|
|
--- |
|
|
license: apache-2.0 |
|
|
language: |
|
|
- en |
|
|
base_model: |
|
|
- prithivMLmods/Blitzar-Coder-4B-F.1 |
|
|
pipeline_tag: text-generation |
|
|
library_name: transformers |
|
|
tags: |
|
|
- text-generation-inference |
|
|
- code |
|
|
- coder |
|
|
--- |
|
|
|
|
|
# **Blitzar-Coder-4B-F.1-GGUF** |
|
|
|
|
|
> **Blitzar-Coder-4B-F.1** is a high-efficiency, multi-language coding model fine-tuned on **Qwen3-4B** using **larger coding traces datasets** spanning **10+ programming languages** including Python, Java, C#, C++, C, Go, JavaScript, TypeScript, Rust, and more. This model delivers exceptional code generation, debugging, and reasoning capabilities—making it an ideal tool for developers seeking advanced programming assistance under constrained compute. |
|
|
|
|
|
## Model Files |
|
|
|
|
|
| Filename | Size | Format | Description | |
|
|
|----------|------|--------|-------------| |
|
|
| Blitzar-Coder-4B-F.1.BF16.gguf | 8.05 GB | BF16 | Brain Float 16-bit quantization | |
|
|
| Blitzar-Coder-4B-F.1.F16.gguf | 8.05 GB | F16 | Half precision (16-bit) floating point | |
|
|
| Blitzar-Coder-4B-F.1.F32.gguf | 16.1 GB | F32 | Full precision (32-bit) floating point | |
|
|
| Blitzar-Coder-4B-F.1.Q2_K.gguf | 1.67 GB | Q2_K | 2-bit quantization with K-quant | |
|
|
| Blitzar-Coder-4B-F.1.Q3_K_L.gguf | 2.24 GB | Q3_K_L | 3-bit quantization (Large) with K-quant | |
|
|
| Blitzar-Coder-4B-F.1.Q3_K_M.gguf | 2.08 GB | Q3_K_M | 3-bit quantization (Medium) with K-quant | |
|
|
| Blitzar-Coder-4B-F.1.Q3_K_S.gguf | 1.89 GB | Q3_K_S | 3-bit quantization (Small) with K-quant | |
|
|
| Blitzar-Coder-4B-F.1.Q4_K_M.gguf | 2.5 GB | Q4_K_M | 4-bit quantization (Medium) with K-quant | |
|
|
| Blitzar-Coder-4B-F.1.Q4_K_S.gguf | 2.38 GB | Q4_K_S | 4-bit quantization (Small) with K-quant | |
|
|
| Blitzar-Coder-4B-F.1.Q5_K_M.gguf | 2.89 GB | Q5_K_M | 5-bit quantization (Medium) with K-quant | |
|
|
| Blitzar-Coder-4B-F.1.Q5_K_S.gguf | 2.82 GB | Q5_K_S | 5-bit quantization (Small) with K-quant | |
|
|
| Blitzar-Coder-4B-F.1.Q6_K.gguf | 3.31 GB | Q6_K | 6-bit quantization with K-quant | |
|
|
| Blitzar-Coder-4B-F.1.Q8_0.gguf | 4.28 GB | Q8_0 | 8-bit quantization | |
|
|
|
|
|
### Recommended Usage |
|
|
|
|
|
- **Q4_K_M** or **Q5_K_M**: Best balance of quality and performance for most users |
|
|
- **Q6_K** or **Q8_0**: Higher quality, larger file sizes |
|
|
- **Q2_K** or **Q3_K_S**: Fastest inference, lower quality |
|
|
- **F16** or **BF16**: High quality, requires more VRAM |
|
|
- **F32**: Highest quality, requires significant VRAM |
|
|
|
|
|
## Quants Usage |
|
|
|
|
|
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) |
|
|
|
|
|
Here is a handy graph by ikawrakow comparing some lower-quality quant |
|
|
types (lower is better): |
|
|
|
|
|
 |