YOLOv11-Segmentation: Optimized for Mobile Deployment

Real-time object segmentation optimized for mobile and edge by Ultralytics

Ultralytics YOLOv11 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.

This model is an implementation of YOLOv11-Segmentation found here.

This repository provides scripts to run YOLOv11-Segmentation on Qualcomm® devices. More details on model performance across various devices, can be found here.

WARNING: The model assets are not readily available for download due to licensing restrictions.

Model Details

  • Model Type: Model_use_case.semantic_segmentation
  • Model Stats:
    • Model checkpoint: YOLO11N-Seg
    • Input resolution: 640x640
    • Number of output classes: 80
    • Number of parameters: 2.89M
    • Model size (float): 11.1 MB
    • Model size (w8a16): 11.4 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
YOLOv11-Segmentation float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 15.916 ms 4 - 77 MB NPU --
YOLOv11-Segmentation float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 15.29 ms 1 - 112 MB NPU --
YOLOv11-Segmentation float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 8.965 ms 4 - 46 MB NPU --
YOLOv11-Segmentation float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 4.483 ms 0 - 37 MB NPU --
YOLOv11-Segmentation float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 4.427 ms 2 - 29 MB NPU --
YOLOv11-Segmentation float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 6.72 ms 0 - 69 MB NPU --
YOLOv11-Segmentation float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 6.067 ms 4 - 76 MB NPU --
YOLOv11-Segmentation float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 6.044 ms 1 - 109 MB NPU --
YOLOv11-Segmentation float SA7255P ADP Qualcomm® SA7255P TFLITE 15.916 ms 4 - 77 MB NPU --
YOLOv11-Segmentation float SA7255P ADP Qualcomm® SA7255P QNN_DLC 15.29 ms 1 - 112 MB NPU --
YOLOv11-Segmentation float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 4.442 ms 6 - 51 MB NPU --
YOLOv11-Segmentation float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 4.431 ms 5 - 31 MB NPU --
YOLOv11-Segmentation float SA8295P ADP Qualcomm® SA8295P TFLITE 10.363 ms 4 - 40 MB NPU --
YOLOv11-Segmentation float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 4.476 ms 0 - 35 MB NPU --
YOLOv11-Segmentation float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 4.41 ms 5 - 28 MB NPU --
YOLOv11-Segmentation float SA8775P ADP Qualcomm® SA8775P TFLITE 6.067 ms 4 - 76 MB NPU --
YOLOv11-Segmentation float SA8775P ADP Qualcomm® SA8775P QNN_DLC 6.044 ms 1 - 109 MB NPU --
YOLOv11-Segmentation float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 3.307 ms 0 - 89 MB NPU --
YOLOv11-Segmentation float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 3.206 ms 5 - 207 MB NPU --
YOLOv11-Segmentation float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 4.519 ms 0 - 160 MB NPU --
YOLOv11-Segmentation float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 2.542 ms 0 - 81 MB NPU --
YOLOv11-Segmentation float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 2.424 ms 5 - 118 MB NPU --
YOLOv11-Segmentation float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 4.269 ms 2 - 121 MB NPU --
YOLOv11-Segmentation float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 2.122 ms 0 - 70 MB NPU --
YOLOv11-Segmentation float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 1.998 ms 4 - 127 MB NPU --
YOLOv11-Segmentation float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 3.242 ms 1 - 103 MB NPU --
YOLOv11-Segmentation float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 4.856 ms 107 - 107 MB NPU --
YOLOv11-Segmentation float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 6.926 ms 17 - 17 MB NPU --
YOLOv11-Segmentation w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 55.463 ms 13 - 205 MB NPU --
YOLOv11-Segmentation w8a16 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) ONNX 216.572 ms 167 - 184 MB CPU --
YOLOv11-Segmentation w8a16 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 175.127 ms 164 - 170 MB CPU --
YOLOv11-Segmentation w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 45.143 ms 3 - 1952 MB NPU --
YOLOv11-Segmentation w8a16 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 40.456 ms 26 - 992 MB NPU --
YOLOv11-Segmentation w8a16 Snapdragon 7 Gen 5 QRD Snapdragon® 7 Gen 5 Mobile ONNX 199.196 ms 153 - 171 MB CPU --
YOLOv11-Segmentation w8a16 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 40.56 ms 1 - 953 MB NPU --
YOLOv11-Segmentation w8a16 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 56.7 ms 29 - 29 MB NPU --

Installation

Install the package via pip:

pip install "qai-hub-models[yolov11-seg]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.yolov11_seg.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.yolov11_seg.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.yolov11_seg.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.yolov11_seg import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.yolov11_seg.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.yolov11_seg.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on YOLOv11-Segmentation's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of YOLOv11-Segmentation can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support