk measure). We showcase its streamlined design and less stringent assumptions due to the equivalence and analyze its sample complexity.
Single-stream Policy Optimization
We revisit policy-gradient optimization for Large Language Models (LLMs) from a single-stream perspective. Prevailing group-based methods like GRPO reduce variance with on-the-fly baselines but suffer from critical flaws: frequent degenerate groups erase learning signals, and synchronization barriers hinder scalability. We introduce Single-stream Policy Optimization (SPO), which eliminates these issues by design. SPO replaces per-group baselines with a persistent, KL-adaptive value tracker and normalizes advantages globally across the batch, providing a stable, low-variance learning signal for every sample. Being group-free, SPO enables higher throughput and scales effectively in long-horizon or tool-integrated settings where generation times vary. Furthermore, the persistent value tracker naturally enables an adaptive curriculum via prioritized sampling. Experiments using Qwen3-8B show that SPO converges more smoothly and attains higher accuracy than GRPO, while eliminating computation wasted on degenerate groups. Ablation studies confirm that SPO's gains stem from its principled approach to baseline estimation and advantage normalization, offering a more robust and efficient path for LLM reasoning. Across five hard math benchmarks with Qwen3 8B, SPO improves the average maj@32 by +3.4 percentage points (pp) over GRPO, driven by substantial absolute point gains on challenging datasets, including +7.3 pp on BRUMO 25, +4.4 pp on AIME 25, +3.3 pp on HMMT 25, and achieves consistent relative gain in pass@k across the evaluated k values. SPO's success challenges the prevailing trend of adding incidental complexity to RL algorithms, highlighting a path where fundamental principles, not architectural workarounds, drive the next wave of progress in LLM reasoning.
GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement learning (RL) is a pivotal task for enhancing Large Language Model (LLM) reasoning. Conventional algorithms, however, typically adhere to a coarse-grained credit assignment paradigm, applying a uniform reward to all tokens in a sequence, a critical flaw in long-chain reasoning tasks. In this paper, we address this challenge and propose Dynamic Entropy Weighting, a novel mechanism that facilitates fine-grained rewards through two new algorithms: Group Token Policy Optimization (GTPO), which assigns an entropy-weighted reward to each token, and the analogous algorithm Sequence-Level GRPO (GRPO-S). Our approach is founded on the hypothesis that high policy entropy within a reasoning path is a powerful heuristic for cognitive effort at pivotal junctures, which can be repurposed into a learning signal. By repurposing policy entropy for reward shaping, we achieve true per-token credit assignment. Experimental results across challenging reasoning benchmarks validate the superiority of our approach, showing our methods significantly outperform a strong DAPO baseline and confirming our entropy-weighting mechanism as the key driver of this performance boost.
On the Generalization of SFT: A Reinforcement Learning Perspective with Reward Rectification
We present a simple yet theoretically motivated improvement to Supervised Fine-Tuning (SFT) for the Large Language Model (LLM), addressing its limited generalization compared to reinforcement learning (RL). Through mathematical analysis, we reveal that standard SFT gradients implicitly encode a problematic reward structure that may severely restrict the generalization capabilities of model. To rectify this, we propose Dynamic Fine-Tuning (DFT), stabilizing gradient updates for each token by dynamically rescaling the objective function with the probability of this token. Remarkably, this single-line code change significantly outperforms standard SFT across multiple challenging benchmarks and base models, demonstrating greatly improved generalization. Additionally, our approach shows competitive results in offline RL settings, offering an effective yet simpler alternative. This work bridges theoretical insight and practical solutions, substantially advancing SFT performance. The code will be available at https://github.com/yongliang-wu/DFT.
SEED-GRPO: Semantic Entropy Enhanced GRPO for Uncertainty-Aware Policy Optimization
Large language models (LLMs) exhibit varying levels of confidence across input prompts (questions): some lead to consistent, semantically similar answers, while others yield diverse or contradictory outputs. This variation reflects LLM's uncertainty about the input prompt, a signal of how confidently the model understands a given problem. However, vanilla Group Relative Policy Optimization (GRPO) treats all prompts equally during policy updates, ignoring this important information about the model's knowledge boundaries. To address this limitation, we propose SEED-GRPO (Semantic Entropy EnhanceD GRPO), which explicitly measures LLMs' uncertainty of the input prompts semantic entropy. Semantic entropy measures the diversity of meaning in multiple generated answers given a prompt and uses this to modulate the magnitude of policy updates. This uncertainty-aware training mechanism enables dynamic adjustment of policy update magnitudes based on question uncertainty. It allows more conservative updates on high-uncertainty questions while maintaining the original learning signal on confident ones. Experimental results on five mathematical reasoning benchmarks (AIME24 56.7, AMC 68.7, MATH 83.4, Minerva 34.2, and OlympiadBench 48.0) demonstrate that SEED-GRPO achieves new state-of-the-art performance in average accuracy, validating the effectiveness of uncertainty-aware policy optimization.
Deep Reinforcement Learning in Cryptocurrency Market Making
This paper sets forth a framework for deep reinforcement learning as applied to market making (DRLMM) for cryptocurrencies. Two advanced policy gradient-based algorithms were selected as agents to interact with an environment that represents the observation space through limit order book data, and order flow arrival statistics. Within the experiment, a forward-feed neural network is used as the function approximator and two reward functions are compared. The performance of each combination of agent and reward function is evaluated by daily and average trade returns. Using this DRLMM framework, this paper demonstrates the effectiveness of deep reinforcement learning in solving stochastic inventory control challenges market makers face.
EDGE-GRPO: Entropy-Driven GRPO with Guided Error Correction for Advantage Diversity
Large Language Models (LLMs) have made remarkable progress in enhancing step-by-step reasoning through reinforcement learning. However, the Group Relative Policy Optimization (GRPO) algorithm, which relies on sparse reward rules, often encounters the issue of identical rewards within groups, leading to the advantage collapse problem. Existing works typically address this challenge from two perspectives: enforcing model reflection to enhance response diversity, and introducing internal feedback to augment the training signal (advantage). In this work, we begin by analyzing the limitations of model reflection and investigating the policy entropy of responses at the fine-grained sample level. Based on our experimental findings, we propose the EDGE-GRPO algorithm, which adopts Entropy-Driven Advantage and Guided Error Correction to effectively mitigate the problem of advantage collapse. Extensive experiments on several main reasoning benchmarks demonstrate the effectiveness and superiority of our approach. It is available at https://github.com/ZhangXJ199/EDGE-GRPO.
Conservative Dual Policy Optimization for Efficient Model-Based Reinforcement Learning
Provably efficient Model-Based Reinforcement Learning (MBRL) based on optimism or posterior sampling (PSRL) is ensured to attain the global optimality asymptotically by introducing the complexity measure of the model. However, the complexity might grow exponentially for the simplest nonlinear models, where global convergence is impossible within finite iterations. When the model suffers a large generalization error, which is quantitatively measured by the model complexity, the uncertainty can be large. The sampled model that current policy is greedily optimized upon will thus be unsettled, resulting in aggressive policy updates and over-exploration. In this work, we propose Conservative Dual Policy Optimization (CDPO) that involves a Referential Update and a Conservative Update. The policy is first optimized under a reference model, which imitates the mechanism of PSRL while offering more stability. A conservative range of randomness is guaranteed by maximizing the expectation of model value. Without harmful sampling procedures, CDPO can still achieve the same regret as PSRL. More importantly, CDPO enjoys monotonic policy improvement and global optimality simultaneously. Empirical results also validate the exploration efficiency of CDPO.
Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections
Post-training processes are essential phases in grounding pre-trained language models to real-world tasks, with learning from demonstrations or preference signals playing a crucial role in this adaptation. We present a unified theoretical framework bridging Supervised Fine-Tuning (SFT) and preference learning in Large Language Model (LLM) post-training. Through rigorous mathematical derivation, we demonstrate that both SFT and preference learning methods like Direct Preference Optimization (DPO) operate within the same optimal policy-reward subspace, with SFT representing a special case of implicit reward learning. Our analysis reveals a critical limitation in conventional SFT: the KL divergence term in distribution matching becomes constant with respect to the policy during optimization, failing to constrain model updates. To address this, we propose a simple yet effective learning rate reduction approach that yields significant performance improvements (up to 25\% relative gain and 6\% absolute win rate increase in instruction following tasks. Additionally, we derive alternative SFT objectives from various f-divergence functions that preserve the KL term during optimization, further enhancing post-DPO model performance. Finally, we extend the theoretical relationship between LLM logits and Q-functions from preference learning to the SFT context, providing mathematical derivations and experimental validation.
Reactive Exploration to Cope with Non-Stationarity in Lifelong Reinforcement Learning
In lifelong learning, an agent learns throughout its entire life without resets, in a constantly changing environment, as we humans do. Consequently, lifelong learning comes with a plethora of research problems such as continual domain shifts, which result in non-stationary rewards and environment dynamics. These non-stationarities are difficult to detect and cope with due to their continuous nature. Therefore, exploration strategies and learning methods are required that are capable of tracking the steady domain shifts, and adapting to them. We propose Reactive Exploration to track and react to continual domain shifts in lifelong reinforcement learning, and to update the policy correspondingly. To this end, we conduct experiments in order to investigate different exploration strategies. We empirically show that representatives of the policy-gradient family are better suited for lifelong learning, as they adapt more quickly to distribution shifts than Q-learning. Thereby, policy-gradient methods profit the most from Reactive Exploration and show good results in lifelong learning with continual domain shifts. Our code is available at: https://github.com/ml-jku/reactive-exploration.
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms
In recent years, Deep Reinforcement Learning (DRL) algorithms have achieved state-of-the-art performance in many challenging strategy games. Because these games have complicated rules, an action sampled from the full discrete action distribution predicted by the learned policy is likely to be invalid according to the game rules (e.g., walking into a wall). The usual approach to deal with this problem in policy gradient algorithms is to "mask out" invalid actions and just sample from the set of valid actions. The implications of this process, however, remain under-investigated. In this paper, we 1) show theoretical justification for such a practice, 2) empirically demonstrate its importance as the space of invalid actions grows, and 3) provide further insights by evaluating different action masking regimes, such as removing masking after an agent has been trained using masking. The source code can be found at https://github.com/vwxyzjn/invalid-action-masking
Easing Optimization Paths: a Circuit Perspective
Gradient descent is the method of choice for training large artificial intelligence systems. As these systems become larger, a better understanding of the mechanisms behind gradient training would allow us to alleviate compute costs and help steer these systems away from harmful behaviors. To that end, we suggest utilizing the circuit perspective brought forward by mechanistic interpretability. After laying out our intuition, we illustrate how it enables us to design a curriculum for efficient learning in a controlled setting. The code is available at https://github.com/facebookresearch/pal.
Probabilistic Mixture-of-Experts for Efficient Deep Reinforcement Learning
Deep reinforcement learning (DRL) has successfully solved various problems recently, typically with a unimodal policy representation. However, grasping distinguishable skills for some tasks with non-unique optima can be essential for further improving its learning efficiency and performance, which may lead to a multimodal policy represented as a mixture-of-experts (MOE). To our best knowledge, present DRL algorithms for general utility do not deploy this method as policy function approximators due to the potential challenge in its differentiability for policy learning. In this work, we propose a probabilistic mixture-of-experts (PMOE) implemented with a Gaussian mixture model (GMM) for multimodal policy, together with a novel gradient estimator for the indifferentiability problem, which can be applied in generic off-policy and on-policy DRL algorithms using stochastic policies, e.g., Soft Actor-Critic (SAC) and Proximal Policy Optimisation (PPO). Experimental results testify the advantage of our method over unimodal polices and two different MOE methods, as well as a method of option frameworks, based on the above two types of DRL algorithms, on six MuJoCo tasks. Different gradient estimations for GMM like the reparameterisation trick (Gumbel-Softmax) and the score-ratio trick are also compared with our method. We further empirically demonstrate the distinguishable primitives learned with PMOE and show the benefits of our method in terms of exploration.
On-Policy RL with Optimal Reward Baseline
Reinforcement learning algorithms are fundamental to align large language models with human preferences and to enhance their reasoning capabilities. However, current reinforcement learning algorithms often suffer from training instability due to loose on-policy constraints and computational inefficiency due to auxiliary models. In this work, we propose On-Policy RL with Optimal reward baseline (OPO), a novel and simplified reinforcement learning algorithm designed to address these challenges. OPO emphasizes the importance of exact on-policy training, which empirically stabilizes the training process and enhances exploration. Moreover, OPO introduces the optimal reward baseline that theoretically minimizes gradient variance. We evaluate OPO on mathematical reasoning benchmarks. The results demonstrate its superior performance and training stability without additional models or regularization terms. Furthermore, OPO achieves lower policy shifts and higher output entropy, encouraging more diverse and less repetitive responses. These results highlight OPO as a promising direction for stable and effective reinforcement learning in large language model alignment and reasoning tasks. The implementation is provided at https://github.com/microsoft/LMOps/tree/main/opo.
Robust Losses for Learning Value Functions
Most value function learning algorithms in reinforcement learning are based on the mean squared (projected) Bellman error. However, squared errors are known to be sensitive to outliers, both skewing the solution of the objective and resulting in high-magnitude and high-variance gradients. To control these high-magnitude updates, typical strategies in RL involve clipping gradients, clipping rewards, rescaling rewards, or clipping errors. While these strategies appear to be related to robust losses -- like the Huber loss -- they are built on semi-gradient update rules which do not minimize a known loss. In this work, we build on recent insights reformulating squared Bellman errors as a saddlepoint optimization problem and propose a saddlepoint reformulation for a Huber Bellman error and Absolute Bellman error. We start from a formalization of robust losses, then derive sound gradient-based approaches to minimize these losses in both the online off-policy prediction and control settings. We characterize the solutions of the robust losses, providing insight into the problem settings where the robust losses define notably better solutions than the mean squared Bellman error. Finally, we show that the resulting gradient-based algorithms are more stable, for both prediction and control, with less sensitivity to meta-parameters.
Accelerating Policy Gradient by Estimating Value Function from Prior Computation in Deep Reinforcement Learning
This paper investigates the use of prior computation to estimate the value function to improve sample efficiency in on-policy policy gradient methods in reinforcement learning. Our approach is to estimate the value function from prior computations, such as from the Q-network learned in DQN or the value function trained for different but related environments. In particular, we learn a new value function for the target task while combining it with a value estimate from the prior computation. Finally, the resulting value function is used as a baseline in the policy gradient method. This use of a baseline has the theoretical property of reducing variance in gradient computation and thus improving sample efficiency. The experiments show the successful use of prior value estimates in various settings and improved sample efficiency in several tasks.
ReLIC: A Recipe for 64k Steps of In-Context Reinforcement Learning for Embodied AI
Intelligent embodied agents need to quickly adapt to new scenarios by integrating long histories of experience into decision-making. For instance, a robot in an unfamiliar house initially wouldn't know the locations of objects needed for tasks and might perform inefficiently. However, as it gathers more experience, it should learn the layout of its environment and remember where objects are, allowing it to complete new tasks more efficiently. To enable such rapid adaptation to new tasks, we present ReLIC, a new approach for in-context reinforcement learning (RL) for embodied agents. With ReLIC, agents are capable of adapting to new environments using 64,000 steps of in-context experience with full attention while being trained through self-generated experience via RL. We achieve this by proposing a novel policy update scheme for on-policy RL called "partial updates'' as well as a Sink-KV mechanism that enables effective utilization of a long observation history for embodied agents. Our method outperforms a variety of meta-RL baselines in adapting to unseen houses in an embodied multi-object navigation task. In addition, we find that ReLIC is capable of few-shot imitation learning despite never being trained with expert demonstrations. We also provide a comprehensive analysis of ReLIC, highlighting that the combination of large-scale RL training, the proposed partial updates scheme, and the Sink-KV are essential for effective in-context learning. The code for ReLIC and all our experiments is at https://github.com/aielawady/relic
Aligning Diffusion Behaviors with Q-functions for Efficient Continuous Control
Drawing upon recent advances in language model alignment, we formulate offline Reinforcement Learning as a two-stage optimization problem: First pretraining expressive generative policies on reward-free behavior datasets, then fine-tuning these policies to align with task-specific annotations like Q-values. This strategy allows us to leverage abundant and diverse behavior data to enhance generalization and enable rapid adaptation to downstream tasks using minimal annotations. In particular, we introduce Efficient Diffusion Alignment (EDA) for solving continuous control problems. EDA utilizes diffusion models for behavior modeling. However, unlike previous approaches, we represent diffusion policies as the derivative of a scalar neural network with respect to action inputs. This representation is critical because it enables direct density calculation for diffusion models, making them compatible with existing LLM alignment theories. During policy fine-tuning, we extend preference-based alignment methods like Direct Preference Optimization (DPO) to align diffusion behaviors with continuous Q-functions. Our evaluation on the D4RL benchmark shows that EDA exceeds all baseline methods in overall performance. Notably, EDA maintains about 95\% of performance and still outperforms several baselines given only 1\% of Q-labelled data during fine-tuning.
Solving Rubik's Cube Without Tricky Sampling
The Rubiks Cube, with its vast state space and sparse reward structure, presents a significant challenge for reinforcement learning (RL) due to the difficulty of reaching rewarded states. Previous research addressed this by propagating cost-to-go estimates from the solved state and incorporating search techniques. These approaches differ from human strategies that start from fully scrambled cubes, which can be tricky for solving a general sparse-reward problem. In this paper, we introduce a novel RL algorithm using policy gradient methods to solve the Rubiks Cube without relying on near solved-state sampling. Our approach employs a neural network to predict cost patterns between states, allowing the agent to learn directly from scrambled states. Our method was tested on the 2x2x2 Rubiks Cube, where the cube was scrambled 50,000 times, and the model successfully solved it in over 99.4% of cases. Notably, this result was achieved using only the policy network without relying on tree search as in previous methods, demonstrating its effectiveness and potential for broader applications in sparse-reward problems.
Accelerating Nash Learning from Human Feedback via Mirror Prox
Traditional Reinforcement Learning from Human Feedback (RLHF) often relies on reward models, frequently assuming preference structures like the Bradley-Terry model, which may not accurately capture the complexities of real human preferences (e.g., intransitivity). Nash Learning from Human Feedback (NLHF) offers a more direct alternative by framing the problem as finding a Nash equilibrium of a game defined by these preferences. In this work, we introduce Nash Mirror Prox (Nash-MP), an online NLHF algorithm that leverages the Mirror Prox optimization scheme to achieve fast and stable convergence to the Nash equilibrium. Our theoretical analysis establishes that Nash-MP exhibits last-iterate linear convergence towards the beta-regularized Nash equilibrium. Specifically, we prove that the KL-divergence to the optimal policy decreases at a rate of order (1+2beta)^{-N/2}, where N is a number of preference queries. We further demonstrate last-iterate linear convergence for the exploitability gap and uniformly for the span semi-norm of log-probabilities, with all these rates being independent of the size of the action space. Furthermore, we propose and analyze an approximate version of Nash-MP where proximal steps are estimated using stochastic policy gradients, making the algorithm closer to applications. Finally, we detail a practical implementation strategy for fine-tuning large language models and present experiments that demonstrate its competitive performance and compatibility with existing methods.
Train Once, Get a Family: State-Adaptive Balances for Offline-to-Online Reinforcement Learning
Offline-to-online reinforcement learning (RL) is a training paradigm that combines pre-training on a pre-collected dataset with fine-tuning in an online environment. However, the incorporation of online fine-tuning can intensify the well-known distributional shift problem. Existing solutions tackle this problem by imposing a policy constraint on the policy improvement objective in both offline and online learning. They typically advocate a single balance between policy improvement and constraints across diverse data collections. This one-size-fits-all manner may not optimally leverage each collected sample due to the significant variation in data quality across different states. To this end, we introduce Family Offline-to-Online RL (FamO2O), a simple yet effective framework that empowers existing algorithms to determine state-adaptive improvement-constraint balances. FamO2O utilizes a universal model to train a family of policies with different improvement/constraint intensities, and a balance model to select a suitable policy for each state. Theoretically, we prove that state-adaptive balances are necessary for achieving a higher policy performance upper bound. Empirically, extensive experiments show that FamO2O offers a statistically significant improvement over various existing methods, achieving state-of-the-art performance on the D4RL benchmark. Codes are available at https://github.com/LeapLabTHU/FamO2O.
Solving Deep Reinforcement Learning Benchmarks with Linear Policy Networks
Although Deep Reinforcement Learning (DRL) methods can learn effective policies for challenging problems such as Atari games and robotics tasks, algorithms are complex and training times are often long. This study investigates how evolution strategies (ES) perform compared to gradient-based deep reinforcement learning methods. We use ES to optimize the weights of a neural network via neuroevolution, performing direct policy search. We benchmark both regular networks and policy networks consisting of a single linear layer from observations to actions; for three classical ES methods and for three gradient-based methods such as PPO. Our results reveal that ES can find effective linear policies for many RL benchmark tasks, in contrast to DRL methods that can only find successful policies using much larger networks, suggesting that current benchmarks are easier to solve than previously assumed. Interestingly, also for higher complexity tasks, ES achieves results comparable to gradient-based DRL algorithms. Furthermore, we find that by directly accessing the memory state of the game, ES are able to find successful policies in Atari, outperforming DQN. While gradient-based methods have dominated the field in recent years, ES offers an alternative that is easy to implement, parallelize, understand, and tune.
Live in the Moment: Learning Dynamics Model Adapted to Evolving Policy
Model-based reinforcement learning (RL) often achieves higher sample efficiency in practice than model-free RL by learning a dynamics model to generate samples for policy learning. Previous works learn a dynamics model that fits under the empirical state-action visitation distribution for all historical policies, i.e., the sample replay buffer. However, in this paper, we observe that fitting the dynamics model under the distribution for all historical policies does not necessarily benefit model prediction for the current policy since the policy in use is constantly evolving over time. The evolving policy during training will cause state-action visitation distribution shifts. We theoretically analyze how this distribution shift over historical policies affects the model learning and model rollouts. We then propose a novel dynamics model learning method, named Policy-adapted Dynamics Model Learning (PDML). PDML dynamically adjusts the historical policy mixture distribution to ensure the learned model can continually adapt to the state-action visitation distribution of the evolving policy. Experiments on a range of continuous control environments in MuJoCo show that PDML achieves significant improvement in sample efficiency and higher asymptotic performance combined with the state-of-the-art model-based RL methods.
VoiceGRPO: Modern MoE Transformers with Group Relative Policy Optimization GRPO for AI Voice Health Care Applications on Voice Pathology Detection
This research introduces a novel AI techniques as Mixture-of-Experts Transformers with Group Relative Policy Optimization (GRPO) for voice health care applications on voice pathology detection. With the architectural innovations, we adopt advanced training paradigms inspired by reinforcement learning, namely Proximal Policy Optimization (PPO) and Group-wise Regularized Policy Optimization (GRPO), to enhance model stability and performance. Experiments conducted on a synthetically generated voice pathology dataset demonstrate that our proposed models significantly improve diagnostic accuracy, F1 score, and ROC-AUC compared to conventional approaches. These findings underscore the potential of integrating transformer architectures with novel training strategies to advance automated voice pathology detection and ultimately contribute to more effective healthcare delivery. The code we used to train and evaluate our models is available at https://github.com/enkhtogtokh/voicegrpo
Actor-Critics Can Achieve Optimal Sample Efficiency
Actor-critic algorithms have become a cornerstone in reinforcement learning (RL), leveraging the strengths of both policy-based and value-based methods. Despite recent progress in understanding their statistical efficiency, no existing work has successfully learned an epsilon-optimal policy with a sample complexity of O(1/epsilon^2) trajectories with general function approximation when strategic exploration is necessary. We address this open problem by introducing a novel actor-critic algorithm that attains a sample-complexity of O(dH^5 log|A|/epsilon^2 + d H^4 log|F|/ epsilon^2) trajectories, and accompanying T regret when the Bellman eluder dimension d does not increase with T at more than a log T rate. Here, F is the critic function class, A is the action space, and H is the horizon in the finite horizon MDP setting. Our algorithm integrates optimism, off-policy critic estimation targeting the optimal Q-function, and rare-switching policy resets. We extend this to the setting of Hybrid RL, showing that initializing the critic with offline data yields sample efficiency gains compared to purely offline or online RL. Further, utilizing access to offline data, we provide a non-optimistic provably efficient actor-critic algorithm that only additionally requires N_{off} geq c_{off}^*dH^4/epsilon^2 in exchange for omitting optimism, where c_{off}^* is the single-policy concentrability coefficient and N_{off} is the number of offline samples. This addresses another open problem in the literature. We further provide numerical experiments to support our theoretical findings.
Submodular Reinforcement Learning
In reinforcement learning (RL), rewards of states are typically considered additive, and following the Markov assumption, they are independent of states visited previously. In many important applications, such as coverage control, experiment design and informative path planning, rewards naturally have diminishing returns, i.e., their value decreases in light of similar states visited previously. To tackle this, we propose submodular RL (SubRL), a paradigm which seeks to optimize more general, non-additive (and history-dependent) rewards modelled via submodular set functions which capture diminishing returns. Unfortunately, in general, even in tabular settings, we show that the resulting optimization problem is hard to approximate. On the other hand, motivated by the success of greedy algorithms in classical submodular optimization, we propose SubPO, a simple policy gradient-based algorithm for SubRL that handles non-additive rewards by greedily maximizing marginal gains. Indeed, under some assumptions on the underlying Markov Decision Process (MDP), SubPO recovers optimal constant factor approximations of submodular bandits. Moreover, we derive a natural policy gradient approach for locally optimizing SubRL instances even in large state- and action- spaces. We showcase the versatility of our approach by applying SubPO to several applications, such as biodiversity monitoring, Bayesian experiment design, informative path planning, and coverage maximization. Our results demonstrate sample efficiency, as well as scalability to high-dimensional state-action spaces.
Sample-Efficient Preference-based Reinforcement Learning with Dynamics Aware Rewards
Preference-based reinforcement learning (PbRL) aligns a robot behavior with human preferences via a reward function learned from binary feedback over agent behaviors. We show that dynamics-aware reward functions improve the sample efficiency of PbRL by an order of magnitude. In our experiments we iterate between: (1) learning a dynamics-aware state-action representation (z^{sa}) via a self-supervised temporal consistency task, and (2) bootstrapping the preference-based reward function from (z^{sa}), which results in faster policy learning and better final policy performance. For example, on quadruped-walk, walker-walk, and cheetah-run, with 50 preference labels we achieve the same performance as existing approaches with 500 preference labels, and we recover 83\% and 66\% of ground truth reward policy performance versus only 38\% and 21\%. The performance gains demonstrate the benefits of explicitly learning a dynamics-aware reward model. Repo: https://github.com/apple/ml-reed.
Group Relative Policy Optimization for Speech Recognition
Speech Recognition has seen a dramatic shift towards adopting Large Language Models (LLMs). This shift is partly driven by good scalability properties demonstrated by LLMs, ability to leverage large amounts of labelled, unlabelled speech and text data, streaming capabilities with auto-regressive framework and multi-tasking with instruction following characteristics of LLMs. However, simple next-token prediction objective, typically employed with LLMs, have certain limitations in performance and challenges with hallucinations. In this paper, we propose application of Group Relative Policy Optimization (GRPO) to enable reinforcement learning from human feedback for automatic speech recognition (ASR). We design simple rule based reward functions to guide the policy updates. We demonstrate significant improvements in word error rate (upto 18.4% relative), reduction in hallucinations, increased robustness on out-of-domain datasets and effectiveness in domain adaptation.
Critique-GRPO: Advancing LLM Reasoning with Natural Language and Numerical Feedback
Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar rewards, have significantly enhanced the complex reasoning capabilities of large language models (LLMs). Despite this success, we identify three key challenges encountered by RL with solely numerical feedback: performance plateaus, limited effectiveness of self-reflection, and persistent failures. We then demonstrate that RL-finetuned models, even after exhibiting performance plateaus, can generate correct refinements on persistently failed problems by leveraging natural language feedback in the form of critiques. Building on this insight, we propose Critique-GRPO, an online RL framework that integrates both natural language and numerical feedback for effective policy optimization. Critique-GRPO enables LLMs to learn from initial responses and critique-guided refinements simultaneously while maintaining exploration. Extensive experiments using Qwen2.5-7B-Base and Qwen3-8B-Base show that Critique-GRPO consistently outperforms supervised learning-based and RL-based fine-tuning approaches across eight challenging mathematical, STEM, and general reasoning tasks, improving average pass@1 scores by approximately 4.5% and 5%, respectively. Notably, Critique-GRPO surpasses a strong baseline that incorporates expert demonstrations within online RL. Further analysis reveals two critical insights about policy exploration: (1) higher entropy does not always guarantee efficient learning from exploration, and (2) longer responses do not necessarily lead to more effective exploration.
Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences
This paper studies post-training large language models (LLMs) using preference feedback from a powerful oracle to help a model iteratively improve over itself. The typical approach for post-training LLMs involves Reinforcement Learning from Human Feedback (RLHF), which traditionally separates reward learning and subsequent policy optimization. However, such a reward maximization approach is limited by the nature of "point-wise" rewards (such as Bradley-Terry model), which fails to express complex intransitive or cyclic preference relations. While advances on RLHF show reward learning and policy optimization can be merged into a single contrastive objective for stability, they yet still remain tethered to the reward maximization framework. Recently, a new wave of research sidesteps the reward maximization presumptions in favor of directly optimizing over "pair-wise" or general preferences. In this paper, we introduce Direct Nash Optimization (DNO), a provable and scalable algorithm that marries the simplicity and stability of contrastive learning with theoretical generality from optimizing general preferences. Because DNO is a batched on-policy algorithm using a regression-based objective, its implementation is straightforward and efficient. Moreover, DNO enjoys monotonic improvement across iterations that help it improve even over a strong teacher (such as GPT-4). In our experiments, a resulting 7B parameter Orca-2.5 model aligned by DNO achieves the state-of-the-art win-rate against GPT-4-Turbo of 33% on AlpacaEval 2.0 (even after controlling for response length), an absolute gain of 26% (7% to 33%) over the initializing model. It outperforms models with far more parameters, including Mistral Large, Self-Rewarding LM (70B parameters), and older versions of GPT-4.
Evolutionary Reinforcement Learning via Cooperative Coevolution
Recently, evolutionary reinforcement learning has obtained much attention in various domains. Maintaining a population of actors, evolutionary reinforcement learning utilises the collected experiences to improve the behaviour policy through efficient exploration. However, the poor scalability of genetic operators limits the efficiency of optimising high-dimensional neural networks. To address this issue, this paper proposes a novel cooperative coevolutionary reinforcement learning (CoERL) algorithm. Inspired by cooperative coevolution, CoERL periodically and adaptively decomposes the policy optimisation problem into multiple subproblems and evolves a population of neural networks for each of the subproblems. Instead of using genetic operators, CoERL directly searches for partial gradients to update the policy. Updating policy with partial gradients maintains consistency between the behaviour spaces of parents and offspring across generations. The experiences collected by the population are then used to improve the entire policy, which enhances the sampling efficiency. Experiments on six benchmark locomotion tasks demonstrate that CoERL outperforms seven state-of-the-art algorithms and baselines. Ablation study verifies the unique contribution of CoERL's core ingredients.
Reinforcement Learning with Verifiable yet Noisy Rewards under Imperfect Verifiers
Reinforcement Learning with Verifiable Rewards (RLVR) trains policies against automated verifiers to avoid costly human labeling. To reduce vulnerability to verifier hacking, many RLVR systems collapse rewards to binary {0,1} during training. This choice carries a cost: it introduces false negatives (rejecting correct answers, FNs) and false positives (accepting incorrect ones, FPs). For instance, a rule-based checker may mark the correct fraction 12{36} as wrong when compared against the canonical 1{3} due to brittle parsing/equivalence rules (FN), while a large language model (LLM) judges can be gamed by superficial cues or even a single adversarial token, yielding inflated correctness for wrong solutions (FP). We formalize verifier unreliability by modeling the verifier as a stochastic reward channel with asymmetric noise rates. From this abstraction, we derive two correction algorithms for verifier errors. The first is a backward correction that de-biases the observed binary reward to recover an unbiased estimator of the clean policy gradient. The second is a forward correction that reweights score-function terms so that the expected update direction aligns with the clean gradient; notably, it requires only the FN rate. We implement both as lightweight hooks in a group relative policy optimization (GRPO)-based RLVR pipeline and evaluate them on math-reasoning models and benchmarks. Across models and datasets, both corrections improve over uncorrected training; the forward variant converges faster and remains stable under heavier noise. Finally, we show a practical appeal mechanism in which a lightweight LLM verifier estimates the FN rate online by rechecking rule-based negatives, obtaining outperformance compared with other state-of-the-art contenders.
DiffusionNFT: Online Diffusion Reinforcement with Forward Process
Online reinforcement learning (RL) has been central to post-training language models, but its extension to diffusion models remains challenging due to intractable likelihoods. Recent works discretize the reverse sampling process to enable GRPO-style training, yet they inherit fundamental drawbacks, including solver restrictions, forward-reverse inconsistency, and complicated integration with classifier-free guidance (CFG). We introduce Diffusion Negative-aware FineTuning (DiffusionNFT), a new online RL paradigm that optimizes diffusion models directly on the forward process via flow matching. DiffusionNFT contrasts positive and negative generations to define an implicit policy improvement direction, naturally incorporating reinforcement signals into the supervised learning objective. This formulation enables training with arbitrary black-box solvers, eliminates the need for likelihood estimation, and requires only clean images rather than sampling trajectories for policy optimization. DiffusionNFT is up to 25times more efficient than FlowGRPO in head-to-head comparisons, while being CFG-free. For instance, DiffusionNFT improves the GenEval score from 0.24 to 0.98 within 1k steps, while FlowGRPO achieves 0.95 with over 5k steps and additional CFG employment. By leveraging multiple reward models, DiffusionNFT significantly boosts the performance of SD3.5-Medium in every benchmark tested.
MAD-TD: Model-Augmented Data stabilizes High Update Ratio RL
Building deep reinforcement learning (RL) agents that find a good policy with few samples has proven notoriously challenging. To achieve sample efficiency, recent work has explored updating neural networks with large numbers of gradient steps for every new sample. While such high update-to-data (UTD) ratios have shown strong empirical performance, they also introduce instability to the training process. Previous approaches need to rely on periodic neural network parameter resets to address this instability, but restarting the training process is infeasible in many real-world applications and requires tuning the resetting interval. In this paper, we focus on one of the core difficulties of stable training with limited samples: the inability of learned value functions to generalize to unobserved on-policy actions. We mitigate this issue directly by augmenting the off-policy RL training process with a small amount of data generated from a learned world model. Our method, Model-Augmented Data for TD Learning (MAD-TD), uses small amounts of generated data to stabilize high UTD training and achieve competitive performance on the most challenging tasks in the DeepMind control suite. Our experiments further highlight the importance of employing a good model to generate data, MAD-TD's ability to combat value overestimation, and its practical stability gains for continued learning.
In-the-Flow Agentic System Optimization for Effective Planning and Tool Use
Outcome-driven reinforcement learning has advanced reasoning in large language models (LLMs), but prevailing tool-augmented approaches train a single, monolithic policy that interleaves thoughts and tool calls under full context; this scales poorly with long horizons and diverse tools and generalizes weakly to new scenarios. Agentic systems offer a promising alternative by decomposing work across specialized modules, yet most remain training-free or rely on offline training decoupled from the live dynamics of multi-turn interaction. We introduce AgentFlow, a trainable, in-the-flow agentic framework that coordinates four modules (planner, executor, verifier, generator) through an evolving memory and directly optimizes its planner inside the multi-turn loop. To train on-policy in live environments, we propose Flow-based Group Refined Policy Optimization (Flow-GRPO), which tackles long-horizon, sparse-reward credit assignment by converting multi-turn optimization into a sequence of tractable single-turn policy updates. It broadcasts a single, verifiable trajectory-level outcome to every turn to align local planner decisions with global success and stabilizes learning with group-normalized advantages. Across ten benchmarks, AgentFlow with a 7B-scale backbone outperforms top-performing baselines with average accuracy gains of 14.9% on search, 14.0% on agentic, 14.5% on mathematical, and 4.1% on scientific tasks, even surpassing larger proprietary models like GPT-4o. Further analyses confirm the benefits of in-the-flow optimization, showing improved planning, enhanced tool-calling reliability, and positive scaling with model size and reasoning turns.
RLEP: Reinforcement Learning with Experience Replay for LLM Reasoning
Reinforcement learning (RL) for large language models is an energy-intensive endeavor: training can be unstable, and the policy may gradually drift away from its pretrained weights. We present RLEP\, -- \,Reinforcement Learning with Experience rePlay\, -- \,a two-phase framework that first collects verified trajectories and then replays them during subsequent training. At every update step, the policy is optimized on mini-batches that blend newly generated rollouts with these replayed successes. By replaying high-quality examples, RLEP steers the model away from fruitless exploration, focuses learning on promising reasoning paths, and delivers both faster convergence and stronger final performance. On the Qwen2.5-Math-7B base model, RLEP reaches baseline peak accuracy with substantially fewer updates and ultimately surpasses it, improving accuracy on AIME-2024 from 38.2% to 39.9%, on AIME-2025 from 19.8% to 22.3%, and on AMC-2023 from 77.0% to 82.2%. Our code, datasets, and checkpoints are publicly available at https://github.com/Kwai-Klear/RLEP to facilitate reproducibility and further research.
