🎼 ORCH Fusion

The Future of Code Generation is Here

One Prompt. Complete Application. Zero Iteration.

GitHub License Model Hardware


Trained from scratch Consumer hardware Multi-file output

πŸ”₯ What if you could generate an entire application from a single sentence?


πŸ’‘ The Problem We're Solving

Every developer knows the pain:

  • πŸ’¬ ChatGPT/Copilot β†’ Great for snippets, but you're still copy-pasting file by file
  • πŸ”„ Endless iteration β†’ "Now add authentication" β†’ "Now add dark mode" β†’ "Now fix this bug"
  • πŸ’Έ API costs β†’ $20/month here, $100/month there, enterprise pricing everywhere
  • πŸ–₯️ Hardware requirements β†’ "You need 80GB VRAM to run this"

✨ The ORCH Solution

Input:  "Create a React dashboard with authentication and dark mode"

Output: β”œβ”€β”€ package.json
        β”œβ”€β”€ tsconfig.json
        β”œβ”€β”€ tailwind.config.js
        β”œβ”€β”€ src/
        β”‚   β”œβ”€β”€ app/
        β”‚   β”‚   β”œβ”€β”€ layout.tsx
        β”‚   β”‚   β”œβ”€β”€ page.tsx
        β”‚   β”‚   └── globals.css
        β”‚   β”œβ”€β”€ components/
        β”‚   β”‚   β”œβ”€β”€ Header.tsx
        β”‚   β”‚   β”œβ”€β”€ Sidebar.tsx
        β”‚   β”‚   β”œβ”€β”€ Dashboard.tsx
        β”‚   β”‚   └── ThemeToggle.tsx
        β”‚   └── context/
        β”‚       β”œβ”€β”€ AuthContext.tsx
        β”‚       └── ThemeContext.tsx
        └── ... (complete, working code)

One prompt. Complete project. Runs on YOUR hardware.


πŸ† Benchmark Results

Metric ORCH-350M
Overall Score 76.6%
Code Parse Rate 95.3%
Format Correctness 93.3%
Valid package.json 80.0%
Config Files 90.0%

⚠️ Note: Traditional benchmarks like HumanEval measure code completion (finishing a function). ORCH is designed for project generation (creating entire applications) β€” a fundamentally different and harder task.


🧠 Why ORCH is Different

❌ Traditional Approach

  • Fine-tune existing models
  • Requires 40-80GB VRAM
  • Generates one file at a time
  • $$$$ API costs
  • Black box architecture

βœ… ORCH Approach

  • Trained from scratch (272M params)
  • Runs on RTX 3060 (12GB)
  • Generates complete projects
  • Open source (Apache 2.0)
  • Novel efficiency techniques

πŸ”¬ Research Innovations

ORCH isn't just another model β€” it's a research platform pioneering new efficiency techniques:

🎯 DQGAS (Dynamic Quantization with Gradient-Aware Scaling)

Dynamically allocates precision bits based on weight importance during training. 4-8x memory reduction.

πŸ”„ RKD (Recursive Knowledge Distillation)

Student becomes teacher in iterative loops, progressively refining knowledge without quality loss.

βœ‚οΈ IWSP (Importance-Weighted Structural Pruning)

Prunes entire attention heads and neurons based on gradient + activation + entropy signals.

🧩 ASMoE (Adaptive Sparse Mixture of Experts)

Task-aware routing that activates only relevant experts based on input complexity.

Paper coming soon on arXiv πŸ“„


πŸ—οΈ Architecture

Built on modern transformer foundations with cutting-edge optimizations:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    ORCH-350M Architecture               β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Parameters:     272,736,256                            β”‚
β”‚  Architecture:   LLaMA-style Decoder-only               β”‚
β”‚  Hidden Size:    1024                                   β”‚
β”‚  Layers:         24                                     β”‚
β”‚  Attention:      16 heads (GQA: 4 KV heads)            β”‚
β”‚  Activation:     SwiGLU                                 β”‚
β”‚  Normalization:  RMSNorm                                β”‚
β”‚  Position:       RoPE (Rotary Embeddings)               β”‚
β”‚  Context:        4,096 tokens                           β”‚
β”‚  Vocab:          2,103 tokens (code-optimized BPE)      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸš€ Quick Start

Installation

git clone https://github.com/raihan-js/orch.git
cd orch
pip install -r requirements.txt
pip install -e .

Generate Your First Project

import torch
from orch import OrchForCausalLM
from tokenizers import Tokenizer

# Load model (runs on 8GB+ VRAM)
model = OrchForCausalLM.from_pretrained("raihan-js/orch-fusion")
model = model.cuda()

tokenizer = Tokenizer.from_file("orch-tokenizer.json")

# Generate a complete project
prompt = "<|project|>\n<|prompt|>Create a blog with markdown support<|/prompt|>\n<|tech|>"
inputs = torch.tensor([tokenizer.encode(prompt).ids]).cuda()

output = model.generate(inputs, max_new_tokens=2048, temperature=0.7)
print(tokenizer.decode(output[0].tolist()))

Web Interface

python web/server.py --port 8000
# Open http://localhost:8000

πŸ—ΊοΈ Roadmap

Phase Model Status Timeline
1 350M βœ… Released Now
2 1B πŸ”¨ In Progress Q1 2025
3 5B πŸ“‹ Planned Q2 2025
4 7B πŸ“‹ Planned Q3 2025

What's Coming:

  • πŸ€– Multi-agent orchestration β€” Specialized agents for architecture, implementation, testing, review
  • πŸ“š Self-updating knowledge β€” Automatically scrapes latest documentation
  • πŸ” Autonomous debugging β€” Generates, tests, and fixes its own code
  • 🌐 Full-stack generation β€” Frontend + Backend + Database + Deployment configs

🌟 Why This Matters

We're proving that you don't need 100B+ parameters to build useful AI.

The future of AI isn't locked behind corporate APIs and enterprise pricing. It's:

  • Open source
  • Runs on consumer hardware
  • Trained from scratch with novel techniques
  • Accessible to everyone

ORCH is the first step toward truly autonomous software development.


πŸ“Š Model Files

raihan-js/orch-fusion/
β”œβ”€β”€ README.md
β”œβ”€β”€ orch-tokenizer.json      # BPE tokenizer
β”œβ”€β”€ tokenizer_config.json
└── 350m-project/
    β”œβ”€β”€ model.pt             # 1.09 GB
    β”œβ”€β”€ config.json
    └── model_info.json

🀝 Community

  • ⭐ Star the repo if you believe in open-source AI
  • πŸ› Report issues on GitHub
  • πŸ’‘ Contribute β€” PRs welcome!
  • 🐦 Share β€” Help spread the word

πŸ“„ Citation

@software{orch2025,
  author = {Raihan},
  title = {ORCH Fusion: Autonomous Code Generation from First Principles},
  year = {2025},
  publisher = {HuggingFace},
  url = {https://huggingface.co/raihan-js/orch-fusion},
  note = {Trained from scratch on consumer hardware}
}

πŸ”₯ This is just the beginning.

Star ⭐ the GitHub repo to follow the journey.


Built with πŸ’œ for the open-source community

Democratizing AI, one model at a time.


ORCH Fusion β€’ Apache License 2.0 β€’ 2025

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Evaluation results