BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("preetham315/bge-base-financial-matryoshka")
# Run inference
sentences = [
    "The initial terms of Hilton's management contracts are typically 20 to 30 years.",
    "What are the typical initial terms of Hilton's management contracts?",
    'What was the total revenue in millions for 2023 according to the disaggregated revenue information by segment?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8917, 0.2945],
#         [0.8917, 1.0000, 0.2615],
#         [0.2945, 0.2615, 1.0000]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7
cosine_accuracy@3 0.8257
cosine_accuracy@5 0.8586
cosine_accuracy@10 0.9071
cosine_precision@1 0.7
cosine_precision@3 0.2752
cosine_precision@5 0.1717
cosine_precision@10 0.0907
cosine_recall@1 0.7
cosine_recall@3 0.8257
cosine_recall@5 0.8586
cosine_recall@10 0.9071
cosine_ndcg@10 0.8043
cosine_mrr@10 0.7715
cosine_map@100 0.7746

Information Retrieval

Metric Value
cosine_accuracy@1 0.7
cosine_accuracy@3 0.82
cosine_accuracy@5 0.85
cosine_accuracy@10 0.9057
cosine_precision@1 0.7
cosine_precision@3 0.2733
cosine_precision@5 0.17
cosine_precision@10 0.0906
cosine_recall@1 0.7
cosine_recall@3 0.82
cosine_recall@5 0.85
cosine_recall@10 0.9057
cosine_ndcg@10 0.802
cosine_mrr@10 0.7691
cosine_map@100 0.7725

Information Retrieval

Metric Value
cosine_accuracy@1 0.6829
cosine_accuracy@3 0.82
cosine_accuracy@5 0.8529
cosine_accuracy@10 0.9
cosine_precision@1 0.6829
cosine_precision@3 0.2733
cosine_precision@5 0.1706
cosine_precision@10 0.09
cosine_recall@1 0.6829
cosine_recall@3 0.82
cosine_recall@5 0.8529
cosine_recall@10 0.9
cosine_ndcg@10 0.7935
cosine_mrr@10 0.7593
cosine_map@100 0.7627

Information Retrieval

Metric Value
cosine_accuracy@1 0.6743
cosine_accuracy@3 0.7971
cosine_accuracy@5 0.8286
cosine_accuracy@10 0.87
cosine_precision@1 0.6743
cosine_precision@3 0.2657
cosine_precision@5 0.1657
cosine_precision@10 0.087
cosine_recall@1 0.6743
cosine_recall@3 0.7971
cosine_recall@5 0.8286
cosine_recall@10 0.87
cosine_ndcg@10 0.7733
cosine_mrr@10 0.7423
cosine_map@100 0.7473

Information Retrieval

Metric Value
cosine_accuracy@1 0.6243
cosine_accuracy@3 0.7514
cosine_accuracy@5 0.7914
cosine_accuracy@10 0.8371
cosine_precision@1 0.6243
cosine_precision@3 0.2505
cosine_precision@5 0.1583
cosine_precision@10 0.0837
cosine_recall@1 0.6243
cosine_recall@3 0.7514
cosine_recall@5 0.7914
cosine_recall@10 0.8371
cosine_ndcg@10 0.7307
cosine_mrr@10 0.6967
cosine_map@100 0.7018

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 6 tokens
    • mean: 44.97 tokens
    • max: 371 tokens
    • min: 8 tokens
    • mean: 20.7 tokens
    • max: 51 tokens
  • Samples:
    positive anchor
    As of December 31, 2023, cash and cash equivalents totaled $6.2 billion, showing an increase from $4.7 billion in 2022. What amount did cash and cash equivalents reach at the end of 2023?
    The GDPR imposes a comprehensive data protection regime with the potential for regulatory fines as much as up to the greater of 4% of worldwide turnover or €20 million. How does the GDPR penalize non-compliance in terms of fines?
    The 'Index to Financial Statement Schedules' serves as a guide to organize and present the content of the financial statement schedules. What purpose does the 'Index to Financial Statement Schedules' serve?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
-1 -1 - 0.7623 0.7640 0.7500 0.7045 0.6426
0.8122 10 1.4367 - - - - -
1.0 13 - 0.8043 0.802 0.7935 0.7733 0.7307
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.12
  • Sentence Transformers: 5.1.2
  • Transformers: 4.57.1
  • PyTorch: 2.9.0+cu126
  • Accelerate: 1.11.0
  • Datasets: 4.0.0
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
9
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for preetham315/bge-base-financial-matryoshka

Finetuned
(430)
this model

Evaluation results