YOLOv10-Detection: Optimized for Mobile Deployment
Real-time object detection optimized for mobile and edge by Ultralytics
Ultralytics YOLOv10 is a machine learning model that predicts bounding boxes and classes of objects in an image.
This model is an implementation of YOLOv10-Detection found here.
This repository provides scripts to run YOLOv10-Detection on Qualcomm® devices. More details on model performance across various devices, can be found here.
WARNING: The model assets are not readily available for download due to licensing restrictions.
Model Details
- Model Type: Model_use_case.object_detection
- Model Stats:
- Model checkpoint: YOLOv10-N
- Input resolution: 640x640
- Number of parameters: 2.33M
- Model size (float): 8.95 MB
- Model size (w8a8): 2.55 MB
- Model size (w8a16): 3.04 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| YOLOv10-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 13.013 ms | 0 - 70 MB | NPU | -- |
| YOLOv10-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 12.679 ms | 0 - 97 MB | NPU | -- |
| YOLOv10-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 7.018 ms | 0 - 41 MB | NPU | -- |
| YOLOv10-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 7.762 ms | 4 - 42 MB | NPU | -- |
| YOLOv10-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 3.747 ms | 0 - 21 MB | NPU | -- |
| YOLOv10-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.708 ms | 0 - 94 MB | NPU | -- |
| YOLOv10-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 5.563 ms | 0 - 120 MB | NPU | -- |
| YOLOv10-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 5.09 ms | 0 - 70 MB | NPU | -- |
| YOLOv10-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 5.162 ms | 2 - 101 MB | NPU | -- |
| YOLOv10-Detection | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 13.013 ms | 0 - 70 MB | NPU | -- |
| YOLOv10-Detection | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 12.679 ms | 0 - 97 MB | NPU | -- |
| YOLOv10-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 3.748 ms | 0 - 26 MB | NPU | -- |
| YOLOv10-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.719 ms | 0 - 100 MB | NPU | -- |
| YOLOv10-Detection | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 8.162 ms | 0 - 34 MB | NPU | -- |
| YOLOv10-Detection | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 8.053 ms | 4 - 39 MB | NPU | -- |
| YOLOv10-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 3.751 ms | 0 - 23 MB | NPU | -- |
| YOLOv10-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.703 ms | 0 - 100 MB | NPU | -- |
| YOLOv10-Detection | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 5.09 ms | 0 - 70 MB | NPU | -- |
| YOLOv10-Detection | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 5.162 ms | 2 - 101 MB | NPU | -- |
| YOLOv10-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 2.754 ms | 8 - 96 MB | NPU | -- |
| YOLOv10-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.686 ms | 5 - 237 MB | NPU | -- |
| YOLOv10-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 3.812 ms | 0 - 195 MB | NPU | -- |
| YOLOv10-Detection | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 2.078 ms | 0 - 77 MB | NPU | -- |
| YOLOv10-Detection | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 2.044 ms | 5 - 104 MB | NPU | -- |
| YOLOv10-Detection | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 3.615 ms | 1 - 92 MB | NPU | -- |
| YOLOv10-Detection | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 1.74 ms | 0 - 70 MB | NPU | -- |
| YOLOv10-Detection | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1.588 ms | 5 - 123 MB | NPU | -- |
| YOLOv10-Detection | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 2.616 ms | 3 - 91 MB | NPU | -- |
| YOLOv10-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.092 ms | 152 - 152 MB | NPU | -- |
| YOLOv10-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.397 ms | 5 - 5 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 7.06 ms | 2 - 37 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 4.637 ms | 2 - 45 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.759 ms | 2 - 13 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 54.208 ms | 9 - 198 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.405 ms | 2 - 37 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 11.841 ms | 2 - 38 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 171.128 ms | 73 - 89 MB | CPU | -- |
| YOLOv10-Detection | w8a16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 140.736 ms | 69 - 74 MB | CPU | -- |
| YOLOv10-Detection | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 7.06 ms | 2 - 37 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.759 ms | 0 - 11 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 5.013 ms | 2 - 41 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.762 ms | 2 - 14 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.405 ms | 2 - 37 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.526 ms | 2 - 46 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 41.849 ms | 0 - 2361 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.77 ms | 2 - 45 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 38.994 ms | 21 - 1065 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | Snapdragon 7 Gen 5 QRD | Snapdragon® 7 Gen 5 Mobile | QNN_DLC | 4.323 ms | 2 - 44 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | Snapdragon 7 Gen 5 QRD | Snapdragon® 7 Gen 5 Mobile | ONNX | 157.644 ms | 91 - 110 MB | CPU | -- |
| YOLOv10-Detection | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1.484 ms | 2 - 40 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 36.224 ms | 7 - 939 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.226 ms | 4 - 4 MB | NPU | -- |
| YOLOv10-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 54.511 ms | 29 - 29 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3.512 ms | 0 - 26 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 3.432 ms | 1 - 27 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.915 ms | 0 - 36 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.905 ms | 1 - 35 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.718 ms | 0 - 13 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.652 ms | 1 - 14 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 3.758 ms | 0 - 28 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.183 ms | 0 - 26 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.067 ms | 1 - 28 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 4.141 ms | 0 - 33 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 4.945 ms | 1 - 36 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 43.318 ms | 22 - 39 MB | CPU | -- |
| YOLOv10-Detection | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 50.064 ms | 2 - 9 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 39.376 ms | 21 - 26 MB | CPU | -- |
| YOLOv10-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3.512 ms | 0 - 26 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 3.432 ms | 1 - 27 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.735 ms | 0 - 14 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.658 ms | 1 - 12 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.608 ms | 0 - 32 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.477 ms | 0 - 32 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.728 ms | 0 - 13 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.661 ms | 0 - 13 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.183 ms | 0 - 26 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.067 ms | 1 - 28 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.146 ms | 0 - 36 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.135 ms | 1 - 33 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 2.643 ms | 0 - 81 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.865 ms | 0 - 28 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.814 ms | 1 - 30 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 2.105 ms | 0 - 55 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | Snapdragon 7 Gen 5 QRD | Snapdragon® 7 Gen 5 Mobile | TFLITE | 1.915 ms | 0 - 33 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | Snapdragon 7 Gen 5 QRD | Snapdragon® 7 Gen 5 Mobile | QNN_DLC | 1.761 ms | 1 - 37 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | Snapdragon 7 Gen 5 QRD | Snapdragon® 7 Gen 5 Mobile | ONNX | 38.223 ms | 23 - 41 MB | CPU | -- |
| YOLOv10-Detection | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 0.836 ms | 0 - 29 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.765 ms | 1 - 33 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 1.98 ms | 0 - 81 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.906 ms | 1 - 1 MB | NPU | -- |
| YOLOv10-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.866 ms | 1 - 1 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2.436 ms | 2 - 13 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 59.444 ms | 19 - 177 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 3.023 ms | 1 - 29 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 133.33 ms | 56 - 72 MB | CPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 123.823 ms | 54 - 61 MB | CPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2.451 ms | 2 - 12 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2.447 ms | 2 - 12 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 3.023 ms | 1 - 29 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.634 ms | 2 - 39 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 43.294 ms | 2 - 2325 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.203 ms | 2 - 37 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 38.672 ms | 20 - 964 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | Snapdragon 7 Gen 5 QRD | Snapdragon® 7 Gen 5 Mobile | QNN_DLC | 2.761 ms | 2 - 39 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | Snapdragon 7 Gen 5 QRD | Snapdragon® 7 Gen 5 Mobile | ONNX | 128.434 ms | 60 - 79 MB | CPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1.027 ms | 2 - 37 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 39.524 ms | 7 - 949 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.745 ms | 2 - 2 MB | NPU | -- |
| YOLOv10-Detection | w8a8_mixed_int16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 53.975 ms | 26 - 26 MB | NPU | -- |
Installation
Install the package via pip:
pip install "qai-hub-models[yolov10-det]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.yolov10_det.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.yolov10_det.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.yolov10_det.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.yolov10_det import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.yolov10_det.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.yolov10_det.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on YOLOv10-Detection's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of YOLOv10-Detection can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
