DDColor: Optimized for Mobile Deployment
Colorize image from the black-and-white image
DDColor is a coloring algorithm that produces natural, vivid color results from incoming black and white images.
This model is an implementation of DDColor found here.
This repository provides scripts to run DDColor on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.image_editing
- Model Stats:
- Model checkpoint: ddcolor_paper_tiny.pth
- Input resolution: 224x224
- Number of parameters: 56.3M
- Model size (float): 215 MB
- Model size (w8a8): 54.8 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| DDColor | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 249.074 ms | 1 - 351 MB | NPU | DDColor.tflite |
| DDColor | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1996.526 ms | 0 - 725 MB | NPU | DDColor.dlc |
| DDColor | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 169.108 ms | 1 - 268 MB | NPU | DDColor.tflite |
| DDColor | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1244.407 ms | 1 - 248 MB | NPU | DDColor.dlc |
| DDColor | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 158.807 ms | 0 - 36 MB | NPU | DDColor.tflite |
| DDColor | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1122.216 ms | 0 - 50 MB | NPU | DDColor.dlc |
| DDColor | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 1124.764 ms | 0 - 292 MB | NPU | DDColor.onnx.zip |
| DDColor | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 161.775 ms | 1 - 350 MB | NPU | DDColor.tflite |
| DDColor | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1110.822 ms | 1 - 711 MB | NPU | DDColor.dlc |
| DDColor | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 249.074 ms | 1 - 351 MB | NPU | DDColor.tflite |
| DDColor | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1996.526 ms | 0 - 725 MB | NPU | DDColor.dlc |
| DDColor | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 159.088 ms | 0 - 37 MB | NPU | DDColor.tflite |
| DDColor | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1123.78 ms | 0 - 48 MB | NPU | DDColor.dlc |
| DDColor | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 177.27 ms | 4 - 247 MB | NPU | DDColor.tflite |
| DDColor | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1228.929 ms | 1 - 403 MB | NPU | DDColor.dlc |
| DDColor | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 155.926 ms | 0 - 35 MB | NPU | DDColor.tflite |
| DDColor | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1125.739 ms | 0 - 47 MB | NPU | DDColor.dlc |
| DDColor | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 161.775 ms | 1 - 350 MB | NPU | DDColor.tflite |
| DDColor | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1110.822 ms | 1 - 711 MB | NPU | DDColor.dlc |
| DDColor | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 114.545 ms | 1 - 354 MB | NPU | DDColor.tflite |
| DDColor | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 849.723 ms | 0 - 850 MB | NPU | DDColor.dlc |
| DDColor | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 860.798 ms | 1 - 942 MB | NPU | DDColor.onnx.zip |
| DDColor | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 95.139 ms | 1 - 310 MB | NPU | DDColor.tflite |
| DDColor | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 837.958 ms | 1 - 401 MB | NPU | DDColor.dlc |
| DDColor | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 863.656 ms | 1 - 621 MB | NPU | DDColor.onnx.zip |
| DDColor | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 72.793 ms | 0 - 327 MB | NPU | DDColor.tflite |
| DDColor | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 704.259 ms | 0 - 652 MB | NPU | DDColor.dlc |
| DDColor | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 691.68 ms | 1 - 672 MB | NPU | DDColor.onnx.zip |
| DDColor | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1161.988 ms | 290 - 290 MB | NPU | DDColor.dlc |
| DDColor | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1161.207 ms | 113 - 113 MB | NPU | DDColor.onnx.zip |
| DDColor | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3257.21 ms | 0 - 352 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3222.952 ms | 0 - 430 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1720.028 ms | 0 - 60 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1742.329 ms | 0 - 351 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 584.321 ms | 95 - 426 MB | CPU | DDColor.tflite |
| DDColor | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 817.024 ms | 48 - 98 MB | CPU | DDColor.tflite |
| DDColor | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3257.21 ms | 0 - 352 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1720.768 ms | 0 - 76 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 3659.579 ms | 0 - 403 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1717.356 ms | 5 - 48 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1742.329 ms | 0 - 351 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1308.082 ms | 0 - 372 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1380.851 ms | 0 - 375 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 472.353 ms | 100 - 374 MB | CPU | DDColor.tflite |
| DDColor | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 895.63 ms | 0 - 345 MB | NPU | DDColor.tflite |
Installation
Install the package via pip:
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[ddcolor]"
Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub Workbench with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.ddcolor.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ddcolor.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.ddcolor.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.ddcolor import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.ddcolor.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ddcolor.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on DDColor's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of DDColor can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 64
