SentenceTransformer based on FacebookAI/xlm-roberta-base
This is a sentence-transformers model finetuned from FacebookAI/xlm-roberta-base on the en-sa dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/xlm-roberta-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- en-sa
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("saikasyap/xlm-roberta-base-multilingual-en-sa")
# Run inference
sentences = [
'Magazines and Periodicals that are published periodically.',
'पत्रिकाणां (Magazines) तथा नियतकालिकानां च (Periodicals) ग्राहकत्वस्य निर्वहणार्थम् उपयुज्यन्ते ।',
'"अस्योपरि नुदामश्चेत्, इदं पेन्-ड्रैव् मध्ये, विद्यमानानि सर्वाणि फैल्स् फोल्डर्स् च दर्शयति ।"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Knowledge Distillation
- Dataset:
en-sa - Evaluated with
MSEEvaluator
| Metric | Value |
|---|---|
| negative_mse | -13.0248 |
Translation
- Dataset:
en-sa - Evaluated with
TranslationEvaluator
| Metric | Value |
|---|---|
| src2trg_accuracy | 0.927 |
| trg2src_accuracy | 0.903 |
| mean_accuracy | 0.915 |
Training Details
Training Dataset
en-sa
- Dataset: en-sa
- Size: 257,886 training samples
- Columns:
english,non_english, andlabel - Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 12 tokens
- mean: 34.23 tokens
- max: 113 tokens
- min: 14 tokens
- mean: 49.72 tokens
- max: 128 tokens
- size: 768 elements
- Samples:
english non_english label There was no Mughal tradition of primogeniture, the systematic passing of rule, upon an emperor's death, to his eldest son.चक्रवर्तिनः मृत्योः अनन्तरं तस्य शासनस्य व्यवस्थितरूपेण सङ्क्रमणस्य, मुघलपरम्परायाः ज्येष्ठपुत्राधिकारपद्धतिः नासीत्।[-0.5880301594734192, -0.20026817917823792, 0.372330904006958, -0.9807565808296204, -0.35607191920280457, ...]The four sons of Shah Jahan all held governorships during their father's reign.शाह्-जहाँ-नामकस्य चत्वारः पुत्राः, सर्वे पितुः शासनकाले शासकपदम् अधारयन्।[-0.5090229511260986, 0.33517003059387207, 0.27507224678993225, -0.05707915127277374, -0.5126022100448608, ...]In this regard he discusses the correlation between social opportunities of education and health and how both of these complement economic and political freedoms as a healthy and well-educated person is better suited to make informed economic decisions and be involved in fruitful political demonstrations etc.अस्मिन् विषये सः शिक्षणस्य स्वास्थ्यस्य च सामाजिकावकाशानाम् अन्योन्य-सम्बन्धस्य, तथा च एतद्द्वयम् अपि आर्थिक-राजनैतिक-स्वातन्त्र्ययोः कथं पूरकं भवतः इति च चर्चां करोति, यतोहि स्वस्था सुशिक्षिता च व्यक्तिः ज्ञानपूर्वम् आर्थिकविषयान् निर्णेतुं तथा फलप्रदेषु राजनैतिकेषु प्रतिपादनादिषु संलग्नः भवितुं च अधिकारी भवति इति।[0.16507332026958466, -0.1722974181175232, 0.02585001103579998, 0.36087149381637573, -0.6401643753051758, ...] - Loss:
MSELoss
Evaluation Dataset
en-sa
- Dataset: en-sa
- Size: 1,000 evaluation samples
- Columns:
english,non_english, andlabel - Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 21.38 tokens
- max: 68 tokens
- min: 4 tokens
- mean: 27.89 tokens
- max: 91 tokens
- size: 768 elements
- Samples:
english non_english label """So they cast him out of the vineyard, and killed him. What therefore shall the lord of the vineyard do unto them?"""ततस्ते तं क्षेत्राद् बहि र्निपात्य जघ्नुस्तस्मात् स क्षेत्रपतिस्तान् प्रति किं करिष्यति?[-0.06878167390823364, -0.5150429606437683, -0.09011576324701309, -0.7458725571632385, 0.050420328974723816, ...]Avogadro application window opens.Avogadro एप्लिकेशन् विण्डो उद्घट्यते ।[0.9054689407348633, -0.2203768789768219, -0.19827595353126526, 0.23870715498924255, -0.3162331283092499, ...]Svangah: One whose limbs are beautiful.स्वंग:यस्य अङ्गानि सुन्दराणि सन्ति[0.6443825960159302, 0.4850354492664337, -0.4563218355178833, -0.4771449863910675, 0.6588209867477417, ...] - Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepslearning_rate: 2e-05num_train_epochs: 10warmup_ratio: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss | en-sa loss | en-sa_negative_mse | en-sa_mean_accuracy |
|---|---|---|---|---|---|
| 0.0124 | 100 | 0.6774 | - | - | - |
| 0.0248 | 200 | 0.6328 | - | - | - |
| 0.0372 | 300 | 0.5541 | - | - | - |
| 0.0496 | 400 | 0.4007 | - | - | - |
| 0.0620 | 500 | 0.3031 | - | - | - |
| 0.0745 | 600 | 0.2789 | - | - | - |
| 0.0869 | 700 | 0.2674 | - | - | - |
| 0.0993 | 800 | 0.2603 | - | - | - |
| 0.1117 | 900 | 0.2564 | - | - | - |
| 0.1241 | 1000 | 0.254 | - | - | - |
| 0.1365 | 1100 | 0.2496 | - | - | - |
| 0.1489 | 1200 | 0.2486 | - | - | - |
| 0.1613 | 1300 | 0.2476 | - | - | - |
| 0.1737 | 1400 | 0.2487 | - | - | - |
| 0.1861 | 1500 | 0.2439 | - | - | - |
| 0.1985 | 1600 | 0.2441 | - | - | - |
| 0.2109 | 1700 | 0.2427 | - | - | - |
| 0.2234 | 1800 | 0.2414 | - | - | - |
| 0.2358 | 1900 | 0.2395 | - | - | - |
| 0.2482 | 2000 | 0.2395 | - | - | - |
| 0.2606 | 2100 | 0.2383 | - | - | - |
| 0.2730 | 2200 | 0.2363 | - | - | - |
| 0.2854 | 2300 | 0.2348 | - | - | - |
| 0.2978 | 2400 | 0.2316 | - | - | - |
| 0.3102 | 2500 | 0.235 | - | - | - |
| 0.3226 | 2600 | 0.2328 | - | - | - |
| 0.3350 | 2700 | 0.2307 | - | - | - |
| 0.3474 | 2800 | 0.2295 | - | - | - |
| 0.3598 | 2900 | 0.2267 | - | - | - |
| 0.3723 | 3000 | 0.2246 | - | - | - |
| 0.3847 | 3100 | 0.225 | - | - | - |
| 0.3971 | 3200 | 0.2239 | - | - | - |
| 0.4095 | 3300 | 0.2201 | - | - | - |
| 0.4219 | 3400 | 0.2149 | - | - | - |
| 0.4343 | 3500 | 0.2161 | - | - | - |
| 0.4467 | 3600 | 0.2168 | - | - | - |
| 0.4591 | 3700 | 0.212 | - | - | - |
| 0.4715 | 3800 | 0.2135 | - | - | - |
| 0.4839 | 3900 | 0.2087 | - | - | - |
| 0.4963 | 4000 | 0.2083 | - | - | - |
| 0.5087 | 4100 | 0.2061 | - | - | - |
| 0.5212 | 4200 | 0.2084 | - | - | - |
| 0.5336 | 4300 | 0.2011 | - | - | - |
| 0.5460 | 4400 | 0.2023 | - | - | - |
| 0.5584 | 4500 | 0.2 | - | - | - |
| 0.5708 | 4600 | 0.2006 | - | - | - |
| 0.5832 | 4700 | 0.1987 | - | - | - |
| 0.5956 | 4800 | 0.1946 | - | - | - |
| 0.6080 | 4900 | 0.197 | - | - | - |
| 0.6204 | 5000 | 0.1962 | - | - | - |
| 0.6328 | 5100 | 0.192 | - | - | - |
| 0.6452 | 5200 | 0.1931 | - | - | - |
| 0.6576 | 5300 | 0.1928 | - | - | - |
| 0.6701 | 5400 | 0.1896 | - | - | - |
| 0.6825 | 5500 | 0.1906 | - | - | - |
| 0.6949 | 5600 | 0.1882 | - | - | - |
| 0.7073 | 5700 | 0.1867 | - | - | - |
| 0.7197 | 5800 | 0.1867 | - | - | - |
| 0.7321 | 5900 | 0.1847 | - | - | - |
| 0.7445 | 6000 | 0.186 | - | - | - |
| 0.7569 | 6100 | 0.1843 | - | - | - |
| 0.7693 | 6200 | 0.1806 | - | - | - |
| 0.7817 | 6300 | 0.1812 | - | - | - |
| 0.7941 | 6400 | 0.1779 | - | - | - |
| 0.8066 | 6500 | 0.178 | - | - | - |
| 0.8190 | 6600 | 0.1778 | - | - | - |
| 0.8314 | 6700 | 0.1769 | - | - | - |
| 0.8438 | 6800 | 0.1768 | - | - | - |
| 0.8562 | 6900 | 0.1753 | - | - | - |
| 0.8686 | 7000 | 0.1749 | - | - | - |
| 0.8810 | 7100 | 0.1722 | - | - | - |
| 0.8934 | 7200 | 0.1727 | - | - | - |
| 0.9058 | 7300 | 0.1736 | - | - | - |
| 0.9182 | 7400 | 0.1717 | - | - | - |
| 0.9306 | 7500 | 0.1691 | - | - | - |
| 0.9430 | 7600 | 0.1678 | - | - | - |
| 0.9555 | 7700 | 0.1709 | - | - | - |
| 0.9679 | 7800 | 0.168 | - | - | - |
| 0.9803 | 7900 | 0.167 | - | - | - |
| 0.9927 | 8000 | 0.1647 | - | - | - |
| 1.0051 | 8100 | 0.1658 | - | - | - |
| 1.0175 | 8200 | 0.1661 | - | - | - |
| 1.0299 | 8300 | 0.1629 | - | - | - |
| 1.0423 | 8400 | 0.1646 | - | - | - |
| 1.0547 | 8500 | 0.1631 | - | - | - |
| 1.0671 | 8600 | 0.1603 | - | - | - |
| 1.0795 | 8700 | 0.1608 | - | - | - |
| 1.0919 | 8800 | 0.1605 | - | - | - |
| 1.1044 | 8900 | 0.1593 | - | - | - |
| 1.1168 | 9000 | 0.1598 | - | - | - |
| 1.1292 | 9100 | 0.158 | - | - | - |
| 1.1416 | 9200 | 0.1561 | - | - | - |
| 1.1540 | 9300 | 0.1562 | - | - | - |
| 1.1664 | 9400 | 0.1563 | - | - | - |
| 1.1788 | 9500 | 0.1545 | - | - | - |
| 1.1912 | 9600 | 0.1525 | - | - | - |
| 1.2036 | 9700 | 0.1531 | - | - | - |
| 1.2160 | 9800 | 0.1534 | - | - | - |
| 1.2284 | 9900 | 0.1525 | - | - | - |
| 1.2408 | 10000 | 0.1515 | 0.1755 | -19.4347 | 0.7575 |
| 1.2533 | 10100 | 0.152 | - | - | - |
| 1.2657 | 10200 | 0.1507 | - | - | - |
| 1.2781 | 10300 | 0.1492 | - | - | - |
| 1.2905 | 10400 | 0.1485 | - | - | - |
| 1.3029 | 10500 | 0.1488 | - | - | - |
| 1.3153 | 10600 | 0.1496 | - | - | - |
| 1.3277 | 10700 | 0.1495 | - | - | - |
| 1.3401 | 10800 | 0.1475 | - | - | - |
| 1.3525 | 10900 | 0.1484 | - | - | - |
| 1.3649 | 11000 | 0.1465 | - | - | - |
| 1.3773 | 11100 | 0.1481 | - | - | - |
| 1.3898 | 11200 | 0.1477 | - | - | - |
| 1.4022 | 11300 | 0.148 | - | - | - |
| 1.4146 | 11400 | 0.1445 | - | - | - |
| 1.4270 | 11500 | 0.1429 | - | - | - |
| 1.4394 | 11600 | 0.1443 | - | - | - |
| 1.4518 | 11700 | 0.144 | - | - | - |
| 1.4642 | 11800 | 0.1455 | - | - | - |
| 1.4766 | 11900 | 0.1438 | - | - | - |
| 1.4890 | 12000 | 0.1425 | - | - | - |
| 1.5014 | 12100 | 0.1427 | - | - | - |
| 1.5138 | 12200 | 0.1426 | - | - | - |
| 1.5262 | 12300 | 0.1422 | - | - | - |
| 1.5387 | 12400 | 0.1395 | - | - | - |
| 1.5511 | 12500 | 0.1403 | - | - | - |
| 1.5635 | 12600 | 0.1414 | - | - | - |
| 1.5759 | 12700 | 0.1404 | - | - | - |
| 1.5883 | 12800 | 0.1391 | - | - | - |
| 1.6007 | 12900 | 0.1377 | - | - | - |
| 1.6131 | 13000 | 0.1408 | - | - | - |
| 1.6255 | 13100 | 0.1378 | - | - | - |
| 1.6379 | 13200 | 0.1387 | - | - | - |
| 1.6503 | 13300 | 0.1383 | - | - | - |
| 1.6627 | 13400 | 0.1393 | - | - | - |
| 1.6751 | 13500 | 0.137 | - | - | - |
| 1.6876 | 13600 | 0.1386 | - | - | - |
| 1.7000 | 13700 | 0.1366 | - | - | - |
| 1.7124 | 13800 | 0.137 | - | - | - |
| 1.7248 | 13900 | 0.1365 | - | - | - |
| 1.7372 | 14000 | 0.1367 | - | - | - |
| 1.7496 | 14100 | 0.1379 | - | - | - |
| 1.7620 | 14200 | 0.1355 | - | - | - |
| 1.7744 | 14300 | 0.1349 | - | - | - |
| 1.7868 | 14400 | 0.134 | - | - | - |
| 1.7992 | 14500 | 0.133 | - | - | - |
| 1.8116 | 14600 | 0.1337 | - | - | - |
| 1.8240 | 14700 | 0.1332 | - | - | - |
| 1.8365 | 14800 | 0.1335 | - | - | - |
| 1.8489 | 14900 | 0.1334 | - | - | - |
| 1.8613 | 15000 | 0.1333 | - | - | - |
| 1.8737 | 15100 | 0.1329 | - | - | - |
| 1.8861 | 15200 | 0.132 | - | - | - |
| 1.8985 | 15300 | 0.1322 | - | - | - |
| 1.9109 | 15400 | 0.1334 | - | - | - |
| 1.9233 | 15500 | 0.1308 | - | - | - |
| 1.9357 | 15600 | 0.1302 | - | - | - |
| 1.9481 | 15700 | 0.1313 | - | - | - |
| 1.9605 | 15800 | 0.1319 | - | - | - |
| 1.9729 | 15900 | 0.1305 | - | - | - |
| 1.9854 | 16000 | 0.1299 | - | - | - |
| 1.9978 | 16100 | 0.1288 | - | - | - |
| 2.0102 | 16200 | 0.1313 | - | - | - |
| 2.0226 | 16300 | 0.1299 | - | - | - |
| 2.0350 | 16400 | 0.1304 | - | - | - |
| 2.0474 | 16500 | 0.1304 | - | - | - |
| 2.0598 | 16600 | 0.1292 | - | - | - |
| 2.0722 | 16700 | 0.1276 | - | - | - |
| 2.0846 | 16800 | 0.1283 | - | - | - |
| 2.0970 | 16900 | 0.129 | - | - | - |
| 2.1094 | 17000 | 0.1294 | - | - | - |
| 2.1219 | 17100 | 0.1281 | - | - | - |
| 2.1343 | 17200 | 0.1276 | - | - | - |
| 2.1467 | 17300 | 0.1266 | - | - | - |
| 2.1591 | 17400 | 0.1263 | - | - | - |
| 2.1715 | 17500 | 0.1273 | - | - | - |
| 2.1839 | 17600 | 0.1263 | - | - | - |
| 2.1963 | 17700 | 0.1257 | - | - | - |
| 2.2087 | 17800 | 0.1256 | - | - | - |
| 2.2211 | 17900 | 0.1269 | - | - | - |
| 2.2335 | 18000 | 0.1256 | - | - | - |
| 2.2459 | 18100 | 0.1255 | - | - | - |
| 2.2583 | 18200 | 0.126 | - | - | - |
| 2.2708 | 18300 | 0.1243 | - | - | - |
| 2.2832 | 18400 | 0.125 | - | - | - |
| 2.2956 | 18500 | 0.1242 | - | - | - |
| 2.3080 | 18600 | 0.1249 | - | - | - |
| 2.3204 | 18700 | 0.1248 | - | - | - |
| 2.3328 | 18800 | 0.1248 | - | - | - |
| 2.3452 | 18900 | 0.1245 | - | - | - |
| 2.3576 | 19000 | 0.124 | - | - | - |
| 2.3700 | 19100 | 0.1246 | - | - | - |
| 2.3824 | 19200 | 0.125 | - | - | - |
| 2.3948 | 19300 | 0.1251 | - | - | - |
| 2.4072 | 19400 | 0.1243 | - | - | - |
| 2.4197 | 19500 | 0.1218 | - | - | - |
| 2.4321 | 19600 | 0.1217 | - | - | - |
| 2.4445 | 19700 | 0.1239 | - | - | - |
| 2.4569 | 19800 | 0.1219 | - | - | - |
| 2.4693 | 19900 | 0.1241 | - | - | - |
| 2.4817 | 20000 | 0.1222 | 0.1380 | -16.1712 | 0.864 |
| 2.4941 | 20100 | 0.1223 | - | - | - |
| 2.5065 | 20200 | 0.1216 | - | - | - |
| 2.5189 | 20300 | 0.1231 | - | - | - |
| 2.5313 | 20400 | 0.1208 | - | - | - |
| 2.5437 | 20500 | 0.1208 | - | - | - |
| 2.5561 | 20600 | 0.1202 | - | - | - |
| 2.5686 | 20700 | 0.1225 | - | - | - |
| 2.5810 | 20800 | 0.1209 | - | - | - |
| 2.5934 | 20900 | 0.1201 | - | - | - |
| 2.6058 | 21000 | 0.1203 | - | - | - |
| 2.6182 | 21100 | 0.1212 | - | - | - |
| 2.6306 | 21200 | 0.1199 | - | - | - |
| 2.6430 | 21300 | 0.1198 | - | - | - |
| 2.6554 | 21400 | 0.1212 | - | - | - |
| 2.6678 | 21500 | 0.1207 | - | - | - |
| 2.6802 | 21600 | 0.1199 | - | - | - |
| 2.6926 | 21700 | 0.1198 | - | - | - |
| 2.7051 | 21800 | 0.1196 | - | - | - |
| 2.7175 | 21900 | 0.1196 | - | - | - |
| 2.7299 | 22000 | 0.119 | - | - | - |
| 2.7423 | 22100 | 0.1197 | - | - | - |
| 2.7547 | 22200 | 0.1201 | - | - | - |
| 2.7671 | 22300 | 0.1187 | - | - | - |
| 2.7795 | 22400 | 0.1184 | - | - | - |
| 2.7919 | 22500 | 0.1177 | - | - | - |
| 2.8043 | 22600 | 0.1167 | - | - | - |
| 2.8167 | 22700 | 0.1187 | - | - | - |
| 2.8291 | 22800 | 0.1168 | - | - | - |
| 2.8415 | 22900 | 0.1174 | - | - | - |
| 2.8540 | 23000 | 0.1181 | - | - | - |
| 2.8664 | 23100 | 0.1185 | - | - | - |
| 2.8788 | 23200 | 0.1167 | - | - | - |
| 2.8912 | 23300 | 0.1169 | - | - | - |
| 2.9036 | 23400 | 0.1171 | - | - | - |
| 2.9160 | 23500 | 0.1179 | - | - | - |
| 2.9284 | 23600 | 0.116 | - | - | - |
| 2.9408 | 23700 | 0.1148 | - | - | - |
| 2.9532 | 23800 | 0.1183 | - | - | - |
| 2.9656 | 23900 | 0.1162 | - | - | - |
| 2.9780 | 24000 | 0.1165 | - | - | - |
| 2.9904 | 24100 | 0.115 | - | - | - |
| 3.0029 | 24200 | 0.1155 | - | - | - |
| 3.0153 | 24300 | 0.1177 | - | - | - |
| 3.0277 | 24400 | 0.1145 | - | - | - |
| 3.0401 | 24500 | 0.1175 | - | - | - |
| 3.0525 | 24600 | 0.1159 | - | - | - |
| 3.0649 | 24700 | 0.1149 | - | - | - |
| 3.0773 | 24800 | 0.1144 | - | - | - |
| 3.0897 | 24900 | 0.1152 | - | - | - |
| 3.1021 | 25000 | 0.1157 | - | - | - |
| 3.1145 | 25100 | 0.116 | - | - | - |
| 3.1269 | 25200 | 0.1145 | - | - | - |
| 3.1393 | 25300 | 0.1139 | - | - | - |
| 3.1518 | 25400 | 0.1141 | - | - | - |
| 3.1642 | 25500 | 0.114 | - | - | - |
| 3.1766 | 25600 | 0.1144 | - | - | - |
| 3.1890 | 25700 | 0.113 | - | - | - |
| 3.2014 | 25800 | 0.1133 | - | - | - |
| 3.2138 | 25900 | 0.1136 | - | - | - |
| 3.2262 | 26000 | 0.1138 | - | - | - |
| 3.2386 | 26100 | 0.1128 | - | - | - |
| 3.2510 | 26200 | 0.1144 | - | - | - |
| 3.2634 | 26300 | 0.1126 | - | - | - |
| 3.2758 | 26400 | 0.1126 | - | - | - |
| 3.2882 | 26500 | 0.1121 | - | - | - |
| 3.3007 | 26600 | 0.1126 | - | - | - |
| 3.3131 | 26700 | 0.1134 | - | - | - |
| 3.3255 | 26800 | 0.1131 | - | - | - |
| 3.3379 | 26900 | 0.1122 | - | - | - |
| 3.3503 | 27000 | 0.113 | - | - | - |
| 3.3627 | 27100 | 0.1124 | - | - | - |
| 3.3751 | 27200 | 0.1134 | - | - | - |
| 3.3875 | 27300 | 0.1142 | - | - | - |
| 3.3999 | 27400 | 0.113 | - | - | - |
| 3.4123 | 27500 | 0.1125 | - | - | - |
| 3.4247 | 27600 | 0.1102 | - | - | - |
| 3.4372 | 27700 | 0.1116 | - | - | - |
| 3.4496 | 27800 | 0.1116 | - | - | - |
| 3.4620 | 27900 | 0.1122 | - | - | - |
| 3.4744 | 28000 | 0.112 | - | - | - |
| 3.4868 | 28100 | 0.1114 | - | - | - |
| 3.4992 | 28200 | 0.1112 | - | - | - |
| 3.5116 | 28300 | 0.1112 | - | - | - |
| 3.5240 | 28400 | 0.1125 | - | - | - |
| 3.5364 | 28500 | 0.1095 | - | - | - |
| 3.5488 | 28600 | 0.1105 | - | - | - |
| 3.5612 | 28700 | 0.1107 | - | - | - |
| 3.5736 | 28800 | 0.1106 | - | - | - |
| 3.5861 | 28900 | 0.1105 | - | - | - |
| 3.5985 | 29000 | 0.1095 | - | - | - |
| 3.6109 | 29100 | 0.111 | - | - | - |
| 3.6233 | 29200 | 0.11 | - | - | - |
| 3.6357 | 29300 | 0.11 | - | - | - |
| 3.6481 | 29400 | 0.1111 | - | - | - |
| 3.6605 | 29500 | 0.1116 | - | - | - |
| 3.6729 | 29600 | 0.1095 | - | - | - |
| 3.6853 | 29700 | 0.1104 | - | - | - |
| 3.6977 | 29800 | 0.1095 | - | - | - |
| 3.7101 | 29900 | 0.1098 | - | - | - |
| 3.7225 | 30000 | 0.1095 | 0.1235 | -14.8315 | 0.8875 |
| 3.7350 | 30100 | 0.1104 | - | - | - |
| 3.7474 | 30200 | 0.1099 | - | - | - |
| 3.7598 | 30300 | 0.1106 | - | - | - |
| 3.7722 | 30400 | 0.1085 | - | - | - |
| 3.7846 | 30500 | 0.1086 | - | - | - |
| 3.7970 | 30600 | 0.108 | - | - | - |
| 3.8094 | 30700 | 0.1087 | - | - | - |
| 3.8218 | 30800 | 0.1081 | - | - | - |
| 3.8342 | 30900 | 0.1084 | - | - | - |
| 3.8466 | 31000 | 0.1088 | - | - | - |
| 3.8590 | 31100 | 0.1086 | - | - | - |
| 3.8714 | 31200 | 0.1091 | - | - | - |
| 3.8839 | 31300 | 0.1074 | - | - | - |
| 3.8963 | 31400 | 0.1079 | - | - | - |
| 3.9087 | 31500 | 0.11 | - | - | - |
| 3.9211 | 31600 | 0.1077 | - | - | - |
| 3.9335 | 31700 | 0.1072 | - | - | - |
| 3.9459 | 31800 | 0.1072 | - | - | - |
| 3.9583 | 31900 | 0.1089 | - | - | - |
| 3.9707 | 32000 | 0.1079 | - | - | - |
| 3.9831 | 32100 | 0.1072 | - | - | - |
| 3.9955 | 32200 | 0.1064 | - | - | - |
| 4.0079 | 32300 | 0.1081 | - | - | - |
| 4.0203 | 32400 | 0.1083 | - | - | - |
| 4.0328 | 32500 | 0.1074 | - | - | - |
| 4.0452 | 32600 | 0.1084 | - | - | - |
| 4.0576 | 32700 | 0.107 | - | - | - |
| 4.0700 | 32800 | 0.1065 | - | - | - |
| 4.0824 | 32900 | 0.1071 | - | - | - |
| 4.0948 | 33000 | 0.107 | - | - | - |
| 4.1072 | 33100 | 0.1077 | - | - | - |
| 4.1196 | 33200 | 0.107 | - | - | - |
| 4.1320 | 33300 | 0.1067 | - | - | - |
| 4.1444 | 33400 | 0.1057 | - | - | - |
| 4.1568 | 33500 | 0.1062 | - | - | - |
| 4.1693 | 33600 | 0.1071 | - | - | - |
| 4.1817 | 33700 | 0.1055 | - | - | - |
| 4.1941 | 33800 | 0.106 | - | - | - |
| 4.2065 | 33900 | 0.1048 | - | - | - |
| 4.2189 | 34000 | 0.1069 | - | - | - |
| 4.2313 | 34100 | 0.1054 | - | - | - |
| 4.2437 | 34200 | 0.1055 | - | - | - |
| 4.2561 | 34300 | 0.1058 | - | - | - |
| 4.2685 | 34400 | 0.1057 | - | - | - |
| 4.2809 | 34500 | 0.1045 | - | - | - |
| 4.2933 | 34600 | 0.1055 | - | - | - |
| 4.3057 | 34700 | 0.1055 | - | - | - |
| 4.3182 | 34800 | 0.1053 | - | - | - |
| 4.3306 | 34900 | 0.1056 | - | - | - |
| 4.3430 | 35000 | 0.1051 | - | - | - |
| 4.3554 | 35100 | 0.1059 | - | - | - |
| 4.3678 | 35200 | 0.1054 | - | - | - |
| 4.3802 | 35300 | 0.1064 | - | - | - |
| 4.3926 | 35400 | 0.1064 | - | - | - |
| 4.4050 | 35500 | 0.106 | - | - | - |
| 4.4174 | 35600 | 0.1037 | - | - | - |
| 4.4298 | 35700 | 0.1044 | - | - | - |
| 4.4422 | 35800 | 0.1052 | - | - | - |
| 4.4546 | 35900 | 0.1041 | - | - | - |
| 4.4671 | 36000 | 0.1057 | - | - | - |
| 4.4795 | 36100 | 0.1044 | - | - | - |
| 4.4919 | 36200 | 0.1049 | - | - | - |
| 4.5043 | 36300 | 0.1042 | - | - | - |
| 4.5167 | 36400 | 0.1055 | - | - | - |
| 4.5291 | 36500 | 0.1035 | - | - | - |
| 4.5415 | 36600 | 0.1038 | - | - | - |
| 4.5539 | 36700 | 0.1033 | - | - | - |
| 4.5663 | 36800 | 0.1046 | - | - | - |
| 4.5787 | 36900 | 0.104 | - | - | - |
| 4.5911 | 37000 | 0.1038 | - | - | - |
| 4.6035 | 37100 | 0.1031 | - | - | - |
| 4.6160 | 37200 | 0.1051 | - | - | - |
| 4.6284 | 37300 | 0.1034 | - | - | - |
| 4.6408 | 37400 | 0.1034 | - | - | - |
| 4.6532 | 37500 | 0.1045 | - | - | - |
| 4.6656 | 37600 | 0.1049 | - | - | - |
| 4.6780 | 37700 | 0.1034 | - | - | - |
| 4.6904 | 37800 | 0.1043 | - | - | - |
| 4.7028 | 37900 | 0.1026 | - | - | - |
| 4.7152 | 38000 | 0.104 | - | - | - |
| 4.7276 | 38100 | 0.103 | - | - | - |
| 4.7400 | 38200 | 0.1034 | - | - | - |
| 4.7525 | 38300 | 0.1045 | - | - | - |
| 4.7649 | 38400 | 0.1032 | - | - | - |
| 4.7773 | 38500 | 0.1029 | - | - | - |
| 4.7897 | 38600 | 0.1026 | - | - | - |
| 4.8021 | 38700 | 0.1017 | - | - | - |
| 4.8145 | 38800 | 0.103 | - | - | - |
| 4.8269 | 38900 | 0.1021 | - | - | - |
| 4.8393 | 39000 | 0.1029 | - | - | - |
| 4.8517 | 39100 | 0.1029 | - | - | - |
| 4.8641 | 39200 | 0.1033 | - | - | - |
| 4.8765 | 39300 | 0.1021 | - | - | - |
| 4.8889 | 39400 | 0.102 | - | - | - |
| 4.9014 | 39500 | 0.1027 | - | - | - |
| 4.9138 | 39600 | 0.1032 | - | - | - |
| 4.9262 | 39700 | 0.1018 | - | - | - |
| 4.9386 | 39800 | 0.1011 | - | - | - |
| 4.9510 | 39900 | 0.103 | - | - | - |
| 4.9634 | 40000 | 0.1023 | 0.1152 | -14.0327 | 0.9 |
| 4.9758 | 40100 | 0.102 | - | - | - |
| 4.9882 | 40200 | 0.1018 | - | - | - |
| 5.0006 | 40300 | 0.1012 | - | - | - |
| 5.0130 | 40400 | 0.1029 | - | - | - |
| 5.0254 | 40500 | 0.1014 | - | - | - |
| 5.0378 | 40600 | 0.103 | - | - | - |
| 5.0503 | 40700 | 0.1019 | - | - | - |
| 5.0627 | 40800 | 0.1019 | - | - | - |
| 5.0751 | 40900 | 0.1003 | - | - | - |
| 5.0875 | 41000 | 0.1016 | - | - | - |
| 5.0999 | 41100 | 0.1019 | - | - | - |
| 5.1123 | 41200 | 0.1028 | - | - | - |
| 5.1247 | 41300 | 0.1011 | - | - | - |
| 5.1371 | 41400 | 0.1012 | - | - | - |
| 5.1495 | 41500 | 0.1005 | - | - | - |
| 5.1619 | 41600 | 0.101 | - | - | - |
| 5.1743 | 41700 | 0.101 | - | - | - |
| 5.1867 | 41800 | 0.1004 | - | - | - |
| 5.1992 | 41900 | 0.1006 | - | - | - |
| 5.2116 | 42000 | 0.101 | - | - | - |
| 5.2240 | 42100 | 0.1004 | - | - | - |
| 5.2364 | 42200 | 0.1006 | - | - | - |
| 5.2488 | 42300 | 0.1012 | - | - | - |
| 5.2612 | 42400 | 0.1005 | - | - | - |
| 5.2736 | 42500 | 0.0997 | - | - | - |
| 5.2860 | 42600 | 0.1004 | - | - | - |
| 5.2984 | 42700 | 0.0998 | - | - | - |
| 5.3108 | 42800 | 0.1008 | - | - | - |
| 5.3232 | 42900 | 0.1008 | - | - | - |
| 5.3356 | 43000 | 0.1001 | - | - | - |
| 5.3481 | 43100 | 0.1007 | - | - | - |
| 5.3605 | 43200 | 0.1005 | - | - | - |
| 5.3729 | 43300 | 0.1007 | - | - | - |
| 5.3853 | 43400 | 0.1019 | - | - | - |
| 5.3977 | 43500 | 0.1016 | - | - | - |
| 5.4101 | 43600 | 0.1004 | - | - | - |
| 5.4225 | 43700 | 0.0987 | - | - | - |
| 5.4349 | 43800 | 0.1001 | - | - | - |
| 5.4473 | 43900 | 0.1003 | - | - | - |
| 5.4597 | 44000 | 0.0996 | - | - | - |
| 5.4721 | 44100 | 0.1004 | - | - | - |
| 5.4846 | 44200 | 0.0994 | - | - | - |
| 5.4970 | 44300 | 0.1002 | - | - | - |
| 5.5094 | 44400 | 0.0996 | - | - | - |
| 5.5218 | 44500 | 0.1012 | - | - | - |
| 5.5342 | 44600 | 0.0983 | - | - | - |
| 5.5466 | 44700 | 0.0992 | - | - | - |
| 5.5590 | 44800 | 0.0987 | - | - | - |
| 5.5714 | 44900 | 0.1005 | - | - | - |
| 5.5838 | 45000 | 0.0996 | - | - | - |
| 5.5962 | 45100 | 0.0986 | - | - | - |
| 5.6086 | 45200 | 0.0995 | - | - | - |
| 5.6210 | 45300 | 0.0999 | - | - | - |
| 5.6335 | 45400 | 0.0984 | - | - | - |
| 5.6459 | 45500 | 0.1001 | - | - | - |
| 5.6583 | 45600 | 0.1006 | - | - | - |
| 5.6707 | 45700 | 0.0994 | - | - | - |
| 5.6831 | 45800 | 0.0994 | - | - | - |
| 5.6955 | 45900 | 0.0988 | - | - | - |
| 5.7079 | 46000 | 0.0985 | - | - | - |
| 5.7203 | 46100 | 0.0991 | - | - | - |
| 5.7327 | 46200 | 0.0996 | - | - | - |
| 5.7451 | 46300 | 0.0991 | - | - | - |
| 5.7575 | 46400 | 0.0997 | - | - | - |
| 5.7699 | 46500 | 0.0984 | - | - | - |
| 5.7824 | 46600 | 0.0987 | - | - | - |
| 5.7948 | 46700 | 0.0977 | - | - | - |
| 5.8072 | 46800 | 0.0984 | - | - | - |
| 5.8196 | 46900 | 0.0977 | - | - | - |
| 5.8320 | 47000 | 0.0987 | - | - | - |
| 5.8444 | 47100 | 0.0983 | - | - | - |
| 5.8568 | 47200 | 0.0985 | - | - | - |
| 5.8692 | 47300 | 0.0993 | - | - | - |
| 5.8816 | 47400 | 0.0974 | - | - | - |
| 5.8940 | 47500 | 0.0978 | - | - | - |
| 5.9064 | 47600 | 0.0996 | - | - | - |
| 5.9188 | 47700 | 0.0981 | - | - | - |
| 5.9313 | 47800 | 0.0981 | - | - | - |
| 5.9437 | 47900 | 0.0969 | - | - | - |
| 5.9561 | 48000 | 0.0997 | - | - | - |
| 5.9685 | 48100 | 0.098 | - | - | - |
| 5.9809 | 48200 | 0.0981 | - | - | - |
| 5.9933 | 48300 | 0.0969 | - | - | - |
| 6.0057 | 48400 | 0.0982 | - | - | - |
| 6.0181 | 48500 | 0.0983 | - | - | - |
| 6.0305 | 48600 | 0.0974 | - | - | - |
| 6.0429 | 48700 | 0.0991 | - | - | - |
| 6.0553 | 48800 | 0.0978 | - | - | - |
| 6.0678 | 48900 | 0.0973 | - | - | - |
| 6.0802 | 49000 | 0.0976 | - | - | - |
| 6.0926 | 49100 | 0.0978 | - | - | - |
| 6.1050 | 49200 | 0.0976 | - | - | - |
| 6.1174 | 49300 | 0.0981 | - | - | - |
| 6.1298 | 49400 | 0.0974 | - | - | - |
| 6.1422 | 49500 | 0.0967 | - | - | - |
| 6.1546 | 49600 | 0.0966 | - | - | - |
| 6.1670 | 49700 | 0.098 | - | - | - |
| 6.1794 | 49800 | 0.0967 | - | - | - |
| 6.1918 | 49900 | 0.0964 | - | - | - |
| 6.2042 | 50000 | 0.0966 | 0.1101 | -13.5564 | 0.9045 |
| 6.2167 | 50100 | 0.0975 | - | - | - |
| 6.2291 | 50200 | 0.0968 | - | - | - |
| 6.2415 | 50300 | 0.0972 | - | - | - |
| 6.2539 | 50400 | 0.0967 | - | - | - |
| 6.2663 | 50500 | 0.0971 | - | - | - |
| 6.2787 | 50600 | 0.0961 | - | - | - |
| 6.2911 | 50700 | 0.0967 | - | - | - |
| 6.3035 | 50800 | 0.0969 | - | - | - |
| 6.3159 | 50900 | 0.0965 | - | - | - |
| 6.3283 | 51000 | 0.0972 | - | - | - |
| 6.3407 | 51100 | 0.0967 | - | - | - |
| 6.3531 | 51200 | 0.0972 | - | - | - |
| 6.3656 | 51300 | 0.0965 | - | - | - |
| 6.3780 | 51400 | 0.0978 | - | - | - |
| 6.3904 | 51500 | 0.0976 | - | - | - |
| 6.4028 | 51600 | 0.0986 | - | - | - |
| 6.4152 | 51700 | 0.0957 | - | - | - |
| 6.4276 | 51800 | 0.0957 | - | - | - |
| 6.4400 | 51900 | 0.0966 | - | - | - |
| 6.4524 | 52000 | 0.096 | - | - | - |
| 6.4648 | 52100 | 0.097 | - | - | - |
| 6.4772 | 52200 | 0.0971 | - | - | - |
| 6.4896 | 52300 | 0.0959 | - | - | - |
| 6.5020 | 52400 | 0.0967 | - | - | - |
| 6.5145 | 52500 | 0.0967 | - | - | - |
| 6.5269 | 52600 | 0.0964 | - | - | - |
| 6.5393 | 52700 | 0.0954 | - | - | - |
| 6.5517 | 52800 | 0.096 | - | - | - |
| 6.5641 | 52900 | 0.0963 | - | - | - |
| 6.5765 | 53000 | 0.0963 | - | - | - |
| 6.5889 | 53100 | 0.0958 | - | - | - |
| 6.6013 | 53200 | 0.0951 | - | - | - |
| 6.6137 | 53300 | 0.0973 | - | - | - |
| 6.6261 | 53400 | 0.0955 | - | - | - |
| 6.6385 | 53500 | 0.0958 | - | - | - |
| 6.6509 | 53600 | 0.0967 | - | - | - |
| 6.6634 | 53700 | 0.0971 | - | - | - |
| 6.6758 | 53800 | 0.0957 | - | - | - |
| 6.6882 | 53900 | 0.0968 | - | - | - |
| 6.7006 | 54000 | 0.0951 | - | - | - |
| 6.7130 | 54100 | 0.0957 | - | - | - |
| 6.7254 | 54200 | 0.0958 | - | - | - |
| 6.7378 | 54300 | 0.0962 | - | - | - |
| 6.7502 | 54400 | 0.0971 | - | - | - |
| 6.7626 | 54500 | 0.0957 | - | - | - |
| 6.7750 | 54600 | 0.0955 | - | - | - |
| 6.7874 | 54700 | 0.0953 | - | - | - |
| 6.7999 | 54800 | 0.0951 | - | - | - |
| 6.8123 | 54900 | 0.095 | - | - | - |
| 6.8247 | 55000 | 0.095 | - | - | - |
| 6.8371 | 55100 | 0.0954 | - | - | - |
| 6.8495 | 55200 | 0.0955 | - | - | - |
| 6.8619 | 55300 | 0.0959 | - | - | - |
| 6.8743 | 55400 | 0.0952 | - | - | - |
| 6.8867 | 55500 | 0.0951 | - | - | - |
| 6.8991 | 55600 | 0.0951 | - | - | - |
| 6.9115 | 55700 | 0.0966 | - | - | - |
| 6.9239 | 55800 | 0.0947 | - | - | - |
| 6.9363 | 55900 | 0.0943 | - | - | - |
| 6.9488 | 56000 | 0.0955 | - | - | - |
| 6.9612 | 56100 | 0.0959 | - | - | - |
| 6.9736 | 56200 | 0.095 | - | - | - |
| 6.9860 | 56300 | 0.0941 | - | - | - |
| 6.9984 | 56400 | 0.0945 | - | - | - |
| 7.0108 | 56500 | 0.0957 | - | - | - |
| 7.0232 | 56600 | 0.0952 | - | - | - |
| 7.0356 | 56700 | 0.0956 | - | - | - |
| 7.0480 | 56800 | 0.0955 | - | - | - |
| 7.0604 | 56900 | 0.0951 | - | - | - |
| 7.0728 | 57000 | 0.0938 | - | - | - |
| 7.0852 | 57100 | 0.0947 | - | - | - |
| 7.0977 | 57200 | 0.0952 | - | - | - |
| 7.1101 | 57300 | 0.0956 | - | - | - |
| 7.1225 | 57400 | 0.0949 | - | - | - |
| 7.1349 | 57500 | 0.0947 | - | - | - |
| 7.1473 | 57600 | 0.0937 | - | - | - |
| 7.1597 | 57700 | 0.0943 | - | - | - |
| 7.1721 | 57800 | 0.0948 | - | - | - |
| 7.1845 | 57900 | 0.094 | - | - | - |
| 7.1969 | 58000 | 0.0942 | - | - | - |
| 7.2093 | 58100 | 0.0939 | - | - | - |
| 7.2217 | 58200 | 0.0944 | - | - | - |
| 7.2341 | 58300 | 0.0943 | - | - | - |
| 7.2466 | 58400 | 0.0944 | - | - | - |
| 7.2590 | 58500 | 0.0945 | - | - | - |
| 7.2714 | 58600 | 0.0936 | - | - | - |
| 7.2838 | 58700 | 0.0941 | - | - | - |
| 7.2962 | 58800 | 0.0937 | - | - | - |
| 7.3086 | 58900 | 0.0942 | - | - | - |
| 7.3210 | 59000 | 0.0942 | - | - | - |
| 7.3334 | 59100 | 0.0945 | - | - | - |
| 7.3458 | 59200 | 0.0942 | - | - | - |
| 7.3582 | 59300 | 0.0944 | - | - | - |
| 7.3706 | 59400 | 0.0943 | - | - | - |
| 7.3831 | 59500 | 0.0951 | - | - | - |
| 7.3955 | 59600 | 0.0952 | - | - | - |
| 7.4079 | 59700 | 0.0949 | - | - | - |
| 7.4203 | 59800 | 0.0931 | - | - | - |
| 7.4327 | 59900 | 0.0936 | - | - | - |
| 7.4451 | 60000 | 0.095 | 0.1070 | -13.2648 | 0.9125 |
| 7.4575 | 60100 | 0.0931 | - | - | - |
| 7.4699 | 60200 | 0.095 | - | - | - |
| 7.4823 | 60300 | 0.0936 | - | - | - |
| 7.4947 | 60400 | 0.0943 | - | - | - |
| 7.5071 | 60500 | 0.0934 | - | - | - |
| 7.5195 | 60600 | 0.095 | - | - | - |
| 7.5320 | 60700 | 0.0927 | - | - | - |
| 7.5444 | 60800 | 0.0939 | - | - | - |
| 7.5568 | 60900 | 0.0931 | - | - | - |
| 7.5692 | 61000 | 0.0944 | - | - | - |
| 7.5816 | 61100 | 0.0938 | - | - | - |
| 7.5940 | 61200 | 0.0931 | - | - | - |
| 7.6064 | 61300 | 0.0935 | - | - | - |
| 7.6188 | 61400 | 0.0945 | - | - | - |
| 7.6312 | 61500 | 0.0932 | - | - | - |
| 7.6436 | 61600 | 0.094 | - | - | - |
| 7.6560 | 61700 | 0.0944 | - | - | - |
| 7.6684 | 61800 | 0.0942 | - | - | - |
| 7.6809 | 61900 | 0.0941 | - | - | - |
| 7.6933 | 62000 | 0.0932 | - | - | - |
| 7.7057 | 62100 | 0.0935 | - | - | - |
| 7.7181 | 62200 | 0.0932 | - | - | - |
| 7.7305 | 62300 | 0.094 | - | - | - |
| 7.7429 | 62400 | 0.0935 | - | - | - |
| 7.7553 | 62500 | 0.0944 | - | - | - |
| 7.7677 | 62600 | 0.0933 | - | - | - |
| 7.7801 | 62700 | 0.0938 | - | - | - |
| 7.7925 | 62800 | 0.0924 | - | - | - |
| 7.8049 | 62900 | 0.0926 | - | - | - |
| 7.8173 | 63000 | 0.0935 | - | - | - |
| 7.8298 | 63100 | 0.0926 | - | - | - |
| 7.8422 | 63200 | 0.0928 | - | - | - |
| 7.8546 | 63300 | 0.0937 | - | - | - |
| 7.8670 | 63400 | 0.0938 | - | - | - |
| 7.8794 | 63500 | 0.0927 | - | - | - |
| 7.8918 | 63600 | 0.0929 | - | - | - |
| 7.9042 | 63700 | 0.0938 | - | - | - |
| 7.9166 | 63800 | 0.0934 | - | - | - |
| 7.9290 | 63900 | 0.093 | - | - | - |
| 7.9414 | 64000 | 0.0916 | - | - | - |
| 7.9538 | 64100 | 0.0946 | - | - | - |
| 7.9662 | 64200 | 0.0929 | - | - | - |
| 7.9787 | 64300 | 0.0934 | - | - | - |
| 7.9911 | 64400 | 0.0922 | - | - | - |
| 8.0035 | 64500 | 0.0928 | - | - | - |
| 8.0159 | 64600 | 0.0938 | - | - | - |
| 8.0283 | 64700 | 0.092 | - | - | - |
| 8.0407 | 64800 | 0.0944 | - | - | - |
| 8.0531 | 64900 | 0.093 | - | - | - |
| 8.0655 | 65000 | 0.0924 | - | - | - |
| 8.0779 | 65100 | 0.0924 | - | - | - |
| 8.0903 | 65200 | 0.093 | - | - | - |
| 8.1027 | 65300 | 0.0931 | - | - | - |
| 8.1152 | 65400 | 0.0935 | - | - | - |
| 8.1276 | 65500 | 0.0927 | - | - | - |
| 8.1400 | 65600 | 0.0921 | - | - | - |
| 8.1524 | 65700 | 0.0923 | - | - | - |
| 8.1648 | 65800 | 0.0925 | - | - | - |
| 8.1772 | 65900 | 0.0926 | - | - | - |
| 8.1896 | 66000 | 0.0916 | - | - | - |
| 8.2020 | 66100 | 0.0925 | - | - | - |
| 8.2144 | 66200 | 0.0921 | - | - | - |
| 8.2268 | 66300 | 0.0927 | - | - | - |
| 8.2392 | 66400 | 0.0924 | - | - | - |
| 8.2516 | 66500 | 0.0927 | - | - | - |
| 8.2641 | 66600 | 0.0923 | - | - | - |
| 8.2765 | 66700 | 0.0919 | - | - | - |
| 8.2889 | 66800 | 0.0918 | - | - | - |
| 8.3013 | 66900 | 0.0923 | - | - | - |
| 8.3137 | 67000 | 0.0922 | - | - | - |
| 8.3261 | 67100 | 0.0925 | - | - | - |
| 8.3385 | 67200 | 0.0923 | - | - | - |
| 8.3509 | 67300 | 0.093 | - | - | - |
| 8.3633 | 67400 | 0.0923 | - | - | - |
| 8.3757 | 67500 | 0.093 | - | - | - |
| 8.3881 | 67600 | 0.0939 | - | - | - |
| 8.4005 | 67700 | 0.0931 | - | - | - |
| 8.4130 | 67800 | 0.0922 | - | - | - |
| 8.4254 | 67900 | 0.091 | - | - | - |
| 8.4378 | 68000 | 0.0922 | - | - | - |
| 8.4502 | 68100 | 0.0922 | - | - | - |
| 8.4626 | 68200 | 0.0923 | - | - | - |
| 8.4750 | 68300 | 0.0927 | - | - | - |
| 8.4874 | 68400 | 0.092 | - | - | - |
| 8.4998 | 68500 | 0.0922 | - | - | - |
| 8.5122 | 68600 | 0.0923 | - | - | - |
| 8.5246 | 68700 | 0.0927 | - | - | - |
| 8.5370 | 68800 | 0.0914 | - | - | - |
| 8.5494 | 68900 | 0.0916 | - | - | - |
| 8.5619 | 69000 | 0.0923 | - | - | - |
| 8.5743 | 69100 | 0.0921 | - | - | - |
| 8.5867 | 69200 | 0.092 | - | - | - |
| 8.5991 | 69300 | 0.091 | - | - | - |
| 8.6115 | 69400 | 0.0929 | - | - | - |
| 8.6239 | 69500 | 0.0917 | - | - | - |
| 8.6363 | 69600 | 0.0915 | - | - | - |
| 8.6487 | 69700 | 0.0931 | - | - | - |
| 8.6611 | 69800 | 0.0937 | - | - | - |
| 8.6735 | 69900 | 0.0916 | - | - | - |
| 8.6859 | 70000 | 0.0924 | 0.1055 | -13.1395 | 0.9135 |
| 8.6983 | 70100 | 0.0915 | - | - | - |
| 8.7108 | 70200 | 0.0918 | - | - | - |
| 8.7232 | 70300 | 0.0919 | - | - | - |
| 8.7356 | 70400 | 0.0927 | - | - | - |
| 8.7480 | 70500 | 0.0926 | - | - | - |
| 8.7604 | 70600 | 0.0926 | - | - | - |
| 8.7728 | 70700 | 0.0914 | - | - | - |
| 8.7852 | 70800 | 0.0916 | - | - | - |
| 8.7976 | 70900 | 0.0907 | - | - | - |
| 8.8100 | 71000 | 0.0916 | - | - | - |
| 8.8224 | 71100 | 0.0914 | - | - | - |
| 8.8348 | 71200 | 0.0916 | - | - | - |
| 8.8473 | 71300 | 0.092 | - | - | - |
| 8.8597 | 71400 | 0.0917 | - | - | - |
| 8.8721 | 71500 | 0.0923 | - | - | - |
| 8.8845 | 71600 | 0.0908 | - | - | - |
| 8.8969 | 71700 | 0.0917 | - | - | - |
| 8.9093 | 71800 | 0.093 | - | - | - |
| 8.9217 | 71900 | 0.0912 | - | - | - |
| 8.9341 | 72000 | 0.0911 | - | - | - |
| 8.9465 | 72100 | 0.0912 | - | - | - |
| 8.9589 | 72200 | 0.0923 | - | - | - |
| 8.9713 | 72300 | 0.0914 | - | - | - |
| 8.9837 | 72400 | 0.0911 | - | - | - |
| 8.9962 | 72500 | 0.0908 | - | - | - |
| 9.0086 | 72600 | 0.0922 | - | - | - |
| 9.0210 | 72700 | 0.0918 | - | - | - |
| 9.0334 | 72800 | 0.0917 | - | - | - |
| 9.0458 | 72900 | 0.0925 | - | - | - |
| 9.0582 | 73000 | 0.0914 | - | - | - |
| 9.0706 | 73100 | 0.0907 | - | - | - |
| 9.0830 | 73200 | 0.0916 | - | - | - |
| 9.0954 | 73300 | 0.0916 | - | - | - |
| 9.1078 | 73400 | 0.0918 | - | - | - |
| 9.1202 | 73500 | 0.0918 | - | - | - |
| 9.1326 | 73600 | 0.0913 | - | - | - |
| 9.1451 | 73700 | 0.0901 | - | - | - |
| 9.1575 | 73800 | 0.0912 | - | - | - |
| 9.1699 | 73900 | 0.0916 | - | - | - |
| 9.1823 | 74000 | 0.0906 | - | - | - |
| 9.1947 | 74100 | 0.0913 | - | - | - |
| 9.2071 | 74200 | 0.0899 | - | - | - |
| 9.2195 | 74300 | 0.0919 | - | - | - |
| 9.2319 | 74400 | 0.0908 | - | - | - |
| 9.2443 | 74500 | 0.0911 | - | - | - |
| 9.2567 | 74600 | 0.0913 | - | - | - |
| 9.2691 | 74700 | 0.0909 | - | - | - |
| 9.2815 | 74800 | 0.0905 | - | - | - |
| 9.2940 | 74900 | 0.091 | - | - | - |
| 9.3064 | 75000 | 0.091 | - | - | - |
| 9.3188 | 75100 | 0.0908 | - | - | - |
| 9.3312 | 75200 | 0.0915 | - | - | - |
| 9.3436 | 75300 | 0.091 | - | - | - |
| 9.3560 | 75400 | 0.0915 | - | - | - |
| 9.3684 | 75500 | 0.0915 | - | - | - |
| 9.3808 | 75600 | 0.0917 | - | - | - |
| 9.3932 | 75700 | 0.0925 | - | - | - |
| 9.4056 | 75800 | 0.0918 | - | - | - |
| 9.4180 | 75900 | 0.0903 | - | - | - |
| 9.4305 | 76000 | 0.0907 | - | - | - |
| 9.4429 | 76100 | 0.0916 | - | - | - |
| 9.4553 | 76200 | 0.0906 | - | - | - |
| 9.4677 | 76300 | 0.0919 | - | - | - |
| 9.4801 | 76400 | 0.0907 | - | - | - |
| 9.4925 | 76500 | 0.0915 | - | - | - |
| 9.5049 | 76600 | 0.0908 | - | - | - |
| 9.5173 | 76700 | 0.092 | - | - | - |
| 9.5297 | 76800 | 0.0902 | - | - | - |
| 9.5421 | 76900 | 0.0909 | - | - | - |
| 9.5545 | 77000 | 0.09 | - | - | - |
| 9.5669 | 77100 | 0.0917 | - | - | - |
| 9.5794 | 77200 | 0.091 | - | - | - |
| 9.5918 | 77300 | 0.0906 | - | - | - |
| 9.6042 | 77400 | 0.0902 | - | - | - |
| 9.6166 | 77500 | 0.0921 | - | - | - |
| 9.6290 | 77600 | 0.0907 | - | - | - |
| 9.6414 | 77700 | 0.0908 | - | - | - |
| 9.6538 | 77800 | 0.0917 | - | - | - |
| 9.6662 | 77900 | 0.092 | - | - | - |
| 9.6786 | 78000 | 0.091 | - | - | - |
| 9.6910 | 78100 | 0.0909 | - | - | - |
| 9.7034 | 78200 | 0.0903 | - | - | - |
| 9.7158 | 78300 | 0.0914 | - | - | - |
| 9.7283 | 78400 | 0.091 | - | - | - |
| 9.7407 | 78500 | 0.0909 | - | - | - |
| 9.7531 | 78600 | 0.0922 | - | - | - |
| 9.7655 | 78700 | 0.0907 | - | - | - |
| 9.7779 | 78800 | 0.0909 | - | - | - |
| 9.7903 | 78900 | 0.0905 | - | - | - |
| 9.8027 | 79000 | 0.0898 | - | - | - |
| 9.8151 | 79100 | 0.091 | - | - | - |
| 9.8275 | 79200 | 0.09 | - | - | - |
| 9.8399 | 79300 | 0.0908 | - | - | - |
| 9.8523 | 79400 | 0.0911 | - | - | - |
| 9.8647 | 79500 | 0.0913 | - | - | - |
| 9.8772 | 79600 | 0.0902 | - | - | - |
| 9.8896 | 79700 | 0.0904 | - | - | - |
| 9.9020 | 79800 | 0.0908 | - | - | - |
| 9.9144 | 79900 | 0.0918 | - | - | - |
| 9.9268 | 80000 | 0.0905 | 0.1044 | -13.0248 | 0.915 |
| 9.9392 | 80100 | 0.0894 | - | - | - |
| 9.9516 | 80200 | 0.0917 | - | - | - |
| 9.9640 | 80300 | 0.0908 | - | - | - |
| 9.9764 | 80400 | 0.0907 | - | - | - |
| 9.9888 | 80500 | 0.0905 | - | - | - |
Framework Versions
- Python: 3.10.17
- Sentence Transformers: 4.1.0
- Transformers: 4.46.3
- PyTorch: 2.2.0+cu121
- Accelerate: 1.1.1
- Datasets: 2.18.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 8
Model tree for saikasyap/xlm-roberta-base-multilingual-en-sa
Base model
FacebookAI/xlm-roberta-baseEvaluation results
- Negative Mse on en saself-reported-13.025
- Src2Trg Accuracy on en saself-reported0.927
- Trg2Src Accuracy on en saself-reported0.903
- Mean Accuracy on en saself-reported0.915