DDRNet23-Slim: Optimized for Mobile Deployment
Segment images or video by class in real-time on device
DDRNet23Slim is a machine learning model that segments an image into semantic classes, specifically designed for road-based scenes. It is designed for the application of self-driving cars.
This model is an implementation of DDRNet23-Slim found here.
This repository provides scripts to run DDRNet23-Slim on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.semantic_segmentation
- Model Stats:
- Model checkpoint: DDRNet23s_imagenet.pth
- Inference latency: RealTime
- Input resolution: 2048x1024
- Number of output classes: 19
- Number of parameters: 6.13M
- Model size (float): 21.7 MB
- Model size (w8a8): 6.11 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| DDRNet23-Slim | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 94.17 ms | 2 - 175 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 94.127 ms | 24 - 192 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 59.585 ms | 2 - 265 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 60.235 ms | 24 - 276 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 30.497 ms | 0 - 2 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 30.449 ms | 24 - 26 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 24.761 ms | 24 - 41 MB | NPU | DDRNet23-Slim.onnx.zip |
| DDRNet23-Slim | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 37.971 ms | 2 - 175 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 171.425 ms | 21 - 188 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 94.17 ms | 2 - 175 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 94.127 ms | 24 - 192 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 30.469 ms | 2 - 6 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 30.645 ms | 24 - 27 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 42.222 ms | 2 - 184 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 42.185 ms | 24 - 198 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 30.652 ms | 2 - 6 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 30.344 ms | 24 - 26 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 37.971 ms | 2 - 175 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 171.425 ms | 21 - 188 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 20.627 ms | 1 - 260 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 20.99 ms | 17 - 270 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 16.159 ms | 32 - 252 MB | NPU | DDRNet23-Slim.onnx.zip |
| DDRNet23-Slim | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 15.271 ms | 1 - 191 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 15.226 ms | 16 - 198 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 12.691 ms | 5 - 146 MB | NPU | DDRNet23-Slim.onnx.zip |
| DDRNet23-Slim | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 11.059 ms | 2 - 201 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 10.994 ms | 24 - 218 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 8.955 ms | 29 - 218 MB | NPU | DDRNet23-Slim.onnx.zip |
| DDRNet23-Slim | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 31.403 ms | 24 - 24 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 24.375 ms | 24 - 24 MB | NPU | DDRNet23-Slim.onnx.zip |
| DDRNet23-Slim | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | TFLITE | 214.038 ms | 10 - 198 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | ONNX | 268.402 ms | 201 - 218 MB | CPU | DDRNet23-Slim.onnx.zip |
| DDRNet23-Slim | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | TFLITE | 180.82 ms | 9 - 77 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | ONNX | 299.07 ms | 198 - 217 MB | CPU | DDRNet23-Slim.onnx.zip |
| DDRNet23-Slim | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 128.224 ms | 1 - 169 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 141.159 ms | 6 - 175 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 72.963 ms | 1 - 221 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 78.492 ms | 6 - 225 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 51.185 ms | 1 - 3 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 73.592 ms | 6 - 8 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 74.892 ms | 81 - 92 MB | NPU | DDRNet23-Slim.onnx.zip |
| DDRNet23-Slim | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 51.871 ms | 1 - 169 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 74.508 ms | 6 - 175 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 156.739 ms | 24 - 56 MB | GPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 222.896 ms | 194 - 203 MB | CPU | DDRNet23-Slim.onnx.zip |
| DDRNet23-Slim | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 128.224 ms | 1 - 169 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 141.159 ms | 6 - 175 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 51.578 ms | 1 - 3 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 73.609 ms | 6 - 8 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 63.44 ms | 1 - 172 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 82.789 ms | 6 - 178 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 51.213 ms | 1 - 3 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 73.51 ms | 6 - 8 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 51.871 ms | 1 - 169 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 74.508 ms | 6 - 175 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 38.618 ms | 0 - 219 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 55.142 ms | 6 - 224 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 57.72 ms | 92 - 286 MB | NPU | DDRNet23-Slim.onnx.zip |
| DDRNet23-Slim | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 64.995 ms | 1 - 182 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 40.451 ms | 6 - 184 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 42.233 ms | 84 - 227 MB | NPU | DDRNet23-Slim.onnx.zip |
| DDRNet23-Slim | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 82.361 ms | 9 - 178 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | ONNX | 249.96 ms | 207 - 224 MB | CPU | DDRNet23-Slim.onnx.zip |
| DDRNet23-Slim | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 40.142 ms | 3 - 196 MB | NPU | DDRNet23-Slim.tflite |
| DDRNet23-Slim | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 47.001 ms | 6 - 201 MB | NPU | DDRNet23-Slim.dlc |
| DDRNet23-Slim | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 41.735 ms | 92 - 235 MB | NPU | DDRNet23-Slim.onnx.zip |
| DDRNet23-Slim | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 76.973 ms | 6 - 6 MB | NPU | DDRNet23-Slim.dlc |
Installation
Install the package via pip:
pip install qai-hub-models
Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub Workbench with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.ddrnet23_slim.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ddrnet23_slim.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.ddrnet23_slim.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.ddrnet23_slim import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.ddrnet23_slim.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ddrnet23_slim.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on DDRNet23-Slim's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of DDRNet23-Slim can be found here.
References
- Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 139
