Whisper-Tiny: Optimized for Mobile Deployment
Transformer-based automatic speech recognition (ASR) model for multilingual transcription and translation available on HuggingFace
HuggingFace Whisper-Small ASR (Automatic Speech Recognition) model is a state-of-the-art system designed for transcribing spoken language into written text. This model is based on the transformer architecture and has been optimized for edge inference by replacing Multi-Head Attention (MHA) with Single-Head Attention (SHA) and linear layers with convolutional (conv) layers. It exhibits robust performance in realistic, noisy environments, making it highly reliable for real-world applications. Specifically, it excels in long-form transcription, capable of accurately transcribing audio clips up to 30 seconds long. Time to the first token is the encoder's latency, while time to each additional token is decoder's latency, where we assume a max decoded length specified below.
This model is an implementation of Whisper-Tiny found here.
This repository provides scripts to run Whisper-Tiny on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.speech_recognition
- Model Stats:
- Model checkpoint: openai/whisper-tiny
- Input resolution: 80x3000 (30 seconds audio)
- Max decoded sequence length: 200 tokens
- Number of parameters (HfWhisperEncoder): 9.39M
- Model size (HfWhisperEncoder) (float): 35.9 MB
- Number of parameters (HfWhisperDecoder): 28.4M
- Model size (HfWhisperDecoder) (float): 109 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| HfWhisperEncoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 61.47 ms | 0 - 9 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_CONTEXT_BINARY | 53.86 ms | 1 - 17 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 20.196 ms | 0 - 3 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 20.516 ms | 5 - 39 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 23.459 ms | 0 - 11 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 61.47 ms | 0 - 9 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 20.103 ms | 1 - 3 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA8295P ADP | Qualcomm® SA8295P | QNN_CONTEXT_BINARY | 50.693 ms | 1 - 17 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 20.256 ms | 1 - 3 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 23.459 ms | 0 - 11 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 15.304 ms | 0 - 19 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 15.82 ms | 20 - 39 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 11.022 ms | 0 - 14 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 11.376 ms | 21 - 36 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 9.373 ms | 0 - 12 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 9.692 ms | 21 - 28 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 19.811 ms | 0 - 0 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 19.669 ms | 33 - 33 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 3.626 ms | 10 - 20 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_CONTEXT_BINARY | 2.63 ms | 10 - 31 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 2.148 ms | 9 - 11 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 2.42 ms | 0 - 87 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 2.636 ms | 3 - 13 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 3.626 ms | 10 - 20 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 2.229 ms | 10 - 13 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA8295P ADP | Qualcomm® SA8295P | QNN_CONTEXT_BINARY | 3.014 ms | 10 - 27 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 2.145 ms | 2 - 10 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 2.636 ms | 3 - 13 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 1.66 ms | 10 - 31 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 1.838 ms | 13 - 32 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 1.349 ms | 0 - 14 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 1.496 ms | 0 - 16 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 1.353 ms | 10 - 18 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 1.462 ms | 1 - 11 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 1.973 ms | 10 - 10 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 1.975 ms | 84 - 84 MB | NPU | Use Export Script |
Installation
Install the package via pip:
pip install "qai-hub-models[whisper-tiny]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.whisper_tiny.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.whisper_tiny.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.whisper_tiny.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.whisper_tiny import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Whisper-Tiny's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Whisper-Tiny can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
