Whisper-Tiny: Optimized for Mobile Deployment

Transformer-based automatic speech recognition (ASR) model for multilingual transcription and translation available on HuggingFace

HuggingFace Whisper-Small ASR (Automatic Speech Recognition) model is a state-of-the-art system designed for transcribing spoken language into written text. This model is based on the transformer architecture and has been optimized for edge inference by replacing Multi-Head Attention (MHA) with Single-Head Attention (SHA) and linear layers with convolutional (conv) layers. It exhibits robust performance in realistic, noisy environments, making it highly reliable for real-world applications. Specifically, it excels in long-form transcription, capable of accurately transcribing audio clips up to 30 seconds long. Time to the first token is the encoder's latency, while time to each additional token is decoder's latency, where we assume a max decoded length specified below.

This model is an implementation of Whisper-Tiny found here.

This repository provides scripts to run Whisper-Tiny on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.speech_recognition
  • Model Stats:
    • Model checkpoint: openai/whisper-tiny
    • Input resolution: 80x3000 (30 seconds audio)
    • Max decoded sequence length: 200 tokens
    • Number of parameters (HfWhisperEncoder): 9.39M
    • Model size (HfWhisperEncoder) (float): 35.9 MB
    • Number of parameters (HfWhisperDecoder): 28.4M
    • Model size (HfWhisperDecoder) (float): 109 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
HfWhisperEncoder float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_CONTEXT_BINARY 61.47 ms 0 - 9 MB NPU Use Export Script
HfWhisperEncoder float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_CONTEXT_BINARY 53.86 ms 1 - 17 MB NPU Use Export Script
HfWhisperEncoder float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_CONTEXT_BINARY 20.196 ms 0 - 3 MB NPU Use Export Script
HfWhisperEncoder float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) PRECOMPILED_QNN_ONNX 20.516 ms 5 - 39 MB NPU Use Export Script
HfWhisperEncoder float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 23.459 ms 0 - 11 MB NPU Use Export Script
HfWhisperEncoder float SA7255P ADP Qualcomm® SA7255P QNN_CONTEXT_BINARY 61.47 ms 0 - 9 MB NPU Use Export Script
HfWhisperEncoder float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_CONTEXT_BINARY 20.103 ms 1 - 3 MB NPU Use Export Script
HfWhisperEncoder float SA8295P ADP Qualcomm® SA8295P QNN_CONTEXT_BINARY 50.693 ms 1 - 17 MB NPU Use Export Script
HfWhisperEncoder float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_CONTEXT_BINARY 20.256 ms 1 - 3 MB NPU Use Export Script
HfWhisperEncoder float SA8775P ADP Qualcomm® SA8775P QNN_CONTEXT_BINARY 23.459 ms 0 - 11 MB NPU Use Export Script
HfWhisperEncoder float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 15.304 ms 0 - 19 MB NPU Use Export Script
HfWhisperEncoder float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 15.82 ms 20 - 39 MB NPU Use Export Script
HfWhisperEncoder float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_CONTEXT_BINARY 11.022 ms 0 - 14 MB NPU Use Export Script
HfWhisperEncoder float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile PRECOMPILED_QNN_ONNX 11.376 ms 21 - 36 MB NPU Use Export Script
HfWhisperEncoder float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_CONTEXT_BINARY 9.373 ms 0 - 12 MB NPU Use Export Script
HfWhisperEncoder float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile PRECOMPILED_QNN_ONNX 9.692 ms 21 - 28 MB NPU Use Export Script
HfWhisperEncoder float Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 19.811 ms 0 - 0 MB NPU Use Export Script
HfWhisperEncoder float Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 19.669 ms 33 - 33 MB NPU Use Export Script
HfWhisperDecoder float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_CONTEXT_BINARY 3.626 ms 10 - 20 MB NPU Use Export Script
HfWhisperDecoder float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_CONTEXT_BINARY 2.63 ms 10 - 31 MB NPU Use Export Script
HfWhisperDecoder float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_CONTEXT_BINARY 2.148 ms 9 - 11 MB NPU Use Export Script
HfWhisperDecoder float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) PRECOMPILED_QNN_ONNX 2.42 ms 0 - 87 MB NPU Use Export Script
HfWhisperDecoder float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 2.636 ms 3 - 13 MB NPU Use Export Script
HfWhisperDecoder float SA7255P ADP Qualcomm® SA7255P QNN_CONTEXT_BINARY 3.626 ms 10 - 20 MB NPU Use Export Script
HfWhisperDecoder float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_CONTEXT_BINARY 2.229 ms 10 - 13 MB NPU Use Export Script
HfWhisperDecoder float SA8295P ADP Qualcomm® SA8295P QNN_CONTEXT_BINARY 3.014 ms 10 - 27 MB NPU Use Export Script
HfWhisperDecoder float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_CONTEXT_BINARY 2.145 ms 2 - 10 MB NPU Use Export Script
HfWhisperDecoder float SA8775P ADP Qualcomm® SA8775P QNN_CONTEXT_BINARY 2.636 ms 3 - 13 MB NPU Use Export Script
HfWhisperDecoder float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 1.66 ms 10 - 31 MB NPU Use Export Script
HfWhisperDecoder float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 1.838 ms 13 - 32 MB NPU Use Export Script
HfWhisperDecoder float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_CONTEXT_BINARY 1.349 ms 0 - 14 MB NPU Use Export Script
HfWhisperDecoder float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile PRECOMPILED_QNN_ONNX 1.496 ms 0 - 16 MB NPU Use Export Script
HfWhisperDecoder float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_CONTEXT_BINARY 1.353 ms 10 - 18 MB NPU Use Export Script
HfWhisperDecoder float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile PRECOMPILED_QNN_ONNX 1.462 ms 1 - 11 MB NPU Use Export Script
HfWhisperDecoder float Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 1.973 ms 10 - 10 MB NPU Use Export Script
HfWhisperDecoder float Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 1.975 ms 84 - 84 MB NPU Use Export Script

Installation

Install the package via pip:

pip install "qai-hub-models[whisper-tiny]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.whisper_tiny.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.whisper_tiny.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.whisper_tiny.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.whisper_tiny import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Whisper-Tiny's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Whisper-Tiny can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support