roberta-base-tqacd

This model is a fine-tuned version of FacebookAI/roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7467
  • F1 Macro: 0.2528
  • Precision: 0.2683
  • Recall: 0.2648
  • Accuracy: 0.3515

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Macro Precision Recall Accuracy
No log 1.0 114 2.3961 0.0436 0.0603 0.1103 0.1584
No log 2.0 228 2.3381 0.1234 0.1119 0.1476 0.3564
No log 3.0 342 2.1873 0.2052 0.3773 0.2457 0.2673
No log 4.0 456 2.2524 0.1800 0.2231 0.2043 0.3267
2.241 5.0 570 2.2141 0.2128 0.2340 0.2494 0.3218
2.241 6.0 684 2.3365 0.2238 0.2480 0.2391 0.2822
2.241 7.0 798 2.4779 0.2805 0.3501 0.2756 0.3713
2.241 8.0 912 2.5194 0.2518 0.2908 0.2667 0.3416
0.9793 9.0 1026 2.7467 0.2528 0.2683 0.2648 0.3515

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu128
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
155
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for rendchevi/roberta-base-tqacd

Finetuned
(2030)
this model