|
|
--- |
|
|
license: cc-by-nc-4.0 |
|
|
datasets: |
|
|
- uoft-cs/cifar10 |
|
|
language: |
|
|
- en |
|
|
base_model: |
|
|
- facebook/metaclip-2-worldwide-s16 |
|
|
pipeline_tag: image-classification |
|
|
library_name: transformers |
|
|
tags: |
|
|
- text-generation-inference |
|
|
- cifar10 |
|
|
--- |
|
|
|
|
|
%3C!-- HTML_TAG_END --> |
|
|
|
|
|
# **MetaCLIP-2-Cifar10** |
|
|
|
|
|
> **MetaCLIP-2-Cifar10** is an image classification vision–language encoder model fine-tuned from **facebook/metaclip-2-worldwide-s16** for a single-label classification task. |
|
|
> It is designed to identify and categorize images into the ten CIFAR-10 object classes using the **MetaClip2ForImageClassification** architecture. |
|
|
|
|
|
>[!note] |
|
|
MetaCLIP 2: A Worldwide Scaling Recipe : https://huggingface.co/papers/2507.22062 |
|
|
|
|
|
``` |
|
|
Classification report: |
|
|
|
|
|
precision recall f1-score support |
|
|
|
|
|
airplane 0.9813 0.9685 0.9748 2000 |
|
|
automobile 0.9777 0.9850 0.9813 2000 |
|
|
bird 0.9560 0.9560 0.9560 2000 |
|
|
cat 0.9104 0.9395 0.9247 2000 |
|
|
deer 0.9566 0.9580 0.9573 2000 |
|
|
dog 0.9476 0.9215 0.9343 2000 |
|
|
frog 0.9774 0.9735 0.9755 2000 |
|
|
horse 0.9704 0.9670 0.9687 2000 |
|
|
ship 0.9782 0.9890 0.9836 2000 |
|
|
truck 0.9774 0.9735 0.9755 2000 |
|
|
|
|
|
accuracy 0.9631 20000 |
|
|
macro avg 0.9633 0.9632 0.9632 20000 |
|
|
weighted avg 0.9633 0.9631 0.9632 20000 |
|
|
``` |
|
|
|
|
|
%3C!-- HTML_TAG_END --> |
|
|
|
|
|
--- |
|
|
|
|
|
The model classifies images into the following categories: |
|
|
|
|
|
* **Class 0:** airplane |
|
|
* **Class 1:** automobile |
|
|
* **Class 2:** bird |
|
|
* **Class 3:** cat |
|
|
* **Class 4:** deer |
|
|
* **Class 5:** dog |
|
|
* **Class 6:** frog |
|
|
* **Class 7:** horse |
|
|
* **Class 8:** ship |
|
|
* **Class 9:** truck |
|
|
|
|
|
# **Run with Transformers** |
|
|
|
|
|
```python |
|
|
!pip install -q transformers torch pillow gradio |
|
|
``` |
|
|
|
|
|
```python |
|
|
import gradio as gr |
|
|
from transformers import AutoImageProcessor |
|
|
from transformers import AutoModelForImageClassification |
|
|
from transformers.image_utils import load_image |
|
|
from PIL import Image |
|
|
import torch |
|
|
|
|
|
# Load model and processor |
|
|
model_name = "prithivMLmods/MetaCLIP-2-Cifar10" |
|
|
model = AutoModelForImageClassification.from_pretrained(model_name) |
|
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
|
|
def cifar10_classification(image): |
|
|
"""Predicts the CIFAR-10 class represented in an image.""" |
|
|
image = Image.fromarray(image).convert("RGB") |
|
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model(**inputs) |
|
|
logits = outputs.logits |
|
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
|
|
labels = { |
|
|
"0": "airplane", |
|
|
"1": "automobile", |
|
|
"2": "bird", |
|
|
"3": "cat", |
|
|
"4": "deer", |
|
|
"5": "dog", |
|
|
"6": "frog", |
|
|
"7": "horse", |
|
|
"8": "ship", |
|
|
"9": "truck" |
|
|
} |
|
|
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} |
|
|
|
|
|
return predictions |
|
|
|
|
|
# Create Gradio interface |
|
|
iface = gr.Interface( |
|
|
fn=cifar10_classification, |
|
|
inputs=gr.Image(type="numpy"), |
|
|
outputs=gr.Label(label="Prediction Scores"), |
|
|
title="CIFAR-10 Classification", |
|
|
description="Upload an image to classify it into one of the CIFAR-10 categories." |
|
|
) |
|
|
|
|
|
# Launch the app |
|
|
if __name__ == "__main__": |
|
|
iface.launch() |
|
|
``` |
|
|
|
|
|
# **Sample Inference:** |
|
|
|
|
|
%3C!-- HTML_TAG_END --> |
|
|
%3C!-- HTML_TAG_END --> |
|
|
%3C!-- HTML_TAG_END --> |
|
|
%3C!-- HTML_TAG_END --> |
|
|
%3C!-- HTML_TAG_END --> |
|
|
%3C!-- HTML_TAG_END --> |
|
|
%3C!-- HTML_TAG_END --> |
|
|
|
|
|
# **Intended Use:** |
|
|
|
|
|
The **MetaCLIP-2-Cifar10** model is designed for object classification across the ten CIFAR-10 categories. |
|
|
Potential use cases include: |
|
|
|
|
|
* **Educational & Research Applications:** Benchmarking experiments, model comparison, and deep learning studies. |
|
|
* **Lightweight Vision Systems:** Useful for systems requiring simple object recognition. |
|
|
* **Dataset Exploration:** Assisting in data inspection, annotation, and visualization. |
|
|
* **Prototype Systems:** Ideal for rapid prototyping in classification pipelines. |