pj-mathematician's picture
Add files using upload-large-folder tool
5607329 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:124788
  - loss:GISTEmbedLoss
base_model: Alibaba-NLP/gte-multilingual-base
widget:
  - source_sentence: 其他机械、设备和有形货物租赁服务代表
    sentences:
      - 其他机械和设备租赁服务工作人员
      - 电子和电信设备及零部件物流经理
      - 工业主厨
  - source_sentence: 公交车司机
    sentences:
      - 表演灯光设计师
      - 乙烯基地板安装工
      - 国际巴士司机
  - source_sentence: online communication manager
    sentences:
      - trades union official
      - social media manager
      - budget manager
  - source_sentence: Projektmanagerin
    sentences:
      - Projektmanager/Projektmanagerin
      - Category-Manager
      - Infanterist
  - source_sentence: Volksvertreter
    sentences:
      - Parlamentarier
      - Oberbürgermeister
      - Konsul
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@20
  - cosine_accuracy@50
  - cosine_accuracy@100
  - cosine_accuracy@150
  - cosine_accuracy@200
  - cosine_precision@1
  - cosine_precision@20
  - cosine_precision@50
  - cosine_precision@100
  - cosine_precision@150
  - cosine_precision@200
  - cosine_recall@1
  - cosine_recall@20
  - cosine_recall@50
  - cosine_recall@100
  - cosine_recall@150
  - cosine_recall@200
  - cosine_ndcg@1
  - cosine_ndcg@20
  - cosine_ndcg@50
  - cosine_ndcg@100
  - cosine_ndcg@150
  - cosine_ndcg@200
  - cosine_mrr@1
  - cosine_mrr@20
  - cosine_mrr@50
  - cosine_mrr@100
  - cosine_mrr@150
  - cosine_mrr@200
  - cosine_map@1
  - cosine_map@20
  - cosine_map@50
  - cosine_map@100
  - cosine_map@150
  - cosine_map@200
  - cosine_map@500
model-index:
  - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full en
          type: full_en
        metrics:
          - type: cosine_accuracy@1
            value: 0.638095238095238
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9904761904761905
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9904761904761905
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9904761904761905
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9904761904761905
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9904761904761905
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.638095238095238
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.5157142857142857
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.3148571428571429
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.18980952380952382
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.1340952380952381
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.10433333333333333
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.06663116529391168
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.5440125491149368
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.7372320284968455
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.848443922949252
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.8860487771274941
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.9113100464031192
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.638095238095238
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.6935546556901672
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.7133251583573003
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.7690632647005352
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.7862144895240257
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.7968170592302795
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.638095238095238
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.805873015873016
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.805873015873016
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.805873015873016
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.805873015873016
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.805873015873016
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.638095238095238
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.5578685155173458
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.5473850321623162
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.581463340907654
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.5889169392279893
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.5925284111737003
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.5965656525880867
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full es
          type: full_es
        metrics:
          - type: cosine_accuracy@1
            value: 0.12972972972972974
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 1
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 1
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 1
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 1
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 1
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.12972972972972974
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.5721621621621621
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.3898378378378379
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.25248648648648647
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.19001801801801804
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.15216216216216216
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.0037413987812150314
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.38564412906376994
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.56634717829376
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.6751207657229007
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.7429721526766266
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.782741009344735
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.12972972972972974
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.6146062832951104
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.5888430944817052
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.6153911974508461
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.6488811790186049
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.668484227215925
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.12972972972972974
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.5603603603603604
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.5603603603603604
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.5603603603603604
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.5603603603603604
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.5603603603603604
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.12972972972972974
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.48065989256661584
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.4260414587944102
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.4313410890675031
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.44627409433309473
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.45409073457648325
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.4664141280463215
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full de
          type: full_de
        metrics:
          - type: cosine_accuracy@1
            value: 0.2955665024630542
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9704433497536946
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9852216748768473
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9852216748768473
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9901477832512315
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9901477832512315
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.2955665024630542
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.5103448275862069
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.36581280788177345
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.24093596059113298
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.1805911330049261
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.14504926108374383
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.01108543831680986
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.3223233101463262
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.5039819404049483
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.6233745066729907
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.6835940274020903
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.7244154013186467
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.2955665024630542
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.5408722641900761
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.527886925844467
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.5577778671616822
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.5888462531918542
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.6086846330019594
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.2955665024630542
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.5113658734131055
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.5119042729281458
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.5119042729281458
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.5119471086531404
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.5119471086531404
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.2955665024630542
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.40262994538176794
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.3598095510459756
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.3640281449020211
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.3787945863322487
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.38618862635749335
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.3990240514562499
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full zh
          type: full_zh
        metrics:
          - type: cosine_accuracy@1
            value: 0.6504854368932039
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9805825242718447
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9902912621359223
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9902912621359223
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9902912621359223
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9902912621359223
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.6504854368932039
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.47766990291262146
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.2910679611650486
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.17669902912621357
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.12595469255663433
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.09839805825242721
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.060542712533387485
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.5114752810868121
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.6954673295380345
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.8032158798498642
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.846620542843508
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.8771023728333074
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.6504854368932039
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.6541147907794943
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.6727849863538982
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.7254296825073091
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.7444662716551141
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.7564060212104653
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.6504854368932039
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.8001618122977345
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.8004965963620132
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.8004965963620132
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.8004965963620132
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.8004965963620132
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.6504854368932039
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.5094545622745261
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.49522742290513777
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.5243132918013151
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.5319309142013369
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.5356726234545599
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.5407684120771897
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: mix es
          type: mix_es
        metrics:
          - type: cosine_accuracy@1
            value: 0.7264690587623505
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9589183567342694
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9791991679667187
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9942797711908476
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9963598543941757
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9973998959958398
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.7264690587623505
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.12420696827873114
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.051430057202288104
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.026245449817992726
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.017621771537528166
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.013286531461258454
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.2809028551618255
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.9175593690414283
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.9495839833593345
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.9700901369388107
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.9768157392962384
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.9820072802912115
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.7264690587623505
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.8030413573056574
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.811796736904274
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.816244308604025
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.8175588810577264
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.8184967672553575
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.7264690587623505
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.7950273648815123
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.7956778348360616
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.7959013329165427
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.7959172370306803
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.7959232938160362
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.7264690587623505
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.7336401935022089
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.7360366435506714
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.7366186564599716
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.7367425141591574
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.7368117834120087
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.7369173075310415
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: mix de
          type: mix_de
        metrics:
          - type: cosine_accuracy@1
            value: 0.6687467498699948
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9495579823192928
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9781591263650546
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9864794591783671
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9937597503900156
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9947997919916797
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.6687467498699948
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.1250390015600624
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.05221008840353615
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.026718668746749875
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.017996186514127228
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.013546541861674468
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.2516640665626625
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.9084156699601317
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.9471138845553821
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.9683654012827179
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.9779857860981105
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.9813659213035187
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.6687467498699948
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.771957090473385
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.7827623591767751
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.7875734242708617
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.7894969663782526
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.7901321903376272
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.6687467498699948
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.7497638732138926
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.7507175554997805
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.7508323831532827
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.7508936641683207
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.7509002910567728
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.6687467498699948
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.6950013134615064
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.6978571886056382
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.6985915209847109
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.6987589388742937
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.6988064092994788
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.6989004605248843
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: mix zh
          type: mix_zh
        metrics:
          - type: cosine_accuracy@1
            value: 0.19240769630785232
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 1
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 1
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 1
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 1
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 1
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.19240769630785232
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.15439417576703063
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.0617576703068123
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.03087883515340615
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.020585890102270757
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.015439417576703075
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.06196914543248396
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 1
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 1
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 1
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 1
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 1
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.19240769630785232
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.5476410654075157
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.5476410654075157
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.5476410654075157
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.5476410654075157
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.5476410654075157
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.19240769630785232
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.40991240515421595
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.40991240515421595
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.40991240515421595
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.40991240515421595
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.40991240515421595
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.19240769630785232
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.3300676367396893
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.3300676367396893
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.3300676367396893
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.3300676367396893
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.3300676367396893
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.3300676367396893
            name: Cosine Map@500

SentenceTransformer based on Alibaba-NLP/gte-multilingual-base

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-multilingual-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Datasets:
    • full_en
    • full_de
    • full_es
    • full_zh
    • mix

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Volksvertreter',
    'Parlamentarier',
    'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric full_en full_es full_de full_zh mix_es mix_de mix_zh
cosine_accuracy@1 0.6381 0.1297 0.2956 0.6505 0.7265 0.6687 0.1924
cosine_accuracy@20 0.9905 1.0 0.9704 0.9806 0.9589 0.9496 1.0
cosine_accuracy@50 0.9905 1.0 0.9852 0.9903 0.9792 0.9782 1.0
cosine_accuracy@100 0.9905 1.0 0.9852 0.9903 0.9943 0.9865 1.0
cosine_accuracy@150 0.9905 1.0 0.9901 0.9903 0.9964 0.9938 1.0
cosine_accuracy@200 0.9905 1.0 0.9901 0.9903 0.9974 0.9948 1.0
cosine_precision@1 0.6381 0.1297 0.2956 0.6505 0.7265 0.6687 0.1924
cosine_precision@20 0.5157 0.5722 0.5103 0.4777 0.1242 0.125 0.1544
cosine_precision@50 0.3149 0.3898 0.3658 0.2911 0.0514 0.0522 0.0618
cosine_precision@100 0.1898 0.2525 0.2409 0.1767 0.0262 0.0267 0.0309
cosine_precision@150 0.1341 0.19 0.1806 0.126 0.0176 0.018 0.0206
cosine_precision@200 0.1043 0.1522 0.145 0.0984 0.0133 0.0135 0.0154
cosine_recall@1 0.0666 0.0037 0.0111 0.0605 0.2809 0.2517 0.062
cosine_recall@20 0.544 0.3856 0.3223 0.5115 0.9176 0.9084 1.0
cosine_recall@50 0.7372 0.5663 0.504 0.6955 0.9496 0.9471 1.0
cosine_recall@100 0.8484 0.6751 0.6234 0.8032 0.9701 0.9684 1.0
cosine_recall@150 0.886 0.743 0.6836 0.8466 0.9768 0.978 1.0
cosine_recall@200 0.9113 0.7827 0.7244 0.8771 0.982 0.9814 1.0
cosine_ndcg@1 0.6381 0.1297 0.2956 0.6505 0.7265 0.6687 0.1924
cosine_ndcg@20 0.6936 0.6146 0.5409 0.6541 0.803 0.772 0.5476
cosine_ndcg@50 0.7133 0.5888 0.5279 0.6728 0.8118 0.7828 0.5476
cosine_ndcg@100 0.7691 0.6154 0.5578 0.7254 0.8162 0.7876 0.5476
cosine_ndcg@150 0.7862 0.6489 0.5888 0.7445 0.8176 0.7895 0.5476
cosine_ndcg@200 0.7968 0.6685 0.6087 0.7564 0.8185 0.7901 0.5476
cosine_mrr@1 0.6381 0.1297 0.2956 0.6505 0.7265 0.6687 0.1924
cosine_mrr@20 0.8059 0.5604 0.5114 0.8002 0.795 0.7498 0.4099
cosine_mrr@50 0.8059 0.5604 0.5119 0.8005 0.7957 0.7507 0.4099
cosine_mrr@100 0.8059 0.5604 0.5119 0.8005 0.7959 0.7508 0.4099
cosine_mrr@150 0.8059 0.5604 0.5119 0.8005 0.7959 0.7509 0.4099
cosine_mrr@200 0.8059 0.5604 0.5119 0.8005 0.7959 0.7509 0.4099
cosine_map@1 0.6381 0.1297 0.2956 0.6505 0.7265 0.6687 0.1924
cosine_map@20 0.5579 0.4807 0.4026 0.5095 0.7336 0.695 0.3301
cosine_map@50 0.5474 0.426 0.3598 0.4952 0.736 0.6979 0.3301
cosine_map@100 0.5815 0.4313 0.364 0.5243 0.7366 0.6986 0.3301
cosine_map@150 0.5889 0.4463 0.3788 0.5319 0.7367 0.6988 0.3301
cosine_map@200 0.5925 0.4541 0.3862 0.5357 0.7368 0.6988 0.3301
cosine_map@500 0.5966 0.4664 0.399 0.5408 0.7369 0.6989 0.3301

Training Details

Training Datasets

full_en

full_en

  • Dataset: full_en
  • Size: 28,880 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 5.68 tokens
    • max: 11 tokens
    • min: 3 tokens
    • mean: 5.76 tokens
    • max: 12 tokens
  • Samples:
    anchor positive
    air commodore flight lieutenant
    command and control officer flight officer
    air commodore command and control officer
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_de

full_de

  • Dataset: full_de
  • Size: 23,023 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 7.99 tokens
    • max: 30 tokens
    • min: 3 tokens
    • mean: 8.19 tokens
    • max: 30 tokens
  • Samples:
    anchor positive
    Staffelkommandantin Kommodore
    Luftwaffenoffizierin Luftwaffenoffizier/Luftwaffenoffizierin
    Staffelkommandantin Luftwaffenoffizierin
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_es

full_es

  • Dataset: full_es
  • Size: 20,724 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 9.13 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 8.84 tokens
    • max: 32 tokens
  • Samples:
    anchor positive
    jefe de escuadrón instructor
    comandante de aeronave instructor de simulador
    instructor oficial del Ejército del Aire
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_zh

full_zh

  • Dataset: full_zh
  • Size: 30,401 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 5 tokens
    • mean: 7.15 tokens
    • max: 14 tokens
    • min: 5 tokens
    • mean: 7.46 tokens
    • max: 21 tokens
  • Samples:
    anchor positive
    技术总监 技术和运营总监
    技术总监 技术主管
    技术总监 技术艺术总监
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
mix

mix

  • Dataset: mix
  • Size: 21,760 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 2 tokens
    • mean: 6.71 tokens
    • max: 19 tokens
    • min: 2 tokens
    • mean: 7.69 tokens
    • max: 19 tokens
  • Samples:
    anchor positive
    technical manager Technischer Direktor für Bühne, Film und Fernsehen
    head of technical directora técnica
    head of technical department 技术艺术总监
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 128
  • gradient_accumulation_steps: 2
  • num_train_epochs: 5
  • warmup_ratio: 0.05
  • log_on_each_node: False
  • fp16: True
  • dataloader_num_workers: 4
  • ddp_find_unused_parameters: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: False
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: True
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss full_en_cosine_ndcg@200 full_es_cosine_ndcg@200 full_de_cosine_ndcg@200 full_zh_cosine_ndcg@200 mix_es_cosine_ndcg@200 mix_de_cosine_ndcg@200 mix_zh_cosine_ndcg@200
-1 -1 - 0.7447 0.6125 0.5378 0.7240 0.7029 0.6345 0.5531
0.0010 1 3.4866 - - - - - - -
0.1027 100 2.5431 - - - - - - -
0.2053 200 1.4536 0.7993 0.6633 0.5974 0.7642 0.7567 0.7011 0.5498
0.3080 300 1.1018 - - - - - - -
0.4107 400 0.9184 0.7925 0.6586 0.6058 0.7587 0.7749 0.7278 0.5486
0.5133 500 0.8973 - - - - - - -
0.6160 600 0.7309 0.7951 0.6671 0.6096 0.7708 0.7793 0.7339 0.5525
0.7187 700 0.7297 - - - - - - -
0.8214 800 0.7281 0.7929 0.6711 0.6088 0.7645 0.7899 0.7444 0.5479
0.9240 900 0.6607 - - - - - - -
1.0267 1000 0.6075 0.7915 0.6659 0.6088 0.7665 0.7968 0.7588 0.5482
1.1294 1100 0.4553 - - - - - - -
1.2320 1200 0.4775 0.7979 0.6696 0.6033 0.7669 0.7959 0.7624 0.5484
1.3347 1300 0.4838 - - - - - - -
1.4374 1400 0.4912 0.7973 0.6757 0.6112 0.7656 0.7978 0.7650 0.5487
1.5400 1500 0.4732 - - - - - - -
1.6427 1600 0.5269 0.8031 0.6723 0.6108 0.7654 0.8008 0.7660 0.5492
1.7454 1700 0.4822 - - - - - - -
1.8480 1800 0.5072 0.7962 0.6668 0.6051 0.7592 0.8001 0.7714 0.5486
1.9507 1900 0.4709 - - - - - - -
2.0544 2000 0.3772 0.7940 0.6647 0.6037 0.7579 0.8064 0.7732 0.5479
2.1571 2100 0.3982 - - - - - - -
2.2598 2200 0.3073 0.7969 0.6652 0.6005 0.7625 0.8054 0.7734 0.5493
2.3624 2300 0.383 - - - - - - -
2.4651 2400 0.3687 0.7925 0.6690 0.5987 0.7583 0.8081 0.7735 0.5477
2.5678 2500 0.3472 - - - - - - -
2.6704 2600 0.3557 0.7956 0.6758 0.6019 0.7659 0.8082 0.7767 0.5491
2.7731 2700 0.3527 - - - - - - -
2.8758 2800 0.3446 0.7945 0.6719 0.6020 0.7616 0.8124 0.7818 0.5496
2.9784 2900 0.3566 - - - - - - -
3.0821 3000 0.3252 0.7948 0.6682 0.6025 0.7617 0.8152 0.7848 0.5516
3.1848 3100 0.2968 - - - - - - -
3.2875 3200 0.2962 0.7953 0.6717 0.6086 0.7613 0.8110 0.7824 0.5482
3.3901 3300 0.3084 - - - - - - -
3.4928 3400 0.2909 0.7940 0.6634 0.6023 0.7615 0.8138 0.7822 0.5457
3.5955 3500 0.2964 - - - - - - -
3.6982 3600 0.3193 0.7960 0.6635 0.6070 0.7534 0.8164 0.7844 0.5467
3.8008 3700 0.3514 - - - - - - -
3.9035 3800 0.3147 0.7973 0.6696 0.6125 0.7616 0.8176 0.7885 0.5469
4.0062 3900 0.2738 - - - - - - -
4.1088 4000 0.2842 0.7960 0.6672 0.6082 0.7536 0.8174 0.7891 0.5479
4.2115 4100 0.2739 - - - - - - -
4.3142 4200 0.2704 0.7979 0.6681 0.6111 0.7540 0.8180 0.7891 0.5476
4.4168 4300 0.2529 - - - - - - -
4.5195 4400 0.272 0.7968 0.6685 0.6087 0.7564 0.8185 0.7901 0.5476

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

GISTEmbedLoss

@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}