Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +1248 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,1248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:257886
|
| 8 |
+
- loss:MSELoss
|
| 9 |
+
base_model: FacebookAI/xlm-roberta-base
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: Click on Save.Make sure the file is saved with the extension .cpp.
|
| 12 |
+
sentences:
|
| 13 |
+
- अधुना लेयर्-पेलेट्-मध्ये त्रीणि लेयर्स् सन्ति ।
|
| 14 |
+
- '"save नुदन्तु । भवतां फैल् इत्येतत् ,डाट् सि पि पि एक्स्टेन्षन् इत्यनेन समं सेव्
|
| 15 |
+
कृतं वर्तते इति निश्चयं कुर्वन्तु ।"'
|
| 16 |
+
- '"प्रारम्भे,,initial amount इतीदं Rs 5000 इति लिखाम।"'
|
| 17 |
+
- source_sentence: '"Variable initialisation, Operators,"'
|
| 18 |
+
sentences:
|
| 19 |
+
- '"''वेरियेबल् इनिशियलैसेशन्'', ओपरेटर्स्,"'
|
| 20 |
+
- यस्य मानुषस्यैतत् स्वास्थ्यकरणम् आश्चर्य्यं कर्म्माक्रियत तस्य वयश्चत्वारिंशद्वत्सरा
|
| 21 |
+
व्यतीताः।
|
| 22 |
+
- '"यदि, भवद्भिः टेम्प्लेट्-स्ट्याण्ड्-द्वारा आरब्धं चेत्, तद् टर्मिनल्-मध्ये यथा
|
| 23 |
+
दर्श्यते तथा, ‘रिवर्स् काम्प्लिमेण्ड् मेथड्’ इत्येतत् उपयुज्य, ‘कोडिङ्ग् स्ट्राण्ड्’
|
| 24 |
+
प्रति परिवर्तयन्तु ।"'
|
| 25 |
+
- source_sentence: '"""The same day went Jesus out of the house, and sat by the sea
|
| 26 |
+
side."""'
|
| 27 |
+
sentences:
|
| 28 |
+
- ‘Tag deleted’ इति सन्देशेन सह अन्यत् विण्डो दृश्यते । Ok उपरि क्लिक् कुर्वन्तु
|
| 29 |
+
।
|
| 30 |
+
- अपरञ्च तस्मिन् दिने यीशुः सद्मनो गत्वा सरित्पते रोधसि समुपविवेश।
|
| 31 |
+
- '"MySQL सर्वर्-प्रोपर्टिस् इत्यस्य कोन्फिगरिङ्ग् कर्तुं ,"'
|
| 32 |
+
- source_sentence: '"The next thing that I am going do is to rename these layers,
|
| 33 |
+
So that I can get an idea about which layer I am working on."'
|
| 34 |
+
sentences:
|
| 35 |
+
- स्तराणां पुनर्नामकरणम् एव मम अग्रिमकार्यम् अस्ति । अतः यस्य स्तरस्य विषये कार्यं
|
| 36 |
+
कुर्वन् अस्मि तद्विषयक-कल्पनां प्राप्तुं शक्नोमि।
|
| 37 |
+
- अस्माकं स्लैड् प्रति गच्छामः।
|
| 38 |
+
- plus New framework उपरि क्लिक् कुर्वन्तु ।
|
| 39 |
+
- source_sentence: Magazines and Periodicals that are published periodically.
|
| 40 |
+
sentences:
|
| 41 |
+
- दण्डजनिका सेवा यदि तेजोयुक्ता भवेत् तर्हि पुण्यजनिका सेवा ततोऽधिकं बहुतेजोयुक्ता
|
| 42 |
+
भविष्यति।
|
| 43 |
+
- '"अस्योपरि नुदामश्चेत्, इदं पेन्-ड्रैव् मध्ये, विद्यमानानि सर्वाणि फैल्स् फोल्डर्स्
|
| 44 |
+
च दर्शयति ।"'
|
| 45 |
+
- पत्रिकाणां (Magazines) तथा नियतकालिकानां च (Periodicals) ग्राहकत्वस्य निर्वहणार्थम्
|
| 46 |
+
उपयुज्यन्ते ।
|
| 47 |
+
pipeline_tag: sentence-similarity
|
| 48 |
+
library_name: sentence-transformers
|
| 49 |
+
metrics:
|
| 50 |
+
- negative_mse
|
| 51 |
+
- src2trg_accuracy
|
| 52 |
+
- trg2src_accuracy
|
| 53 |
+
- mean_accuracy
|
| 54 |
+
model-index:
|
| 55 |
+
- name: SentenceTransformer based on FacebookAI/xlm-roberta-base
|
| 56 |
+
results:
|
| 57 |
+
- task:
|
| 58 |
+
type: knowledge-distillation
|
| 59 |
+
name: Knowledge Distillation
|
| 60 |
+
dataset:
|
| 61 |
+
name: en sa
|
| 62 |
+
type: en-sa
|
| 63 |
+
metrics:
|
| 64 |
+
- type: negative_mse
|
| 65 |
+
value: -13.024808466434479
|
| 66 |
+
name: Negative Mse
|
| 67 |
+
- task:
|
| 68 |
+
type: translation
|
| 69 |
+
name: Translation
|
| 70 |
+
dataset:
|
| 71 |
+
name: en sa
|
| 72 |
+
type: en-sa
|
| 73 |
+
metrics:
|
| 74 |
+
- type: src2trg_accuracy
|
| 75 |
+
value: 0.927
|
| 76 |
+
name: Src2Trg Accuracy
|
| 77 |
+
- type: trg2src_accuracy
|
| 78 |
+
value: 0.903
|
| 79 |
+
name: Trg2Src Accuracy
|
| 80 |
+
- type: mean_accuracy
|
| 81 |
+
value: 0.915
|
| 82 |
+
name: Mean Accuracy
|
| 83 |
+
---
|
| 84 |
+
|
| 85 |
+
# SentenceTransformer based on FacebookAI/xlm-roberta-base
|
| 86 |
+
|
| 87 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the en-sa dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 88 |
+
|
| 89 |
+
## Model Details
|
| 90 |
+
|
| 91 |
+
### Model Description
|
| 92 |
+
- **Model Type:** Sentence Transformer
|
| 93 |
+
- **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) <!-- at revision e73636d4f797dec63c3081bb6ed5c7b0bb3f2089 -->
|
| 94 |
+
- **Maximum Sequence Length:** 128 tokens
|
| 95 |
+
- **Output Dimensionality:** 768 dimensions
|
| 96 |
+
- **Similarity Function:** Cosine Similarity
|
| 97 |
+
- **Training Dataset:**
|
| 98 |
+
- en-sa
|
| 99 |
+
<!-- - **Language:** Unknown -->
|
| 100 |
+
<!-- - **License:** Unknown -->
|
| 101 |
+
|
| 102 |
+
### Model Sources
|
| 103 |
+
|
| 104 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 105 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 106 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 107 |
+
|
| 108 |
+
### Full Model Architecture
|
| 109 |
+
|
| 110 |
+
```
|
| 111 |
+
SentenceTransformer(
|
| 112 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
| 113 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 114 |
+
)
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
## Usage
|
| 118 |
+
|
| 119 |
+
### Direct Usage (Sentence Transformers)
|
| 120 |
+
|
| 121 |
+
First install the Sentence Transformers library:
|
| 122 |
+
|
| 123 |
+
```bash
|
| 124 |
+
pip install -U sentence-transformers
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
Then you can load this model and run inference.
|
| 128 |
+
```python
|
| 129 |
+
from sentence_transformers import SentenceTransformer
|
| 130 |
+
|
| 131 |
+
# Download from the 🤗 Hub
|
| 132 |
+
model = SentenceTransformer("saikasyap/xlm-roberta-base-multilingual-en-sa")
|
| 133 |
+
# Run inference
|
| 134 |
+
sentences = [
|
| 135 |
+
'Magazines and Periodicals that are published periodically.',
|
| 136 |
+
'पत्रिकाणां (Magazines) तथा नियतकालिकानां च (Periodicals) ग्राहकत्वस्य निर्वहणार्थम् उपयुज्यन्ते ।',
|
| 137 |
+
'"अस्योपरि नुदामश्चेत्, इदं पेन्-ड्रैव् मध्ये, विद्यमानानि सर्वाणि फैल्स् फोल्डर्स् च दर्शयति ।"',
|
| 138 |
+
]
|
| 139 |
+
embeddings = model.encode(sentences)
|
| 140 |
+
print(embeddings.shape)
|
| 141 |
+
# [3, 768]
|
| 142 |
+
|
| 143 |
+
# Get the similarity scores for the embeddings
|
| 144 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 145 |
+
print(similarities.shape)
|
| 146 |
+
# [3, 3]
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
<!--
|
| 150 |
+
### Direct Usage (Transformers)
|
| 151 |
+
|
| 152 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 153 |
+
|
| 154 |
+
</details>
|
| 155 |
+
-->
|
| 156 |
+
|
| 157 |
+
<!--
|
| 158 |
+
### Downstream Usage (Sentence Transformers)
|
| 159 |
+
|
| 160 |
+
You can finetune this model on your own dataset.
|
| 161 |
+
|
| 162 |
+
<details><summary>Click to expand</summary>
|
| 163 |
+
|
| 164 |
+
</details>
|
| 165 |
+
-->
|
| 166 |
+
|
| 167 |
+
<!--
|
| 168 |
+
### Out-of-Scope Use
|
| 169 |
+
|
| 170 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 171 |
+
-->
|
| 172 |
+
|
| 173 |
+
## Evaluation
|
| 174 |
+
|
| 175 |
+
### Metrics
|
| 176 |
+
|
| 177 |
+
#### Knowledge Distillation
|
| 178 |
+
|
| 179 |
+
* Dataset: `en-sa`
|
| 180 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
| 181 |
+
|
| 182 |
+
| Metric | Value |
|
| 183 |
+
|:-----------------|:-------------|
|
| 184 |
+
| **negative_mse** | **-13.0248** |
|
| 185 |
+
|
| 186 |
+
#### Translation
|
| 187 |
+
|
| 188 |
+
* Dataset: `en-sa`
|
| 189 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
| 190 |
+
|
| 191 |
+
| Metric | Value |
|
| 192 |
+
|:------------------|:----------|
|
| 193 |
+
| src2trg_accuracy | 0.927 |
|
| 194 |
+
| trg2src_accuracy | 0.903 |
|
| 195 |
+
| **mean_accuracy** | **0.915** |
|
| 196 |
+
|
| 197 |
+
<!--
|
| 198 |
+
## Bias, Risks and Limitations
|
| 199 |
+
|
| 200 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 201 |
+
-->
|
| 202 |
+
|
| 203 |
+
<!--
|
| 204 |
+
### Recommendations
|
| 205 |
+
|
| 206 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 207 |
+
-->
|
| 208 |
+
|
| 209 |
+
## Training Details
|
| 210 |
+
|
| 211 |
+
### Training Dataset
|
| 212 |
+
|
| 213 |
+
#### en-sa
|
| 214 |
+
|
| 215 |
+
* Dataset: en-sa
|
| 216 |
+
* Size: 257,886 training samples
|
| 217 |
+
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
|
| 218 |
+
* Approximate statistics based on the first 1000 samples:
|
| 219 |
+
| | english | non_english | label |
|
| 220 |
+
|:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------|
|
| 221 |
+
| type | string | string | list |
|
| 222 |
+
| details | <ul><li>min: 12 tokens</li><li>mean: 34.23 tokens</li><li>max: 113 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 49.72 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 223 |
+
* Samples:
|
| 224 |
+
| english | non_english | label |
|
| 225 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
| 226 |
+
| <code>There was no Mughal tradition of primogeniture, the systematic passing of rule, upon an emperor's death, to his eldest son.<br></code> | <code>चक्रवर्तिनः मृत्योः अनन्तरं तस्य शासनस्य व्यवस्थितरूपेण सङ्क्रमणस्य, मुघलपरम्परायाः ज्येष्ठपुत्राधिकारपद्धतिः नासीत्।<br></code> | <code>[-0.5880301594734192, -0.20026817917823792, 0.372330904006958, -0.9807565808296204, -0.35607191920280457, ...]</code> |
|
| 227 |
+
| <code>The four sons of Shah Jahan all held governorships during their father's reign.<br></code> | <code>शाह्-जहाँ-नामकस्य चत्वारः पुत्राः, सर्वे पितुः शासनकाले शासकपदम् अधारयन्।<br></code> | <code>[-0.5090229511260986, 0.33517003059387207, 0.27507224678993225, -0.05707915127277374, -0.5126022100448608, ...]</code> |
|
| 228 |
+
| <code>In this regard he discusses the correlation between social opportunities of education and health and how both of these complement economic and political freedoms as a healthy and well-educated person is better suited to make informed economic decisions and be involved in fruitful political demonstrations etc.<br></code> | <code>अस्मिन् विषये सः शिक्षणस्य स्वास्थ्यस्य च सामाजिकावकाशानाम् अन्योन्य-सम्बन्धस्य, तथा च एतद्द्वयम् अपि आर्थिक-राजनैतिक-स्वातन्त्र्ययोः कथं पूरकं भवतः इति च चर्चां करोति, यतोहि स्वस्था सुशिक्षिता च व्यक्तिः ज्ञानपूर्वम् आर्थिकविषयान् निर्णेतुं तथा फलप्रदेषु राजनैतिकेषु प्रतिपादनादिषु संलग्नः भवितुं च अधिकारी भवति इति।<br></code> | <code>[0.16507332026958466, -0.1722974181175232, 0.02585001103579998, 0.36087149381637573, -0.6401643753051758, ...]</code> |
|
| 229 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
| 230 |
+
|
| 231 |
+
### Evaluation Dataset
|
| 232 |
+
|
| 233 |
+
#### en-sa
|
| 234 |
+
|
| 235 |
+
* Dataset: en-sa
|
| 236 |
+
* Size: 1,000 evaluation samples
|
| 237 |
+
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
|
| 238 |
+
* Approximate statistics based on the first 1000 samples:
|
| 239 |
+
| | english | non_english | label |
|
| 240 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------|
|
| 241 |
+
| type | string | string | list |
|
| 242 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 21.38 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 27.89 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
| 243 |
+
* Samples:
|
| 244 |
+
| english | non_english | label |
|
| 245 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|
|
| 246 |
+
| <code>"""So they cast him out of the vineyard, and killed him. What therefore shall the lord of the vineyard do unto them?"""</code> | <code>ततस्ते तं क्षेत्राद् बहि र्निपात्य जघ्नुस्तस्मात् स क्षेत्रपतिस्तान् प्रति किं करिष्यति?</code> | <code>[-0.06878167390823364, -0.5150429606437683, -0.09011576324701309, -0.7458725571632385, 0.050420328974723816, ...]</code> |
|
| 247 |
+
| <code>Avogadro application window opens.</code> | <code>Avogadro एप्लिकेशन् विण्डो उद्घट्यते ।</code> | <code>[0.9054689407348633, -0.2203768789768219, -0.19827595353126526, 0.23870715498924255, -0.3162331283092499, ...]</code> |
|
| 248 |
+
| <code>Svangah: One whose limbs are beautiful.</code> | <code>स्वंग:यस्य अङ्गानि सुन्दराणि सन्ति</code> | <code>[0.6443825960159302, 0.4850354492664337, -0.4563218355178833, -0.4771449863910675, 0.6588209867477417, ...]</code> |
|
| 249 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
| 250 |
+
|
| 251 |
+
### Training Hyperparameters
|
| 252 |
+
#### Non-Default Hyperparameters
|
| 253 |
+
|
| 254 |
+
- `eval_strategy`: steps
|
| 255 |
+
- `learning_rate`: 2e-05
|
| 256 |
+
- `num_train_epochs`: 10
|
| 257 |
+
- `warmup_ratio`: 0.1
|
| 258 |
+
|
| 259 |
+
#### All Hyperparameters
|
| 260 |
+
<details><summary>Click to expand</summary>
|
| 261 |
+
|
| 262 |
+
- `overwrite_output_dir`: False
|
| 263 |
+
- `do_predict`: False
|
| 264 |
+
- `eval_strategy`: steps
|
| 265 |
+
- `prediction_loss_only`: True
|
| 266 |
+
- `per_device_train_batch_size`: 8
|
| 267 |
+
- `per_device_eval_batch_size`: 8
|
| 268 |
+
- `per_gpu_train_batch_size`: None
|
| 269 |
+
- `per_gpu_eval_batch_size`: None
|
| 270 |
+
- `gradient_accumulation_steps`: 1
|
| 271 |
+
- `eval_accumulation_steps`: None
|
| 272 |
+
- `torch_empty_cache_steps`: None
|
| 273 |
+
- `learning_rate`: 2e-05
|
| 274 |
+
- `weight_decay`: 0.0
|
| 275 |
+
- `adam_beta1`: 0.9
|
| 276 |
+
- `adam_beta2`: 0.999
|
| 277 |
+
- `adam_epsilon`: 1e-08
|
| 278 |
+
- `max_grad_norm`: 1.0
|
| 279 |
+
- `num_train_epochs`: 10
|
| 280 |
+
- `max_steps`: -1
|
| 281 |
+
- `lr_scheduler_type`: linear
|
| 282 |
+
- `lr_scheduler_kwargs`: {}
|
| 283 |
+
- `warmup_ratio`: 0.1
|
| 284 |
+
- `warmup_steps`: 0
|
| 285 |
+
- `log_level`: passive
|
| 286 |
+
- `log_level_replica`: warning
|
| 287 |
+
- `log_on_each_node`: True
|
| 288 |
+
- `logging_nan_inf_filter`: True
|
| 289 |
+
- `save_safetensors`: True
|
| 290 |
+
- `save_on_each_node`: False
|
| 291 |
+
- `save_only_model`: False
|
| 292 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 293 |
+
- `no_cuda`: False
|
| 294 |
+
- `use_cpu`: False
|
| 295 |
+
- `use_mps_device`: False
|
| 296 |
+
- `seed`: 42
|
| 297 |
+
- `data_seed`: None
|
| 298 |
+
- `jit_mode_eval`: False
|
| 299 |
+
- `use_ipex`: False
|
| 300 |
+
- `bf16`: False
|
| 301 |
+
- `fp16`: False
|
| 302 |
+
- `fp16_opt_level`: O1
|
| 303 |
+
- `half_precision_backend`: auto
|
| 304 |
+
- `bf16_full_eval`: False
|
| 305 |
+
- `fp16_full_eval`: False
|
| 306 |
+
- `tf32`: None
|
| 307 |
+
- `local_rank`: 0
|
| 308 |
+
- `ddp_backend`: None
|
| 309 |
+
- `tpu_num_cores`: None
|
| 310 |
+
- `tpu_metrics_debug`: False
|
| 311 |
+
- `debug`: []
|
| 312 |
+
- `dataloader_drop_last`: False
|
| 313 |
+
- `dataloader_num_workers`: 0
|
| 314 |
+
- `dataloader_prefetch_factor`: None
|
| 315 |
+
- `past_index`: -1
|
| 316 |
+
- `disable_tqdm`: False
|
| 317 |
+
- `remove_unused_columns`: True
|
| 318 |
+
- `label_names`: None
|
| 319 |
+
- `load_best_model_at_end`: False
|
| 320 |
+
- `ignore_data_skip`: False
|
| 321 |
+
- `fsdp`: []
|
| 322 |
+
- `fsdp_min_num_params`: 0
|
| 323 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 324 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 325 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 326 |
+
- `deepspeed`: None
|
| 327 |
+
- `label_smoothing_factor`: 0.0
|
| 328 |
+
- `optim`: adamw_torch
|
| 329 |
+
- `optim_args`: None
|
| 330 |
+
- `adafactor`: False
|
| 331 |
+
- `group_by_length`: False
|
| 332 |
+
- `length_column_name`: length
|
| 333 |
+
- `ddp_find_unused_parameters`: None
|
| 334 |
+
- `ddp_bucket_cap_mb`: None
|
| 335 |
+
- `ddp_broadcast_buffers`: False
|
| 336 |
+
- `dataloader_pin_memory`: True
|
| 337 |
+
- `dataloader_persistent_workers`: False
|
| 338 |
+
- `skip_memory_metrics`: True
|
| 339 |
+
- `use_legacy_prediction_loop`: False
|
| 340 |
+
- `push_to_hub`: False
|
| 341 |
+
- `resume_from_checkpoint`: None
|
| 342 |
+
- `hub_model_id`: None
|
| 343 |
+
- `hub_strategy`: every_save
|
| 344 |
+
- `hub_private_repo`: False
|
| 345 |
+
- `hub_always_push`: False
|
| 346 |
+
- `gradient_checkpointing`: False
|
| 347 |
+
- `gradient_checkpointing_kwargs`: None
|
| 348 |
+
- `include_inputs_for_metrics`: False
|
| 349 |
+
- `include_for_metrics`: []
|
| 350 |
+
- `eval_do_concat_batches`: True
|
| 351 |
+
- `fp16_backend`: auto
|
| 352 |
+
- `push_to_hub_model_id`: None
|
| 353 |
+
- `push_to_hub_organization`: None
|
| 354 |
+
- `mp_parameters`:
|
| 355 |
+
- `auto_find_batch_size`: False
|
| 356 |
+
- `full_determinism`: False
|
| 357 |
+
- `torchdynamo`: None
|
| 358 |
+
- `ray_scope`: last
|
| 359 |
+
- `ddp_timeout`: 1800
|
| 360 |
+
- `torch_compile`: False
|
| 361 |
+
- `torch_compile_backend`: None
|
| 362 |
+
- `torch_compile_mode`: None
|
| 363 |
+
- `dispatch_batches`: None
|
| 364 |
+
- `split_batches`: None
|
| 365 |
+
- `include_tokens_per_second`: False
|
| 366 |
+
- `include_num_input_tokens_seen`: False
|
| 367 |
+
- `neftune_noise_alpha`: None
|
| 368 |
+
- `optim_target_modules`: None
|
| 369 |
+
- `batch_eval_metrics`: False
|
| 370 |
+
- `eval_on_start`: False
|
| 371 |
+
- `use_liger_kernel`: False
|
| 372 |
+
- `eval_use_gather_object`: False
|
| 373 |
+
- `average_tokens_across_devices`: False
|
| 374 |
+
- `prompts`: None
|
| 375 |
+
- `batch_sampler`: batch_sampler
|
| 376 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 377 |
+
|
| 378 |
+
</details>
|
| 379 |
+
|
| 380 |
+
### Training Logs
|
| 381 |
+
<details><summary>Click to expand</summary>
|
| 382 |
+
|
| 383 |
+
| Epoch | Step | Training Loss | en-sa loss | en-sa_negative_mse | en-sa_mean_accuracy |
|
| 384 |
+
|:------:|:-----:|:-------------:|:----------:|:------------------:|:-------------------:|
|
| 385 |
+
| 0.0124 | 100 | 0.6774 | - | - | - |
|
| 386 |
+
| 0.0248 | 200 | 0.6328 | - | - | - |
|
| 387 |
+
| 0.0372 | 300 | 0.5541 | - | - | - |
|
| 388 |
+
| 0.0496 | 400 | 0.4007 | - | - | - |
|
| 389 |
+
| 0.0620 | 500 | 0.3031 | - | - | - |
|
| 390 |
+
| 0.0745 | 600 | 0.2789 | - | - | - |
|
| 391 |
+
| 0.0869 | 700 | 0.2674 | - | - | - |
|
| 392 |
+
| 0.0993 | 800 | 0.2603 | - | - | - |
|
| 393 |
+
| 0.1117 | 900 | 0.2564 | - | - | - |
|
| 394 |
+
| 0.1241 | 1000 | 0.254 | - | - | - |
|
| 395 |
+
| 0.1365 | 1100 | 0.2496 | - | - | - |
|
| 396 |
+
| 0.1489 | 1200 | 0.2486 | - | - | - |
|
| 397 |
+
| 0.1613 | 1300 | 0.2476 | - | - | - |
|
| 398 |
+
| 0.1737 | 1400 | 0.2487 | - | - | - |
|
| 399 |
+
| 0.1861 | 1500 | 0.2439 | - | - | - |
|
| 400 |
+
| 0.1985 | 1600 | 0.2441 | - | - | - |
|
| 401 |
+
| 0.2109 | 1700 | 0.2427 | - | - | - |
|
| 402 |
+
| 0.2234 | 1800 | 0.2414 | - | - | - |
|
| 403 |
+
| 0.2358 | 1900 | 0.2395 | - | - | - |
|
| 404 |
+
| 0.2482 | 2000 | 0.2395 | - | - | - |
|
| 405 |
+
| 0.2606 | 2100 | 0.2383 | - | - | - |
|
| 406 |
+
| 0.2730 | 2200 | 0.2363 | - | - | - |
|
| 407 |
+
| 0.2854 | 2300 | 0.2348 | - | - | - |
|
| 408 |
+
| 0.2978 | 2400 | 0.2316 | - | - | - |
|
| 409 |
+
| 0.3102 | 2500 | 0.235 | - | - | - |
|
| 410 |
+
| 0.3226 | 2600 | 0.2328 | - | - | - |
|
| 411 |
+
| 0.3350 | 2700 | 0.2307 | - | - | - |
|
| 412 |
+
| 0.3474 | 2800 | 0.2295 | - | - | - |
|
| 413 |
+
| 0.3598 | 2900 | 0.2267 | - | - | - |
|
| 414 |
+
| 0.3723 | 3000 | 0.2246 | - | - | - |
|
| 415 |
+
| 0.3847 | 3100 | 0.225 | - | - | - |
|
| 416 |
+
| 0.3971 | 3200 | 0.2239 | - | - | - |
|
| 417 |
+
| 0.4095 | 3300 | 0.2201 | - | - | - |
|
| 418 |
+
| 0.4219 | 3400 | 0.2149 | - | - | - |
|
| 419 |
+
| 0.4343 | 3500 | 0.2161 | - | - | - |
|
| 420 |
+
| 0.4467 | 3600 | 0.2168 | - | - | - |
|
| 421 |
+
| 0.4591 | 3700 | 0.212 | - | - | - |
|
| 422 |
+
| 0.4715 | 3800 | 0.2135 | - | - | - |
|
| 423 |
+
| 0.4839 | 3900 | 0.2087 | - | - | - |
|
| 424 |
+
| 0.4963 | 4000 | 0.2083 | - | - | - |
|
| 425 |
+
| 0.5087 | 4100 | 0.2061 | - | - | - |
|
| 426 |
+
| 0.5212 | 4200 | 0.2084 | - | - | - |
|
| 427 |
+
| 0.5336 | 4300 | 0.2011 | - | - | - |
|
| 428 |
+
| 0.5460 | 4400 | 0.2023 | - | - | - |
|
| 429 |
+
| 0.5584 | 4500 | 0.2 | - | - | - |
|
| 430 |
+
| 0.5708 | 4600 | 0.2006 | - | - | - |
|
| 431 |
+
| 0.5832 | 4700 | 0.1987 | - | - | - |
|
| 432 |
+
| 0.5956 | 4800 | 0.1946 | - | - | - |
|
| 433 |
+
| 0.6080 | 4900 | 0.197 | - | - | - |
|
| 434 |
+
| 0.6204 | 5000 | 0.1962 | - | - | - |
|
| 435 |
+
| 0.6328 | 5100 | 0.192 | - | - | - |
|
| 436 |
+
| 0.6452 | 5200 | 0.1931 | - | - | - |
|
| 437 |
+
| 0.6576 | 5300 | 0.1928 | - | - | - |
|
| 438 |
+
| 0.6701 | 5400 | 0.1896 | - | - | - |
|
| 439 |
+
| 0.6825 | 5500 | 0.1906 | - | - | - |
|
| 440 |
+
| 0.6949 | 5600 | 0.1882 | - | - | - |
|
| 441 |
+
| 0.7073 | 5700 | 0.1867 | - | - | - |
|
| 442 |
+
| 0.7197 | 5800 | 0.1867 | - | - | - |
|
| 443 |
+
| 0.7321 | 5900 | 0.1847 | - | - | - |
|
| 444 |
+
| 0.7445 | 6000 | 0.186 | - | - | - |
|
| 445 |
+
| 0.7569 | 6100 | 0.1843 | - | - | - |
|
| 446 |
+
| 0.7693 | 6200 | 0.1806 | - | - | - |
|
| 447 |
+
| 0.7817 | 6300 | 0.1812 | - | - | - |
|
| 448 |
+
| 0.7941 | 6400 | 0.1779 | - | - | - |
|
| 449 |
+
| 0.8066 | 6500 | 0.178 | - | - | - |
|
| 450 |
+
| 0.8190 | 6600 | 0.1778 | - | - | - |
|
| 451 |
+
| 0.8314 | 6700 | 0.1769 | - | - | - |
|
| 452 |
+
| 0.8438 | 6800 | 0.1768 | - | - | - |
|
| 453 |
+
| 0.8562 | 6900 | 0.1753 | - | - | - |
|
| 454 |
+
| 0.8686 | 7000 | 0.1749 | - | - | - |
|
| 455 |
+
| 0.8810 | 7100 | 0.1722 | - | - | - |
|
| 456 |
+
| 0.8934 | 7200 | 0.1727 | - | - | - |
|
| 457 |
+
| 0.9058 | 7300 | 0.1736 | - | - | - |
|
| 458 |
+
| 0.9182 | 7400 | 0.1717 | - | - | - |
|
| 459 |
+
| 0.9306 | 7500 | 0.1691 | - | - | - |
|
| 460 |
+
| 0.9430 | 7600 | 0.1678 | - | - | - |
|
| 461 |
+
| 0.9555 | 7700 | 0.1709 | - | - | - |
|
| 462 |
+
| 0.9679 | 7800 | 0.168 | - | - | - |
|
| 463 |
+
| 0.9803 | 7900 | 0.167 | - | - | - |
|
| 464 |
+
| 0.9927 | 8000 | 0.1647 | - | - | - |
|
| 465 |
+
| 1.0051 | 8100 | 0.1658 | - | - | - |
|
| 466 |
+
| 1.0175 | 8200 | 0.1661 | - | - | - |
|
| 467 |
+
| 1.0299 | 8300 | 0.1629 | - | - | - |
|
| 468 |
+
| 1.0423 | 8400 | 0.1646 | - | - | - |
|
| 469 |
+
| 1.0547 | 8500 | 0.1631 | - | - | - |
|
| 470 |
+
| 1.0671 | 8600 | 0.1603 | - | - | - |
|
| 471 |
+
| 1.0795 | 8700 | 0.1608 | - | - | - |
|
| 472 |
+
| 1.0919 | 8800 | 0.1605 | - | - | - |
|
| 473 |
+
| 1.1044 | 8900 | 0.1593 | - | - | - |
|
| 474 |
+
| 1.1168 | 9000 | 0.1598 | - | - | - |
|
| 475 |
+
| 1.1292 | 9100 | 0.158 | - | - | - |
|
| 476 |
+
| 1.1416 | 9200 | 0.1561 | - | - | - |
|
| 477 |
+
| 1.1540 | 9300 | 0.1562 | - | - | - |
|
| 478 |
+
| 1.1664 | 9400 | 0.1563 | - | - | - |
|
| 479 |
+
| 1.1788 | 9500 | 0.1545 | - | - | - |
|
| 480 |
+
| 1.1912 | 9600 | 0.1525 | - | - | - |
|
| 481 |
+
| 1.2036 | 9700 | 0.1531 | - | - | - |
|
| 482 |
+
| 1.2160 | 9800 | 0.1534 | - | - | - |
|
| 483 |
+
| 1.2284 | 9900 | 0.1525 | - | - | - |
|
| 484 |
+
| 1.2408 | 10000 | 0.1515 | 0.1755 | -19.4347 | 0.7575 |
|
| 485 |
+
| 1.2533 | 10100 | 0.152 | - | - | - |
|
| 486 |
+
| 1.2657 | 10200 | 0.1507 | - | - | - |
|
| 487 |
+
| 1.2781 | 10300 | 0.1492 | - | - | - |
|
| 488 |
+
| 1.2905 | 10400 | 0.1485 | - | - | - |
|
| 489 |
+
| 1.3029 | 10500 | 0.1488 | - | - | - |
|
| 490 |
+
| 1.3153 | 10600 | 0.1496 | - | - | - |
|
| 491 |
+
| 1.3277 | 10700 | 0.1495 | - | - | - |
|
| 492 |
+
| 1.3401 | 10800 | 0.1475 | - | - | - |
|
| 493 |
+
| 1.3525 | 10900 | 0.1484 | - | - | - |
|
| 494 |
+
| 1.3649 | 11000 | 0.1465 | - | - | - |
|
| 495 |
+
| 1.3773 | 11100 | 0.1481 | - | - | - |
|
| 496 |
+
| 1.3898 | 11200 | 0.1477 | - | - | - |
|
| 497 |
+
| 1.4022 | 11300 | 0.148 | - | - | - |
|
| 498 |
+
| 1.4146 | 11400 | 0.1445 | - | - | - |
|
| 499 |
+
| 1.4270 | 11500 | 0.1429 | - | - | - |
|
| 500 |
+
| 1.4394 | 11600 | 0.1443 | - | - | - |
|
| 501 |
+
| 1.4518 | 11700 | 0.144 | - | - | - |
|
| 502 |
+
| 1.4642 | 11800 | 0.1455 | - | - | - |
|
| 503 |
+
| 1.4766 | 11900 | 0.1438 | - | - | - |
|
| 504 |
+
| 1.4890 | 12000 | 0.1425 | - | - | - |
|
| 505 |
+
| 1.5014 | 12100 | 0.1427 | - | - | - |
|
| 506 |
+
| 1.5138 | 12200 | 0.1426 | - | - | - |
|
| 507 |
+
| 1.5262 | 12300 | 0.1422 | - | - | - |
|
| 508 |
+
| 1.5387 | 12400 | 0.1395 | - | - | - |
|
| 509 |
+
| 1.5511 | 12500 | 0.1403 | - | - | - |
|
| 510 |
+
| 1.5635 | 12600 | 0.1414 | - | - | - |
|
| 511 |
+
| 1.5759 | 12700 | 0.1404 | - | - | - |
|
| 512 |
+
| 1.5883 | 12800 | 0.1391 | - | - | - |
|
| 513 |
+
| 1.6007 | 12900 | 0.1377 | - | - | - |
|
| 514 |
+
| 1.6131 | 13000 | 0.1408 | - | - | - |
|
| 515 |
+
| 1.6255 | 13100 | 0.1378 | - | - | - |
|
| 516 |
+
| 1.6379 | 13200 | 0.1387 | - | - | - |
|
| 517 |
+
| 1.6503 | 13300 | 0.1383 | - | - | - |
|
| 518 |
+
| 1.6627 | 13400 | 0.1393 | - | - | - |
|
| 519 |
+
| 1.6751 | 13500 | 0.137 | - | - | - |
|
| 520 |
+
| 1.6876 | 13600 | 0.1386 | - | - | - |
|
| 521 |
+
| 1.7000 | 13700 | 0.1366 | - | - | - |
|
| 522 |
+
| 1.7124 | 13800 | 0.137 | - | - | - |
|
| 523 |
+
| 1.7248 | 13900 | 0.1365 | - | - | - |
|
| 524 |
+
| 1.7372 | 14000 | 0.1367 | - | - | - |
|
| 525 |
+
| 1.7496 | 14100 | 0.1379 | - | - | - |
|
| 526 |
+
| 1.7620 | 14200 | 0.1355 | - | - | - |
|
| 527 |
+
| 1.7744 | 14300 | 0.1349 | - | - | - |
|
| 528 |
+
| 1.7868 | 14400 | 0.134 | - | - | - |
|
| 529 |
+
| 1.7992 | 14500 | 0.133 | - | - | - |
|
| 530 |
+
| 1.8116 | 14600 | 0.1337 | - | - | - |
|
| 531 |
+
| 1.8240 | 14700 | 0.1332 | - | - | - |
|
| 532 |
+
| 1.8365 | 14800 | 0.1335 | - | - | - |
|
| 533 |
+
| 1.8489 | 14900 | 0.1334 | - | - | - |
|
| 534 |
+
| 1.8613 | 15000 | 0.1333 | - | - | - |
|
| 535 |
+
| 1.8737 | 15100 | 0.1329 | - | - | - |
|
| 536 |
+
| 1.8861 | 15200 | 0.132 | - | - | - |
|
| 537 |
+
| 1.8985 | 15300 | 0.1322 | - | - | - |
|
| 538 |
+
| 1.9109 | 15400 | 0.1334 | - | - | - |
|
| 539 |
+
| 1.9233 | 15500 | 0.1308 | - | - | - |
|
| 540 |
+
| 1.9357 | 15600 | 0.1302 | - | - | - |
|
| 541 |
+
| 1.9481 | 15700 | 0.1313 | - | - | - |
|
| 542 |
+
| 1.9605 | 15800 | 0.1319 | - | - | - |
|
| 543 |
+
| 1.9729 | 15900 | 0.1305 | - | - | - |
|
| 544 |
+
| 1.9854 | 16000 | 0.1299 | - | - | - |
|
| 545 |
+
| 1.9978 | 16100 | 0.1288 | - | - | - |
|
| 546 |
+
| 2.0102 | 16200 | 0.1313 | - | - | - |
|
| 547 |
+
| 2.0226 | 16300 | 0.1299 | - | - | - |
|
| 548 |
+
| 2.0350 | 16400 | 0.1304 | - | - | - |
|
| 549 |
+
| 2.0474 | 16500 | 0.1304 | - | - | - |
|
| 550 |
+
| 2.0598 | 16600 | 0.1292 | - | - | - |
|
| 551 |
+
| 2.0722 | 16700 | 0.1276 | - | - | - |
|
| 552 |
+
| 2.0846 | 16800 | 0.1283 | - | - | - |
|
| 553 |
+
| 2.0970 | 16900 | 0.129 | - | - | - |
|
| 554 |
+
| 2.1094 | 17000 | 0.1294 | - | - | - |
|
| 555 |
+
| 2.1219 | 17100 | 0.1281 | - | - | - |
|
| 556 |
+
| 2.1343 | 17200 | 0.1276 | - | - | - |
|
| 557 |
+
| 2.1467 | 17300 | 0.1266 | - | - | - |
|
| 558 |
+
| 2.1591 | 17400 | 0.1263 | - | - | - |
|
| 559 |
+
| 2.1715 | 17500 | 0.1273 | - | - | - |
|
| 560 |
+
| 2.1839 | 17600 | 0.1263 | - | - | - |
|
| 561 |
+
| 2.1963 | 17700 | 0.1257 | - | - | - |
|
| 562 |
+
| 2.2087 | 17800 | 0.1256 | - | - | - |
|
| 563 |
+
| 2.2211 | 17900 | 0.1269 | - | - | - |
|
| 564 |
+
| 2.2335 | 18000 | 0.1256 | - | - | - |
|
| 565 |
+
| 2.2459 | 18100 | 0.1255 | - | - | - |
|
| 566 |
+
| 2.2583 | 18200 | 0.126 | - | - | - |
|
| 567 |
+
| 2.2708 | 18300 | 0.1243 | - | - | - |
|
| 568 |
+
| 2.2832 | 18400 | 0.125 | - | - | - |
|
| 569 |
+
| 2.2956 | 18500 | 0.1242 | - | - | - |
|
| 570 |
+
| 2.3080 | 18600 | 0.1249 | - | - | - |
|
| 571 |
+
| 2.3204 | 18700 | 0.1248 | - | - | - |
|
| 572 |
+
| 2.3328 | 18800 | 0.1248 | - | - | - |
|
| 573 |
+
| 2.3452 | 18900 | 0.1245 | - | - | - |
|
| 574 |
+
| 2.3576 | 19000 | 0.124 | - | - | - |
|
| 575 |
+
| 2.3700 | 19100 | 0.1246 | - | - | - |
|
| 576 |
+
| 2.3824 | 19200 | 0.125 | - | - | - |
|
| 577 |
+
| 2.3948 | 19300 | 0.1251 | - | - | - |
|
| 578 |
+
| 2.4072 | 19400 | 0.1243 | - | - | - |
|
| 579 |
+
| 2.4197 | 19500 | 0.1218 | - | - | - |
|
| 580 |
+
| 2.4321 | 19600 | 0.1217 | - | - | - |
|
| 581 |
+
| 2.4445 | 19700 | 0.1239 | - | - | - |
|
| 582 |
+
| 2.4569 | 19800 | 0.1219 | - | - | - |
|
| 583 |
+
| 2.4693 | 19900 | 0.1241 | - | - | - |
|
| 584 |
+
| 2.4817 | 20000 | 0.1222 | 0.1380 | -16.1712 | 0.864 |
|
| 585 |
+
| 2.4941 | 20100 | 0.1223 | - | - | - |
|
| 586 |
+
| 2.5065 | 20200 | 0.1216 | - | - | - |
|
| 587 |
+
| 2.5189 | 20300 | 0.1231 | - | - | - |
|
| 588 |
+
| 2.5313 | 20400 | 0.1208 | - | - | - |
|
| 589 |
+
| 2.5437 | 20500 | 0.1208 | - | - | - |
|
| 590 |
+
| 2.5561 | 20600 | 0.1202 | - | - | - |
|
| 591 |
+
| 2.5686 | 20700 | 0.1225 | - | - | - |
|
| 592 |
+
| 2.5810 | 20800 | 0.1209 | - | - | - |
|
| 593 |
+
| 2.5934 | 20900 | 0.1201 | - | - | - |
|
| 594 |
+
| 2.6058 | 21000 | 0.1203 | - | - | - |
|
| 595 |
+
| 2.6182 | 21100 | 0.1212 | - | - | - |
|
| 596 |
+
| 2.6306 | 21200 | 0.1199 | - | - | - |
|
| 597 |
+
| 2.6430 | 21300 | 0.1198 | - | - | - |
|
| 598 |
+
| 2.6554 | 21400 | 0.1212 | - | - | - |
|
| 599 |
+
| 2.6678 | 21500 | 0.1207 | - | - | - |
|
| 600 |
+
| 2.6802 | 21600 | 0.1199 | - | - | - |
|
| 601 |
+
| 2.6926 | 21700 | 0.1198 | - | - | - |
|
| 602 |
+
| 2.7051 | 21800 | 0.1196 | - | - | - |
|
| 603 |
+
| 2.7175 | 21900 | 0.1196 | - | - | - |
|
| 604 |
+
| 2.7299 | 22000 | 0.119 | - | - | - |
|
| 605 |
+
| 2.7423 | 22100 | 0.1197 | - | - | - |
|
| 606 |
+
| 2.7547 | 22200 | 0.1201 | - | - | - |
|
| 607 |
+
| 2.7671 | 22300 | 0.1187 | - | - | - |
|
| 608 |
+
| 2.7795 | 22400 | 0.1184 | - | - | - |
|
| 609 |
+
| 2.7919 | 22500 | 0.1177 | - | - | - |
|
| 610 |
+
| 2.8043 | 22600 | 0.1167 | - | - | - |
|
| 611 |
+
| 2.8167 | 22700 | 0.1187 | - | - | - |
|
| 612 |
+
| 2.8291 | 22800 | 0.1168 | - | - | - |
|
| 613 |
+
| 2.8415 | 22900 | 0.1174 | - | - | - |
|
| 614 |
+
| 2.8540 | 23000 | 0.1181 | - | - | - |
|
| 615 |
+
| 2.8664 | 23100 | 0.1185 | - | - | - |
|
| 616 |
+
| 2.8788 | 23200 | 0.1167 | - | - | - |
|
| 617 |
+
| 2.8912 | 23300 | 0.1169 | - | - | - |
|
| 618 |
+
| 2.9036 | 23400 | 0.1171 | - | - | - |
|
| 619 |
+
| 2.9160 | 23500 | 0.1179 | - | - | - |
|
| 620 |
+
| 2.9284 | 23600 | 0.116 | - | - | - |
|
| 621 |
+
| 2.9408 | 23700 | 0.1148 | - | - | - |
|
| 622 |
+
| 2.9532 | 23800 | 0.1183 | - | - | - |
|
| 623 |
+
| 2.9656 | 23900 | 0.1162 | - | - | - |
|
| 624 |
+
| 2.9780 | 24000 | 0.1165 | - | - | - |
|
| 625 |
+
| 2.9904 | 24100 | 0.115 | - | - | - |
|
| 626 |
+
| 3.0029 | 24200 | 0.1155 | - | - | - |
|
| 627 |
+
| 3.0153 | 24300 | 0.1177 | - | - | - |
|
| 628 |
+
| 3.0277 | 24400 | 0.1145 | - | - | - |
|
| 629 |
+
| 3.0401 | 24500 | 0.1175 | - | - | - |
|
| 630 |
+
| 3.0525 | 24600 | 0.1159 | - | - | - |
|
| 631 |
+
| 3.0649 | 24700 | 0.1149 | - | - | - |
|
| 632 |
+
| 3.0773 | 24800 | 0.1144 | - | - | - |
|
| 633 |
+
| 3.0897 | 24900 | 0.1152 | - | - | - |
|
| 634 |
+
| 3.1021 | 25000 | 0.1157 | - | - | - |
|
| 635 |
+
| 3.1145 | 25100 | 0.116 | - | - | - |
|
| 636 |
+
| 3.1269 | 25200 | 0.1145 | - | - | - |
|
| 637 |
+
| 3.1393 | 25300 | 0.1139 | - | - | - |
|
| 638 |
+
| 3.1518 | 25400 | 0.1141 | - | - | - |
|
| 639 |
+
| 3.1642 | 25500 | 0.114 | - | - | - |
|
| 640 |
+
| 3.1766 | 25600 | 0.1144 | - | - | - |
|
| 641 |
+
| 3.1890 | 25700 | 0.113 | - | - | - |
|
| 642 |
+
| 3.2014 | 25800 | 0.1133 | - | - | - |
|
| 643 |
+
| 3.2138 | 25900 | 0.1136 | - | - | - |
|
| 644 |
+
| 3.2262 | 26000 | 0.1138 | - | - | - |
|
| 645 |
+
| 3.2386 | 26100 | 0.1128 | - | - | - |
|
| 646 |
+
| 3.2510 | 26200 | 0.1144 | - | - | - |
|
| 647 |
+
| 3.2634 | 26300 | 0.1126 | - | - | - |
|
| 648 |
+
| 3.2758 | 26400 | 0.1126 | - | - | - |
|
| 649 |
+
| 3.2882 | 26500 | 0.1121 | - | - | - |
|
| 650 |
+
| 3.3007 | 26600 | 0.1126 | - | - | - |
|
| 651 |
+
| 3.3131 | 26700 | 0.1134 | - | - | - |
|
| 652 |
+
| 3.3255 | 26800 | 0.1131 | - | - | - |
|
| 653 |
+
| 3.3379 | 26900 | 0.1122 | - | - | - |
|
| 654 |
+
| 3.3503 | 27000 | 0.113 | - | - | - |
|
| 655 |
+
| 3.3627 | 27100 | 0.1124 | - | - | - |
|
| 656 |
+
| 3.3751 | 27200 | 0.1134 | - | - | - |
|
| 657 |
+
| 3.3875 | 27300 | 0.1142 | - | - | - |
|
| 658 |
+
| 3.3999 | 27400 | 0.113 | - | - | - |
|
| 659 |
+
| 3.4123 | 27500 | 0.1125 | - | - | - |
|
| 660 |
+
| 3.4247 | 27600 | 0.1102 | - | - | - |
|
| 661 |
+
| 3.4372 | 27700 | 0.1116 | - | - | - |
|
| 662 |
+
| 3.4496 | 27800 | 0.1116 | - | - | - |
|
| 663 |
+
| 3.4620 | 27900 | 0.1122 | - | - | - |
|
| 664 |
+
| 3.4744 | 28000 | 0.112 | - | - | - |
|
| 665 |
+
| 3.4868 | 28100 | 0.1114 | - | - | - |
|
| 666 |
+
| 3.4992 | 28200 | 0.1112 | - | - | - |
|
| 667 |
+
| 3.5116 | 28300 | 0.1112 | - | - | - |
|
| 668 |
+
| 3.5240 | 28400 | 0.1125 | - | - | - |
|
| 669 |
+
| 3.5364 | 28500 | 0.1095 | - | - | - |
|
| 670 |
+
| 3.5488 | 28600 | 0.1105 | - | - | - |
|
| 671 |
+
| 3.5612 | 28700 | 0.1107 | - | - | - |
|
| 672 |
+
| 3.5736 | 28800 | 0.1106 | - | - | - |
|
| 673 |
+
| 3.5861 | 28900 | 0.1105 | - | - | - |
|
| 674 |
+
| 3.5985 | 29000 | 0.1095 | - | - | - |
|
| 675 |
+
| 3.6109 | 29100 | 0.111 | - | - | - |
|
| 676 |
+
| 3.6233 | 29200 | 0.11 | - | - | - |
|
| 677 |
+
| 3.6357 | 29300 | 0.11 | - | - | - |
|
| 678 |
+
| 3.6481 | 29400 | 0.1111 | - | - | - |
|
| 679 |
+
| 3.6605 | 29500 | 0.1116 | - | - | - |
|
| 680 |
+
| 3.6729 | 29600 | 0.1095 | - | - | - |
|
| 681 |
+
| 3.6853 | 29700 | 0.1104 | - | - | - |
|
| 682 |
+
| 3.6977 | 29800 | 0.1095 | - | - | - |
|
| 683 |
+
| 3.7101 | 29900 | 0.1098 | - | - | - |
|
| 684 |
+
| 3.7225 | 30000 | 0.1095 | 0.1235 | -14.8315 | 0.8875 |
|
| 685 |
+
| 3.7350 | 30100 | 0.1104 | - | - | - |
|
| 686 |
+
| 3.7474 | 30200 | 0.1099 | - | - | - |
|
| 687 |
+
| 3.7598 | 30300 | 0.1106 | - | - | - |
|
| 688 |
+
| 3.7722 | 30400 | 0.1085 | - | - | - |
|
| 689 |
+
| 3.7846 | 30500 | 0.1086 | - | - | - |
|
| 690 |
+
| 3.7970 | 30600 | 0.108 | - | - | - |
|
| 691 |
+
| 3.8094 | 30700 | 0.1087 | - | - | - |
|
| 692 |
+
| 3.8218 | 30800 | 0.1081 | - | - | - |
|
| 693 |
+
| 3.8342 | 30900 | 0.1084 | - | - | - |
|
| 694 |
+
| 3.8466 | 31000 | 0.1088 | - | - | - |
|
| 695 |
+
| 3.8590 | 31100 | 0.1086 | - | - | - |
|
| 696 |
+
| 3.8714 | 31200 | 0.1091 | - | - | - |
|
| 697 |
+
| 3.8839 | 31300 | 0.1074 | - | - | - |
|
| 698 |
+
| 3.8963 | 31400 | 0.1079 | - | - | - |
|
| 699 |
+
| 3.9087 | 31500 | 0.11 | - | - | - |
|
| 700 |
+
| 3.9211 | 31600 | 0.1077 | - | - | - |
|
| 701 |
+
| 3.9335 | 31700 | 0.1072 | - | - | - |
|
| 702 |
+
| 3.9459 | 31800 | 0.1072 | - | - | - |
|
| 703 |
+
| 3.9583 | 31900 | 0.1089 | - | - | - |
|
| 704 |
+
| 3.9707 | 32000 | 0.1079 | - | - | - |
|
| 705 |
+
| 3.9831 | 32100 | 0.1072 | - | - | - |
|
| 706 |
+
| 3.9955 | 32200 | 0.1064 | - | - | - |
|
| 707 |
+
| 4.0079 | 32300 | 0.1081 | - | - | - |
|
| 708 |
+
| 4.0203 | 32400 | 0.1083 | - | - | - |
|
| 709 |
+
| 4.0328 | 32500 | 0.1074 | - | - | - |
|
| 710 |
+
| 4.0452 | 32600 | 0.1084 | - | - | - |
|
| 711 |
+
| 4.0576 | 32700 | 0.107 | - | - | - |
|
| 712 |
+
| 4.0700 | 32800 | 0.1065 | - | - | - |
|
| 713 |
+
| 4.0824 | 32900 | 0.1071 | - | - | - |
|
| 714 |
+
| 4.0948 | 33000 | 0.107 | - | - | - |
|
| 715 |
+
| 4.1072 | 33100 | 0.1077 | - | - | - |
|
| 716 |
+
| 4.1196 | 33200 | 0.107 | - | - | - |
|
| 717 |
+
| 4.1320 | 33300 | 0.1067 | - | - | - |
|
| 718 |
+
| 4.1444 | 33400 | 0.1057 | - | - | - |
|
| 719 |
+
| 4.1568 | 33500 | 0.1062 | - | - | - |
|
| 720 |
+
| 4.1693 | 33600 | 0.1071 | - | - | - |
|
| 721 |
+
| 4.1817 | 33700 | 0.1055 | - | - | - |
|
| 722 |
+
| 4.1941 | 33800 | 0.106 | - | - | - |
|
| 723 |
+
| 4.2065 | 33900 | 0.1048 | - | - | - |
|
| 724 |
+
| 4.2189 | 34000 | 0.1069 | - | - | - |
|
| 725 |
+
| 4.2313 | 34100 | 0.1054 | - | - | - |
|
| 726 |
+
| 4.2437 | 34200 | 0.1055 | - | - | - |
|
| 727 |
+
| 4.2561 | 34300 | 0.1058 | - | - | - |
|
| 728 |
+
| 4.2685 | 34400 | 0.1057 | - | - | - |
|
| 729 |
+
| 4.2809 | 34500 | 0.1045 | - | - | - |
|
| 730 |
+
| 4.2933 | 34600 | 0.1055 | - | - | - |
|
| 731 |
+
| 4.3057 | 34700 | 0.1055 | - | - | - |
|
| 732 |
+
| 4.3182 | 34800 | 0.1053 | - | - | - |
|
| 733 |
+
| 4.3306 | 34900 | 0.1056 | - | - | - |
|
| 734 |
+
| 4.3430 | 35000 | 0.1051 | - | - | - |
|
| 735 |
+
| 4.3554 | 35100 | 0.1059 | - | - | - |
|
| 736 |
+
| 4.3678 | 35200 | 0.1054 | - | - | - |
|
| 737 |
+
| 4.3802 | 35300 | 0.1064 | - | - | - |
|
| 738 |
+
| 4.3926 | 35400 | 0.1064 | - | - | - |
|
| 739 |
+
| 4.4050 | 35500 | 0.106 | - | - | - |
|
| 740 |
+
| 4.4174 | 35600 | 0.1037 | - | - | - |
|
| 741 |
+
| 4.4298 | 35700 | 0.1044 | - | - | - |
|
| 742 |
+
| 4.4422 | 35800 | 0.1052 | - | - | - |
|
| 743 |
+
| 4.4546 | 35900 | 0.1041 | - | - | - |
|
| 744 |
+
| 4.4671 | 36000 | 0.1057 | - | - | - |
|
| 745 |
+
| 4.4795 | 36100 | 0.1044 | - | - | - |
|
| 746 |
+
| 4.4919 | 36200 | 0.1049 | - | - | - |
|
| 747 |
+
| 4.5043 | 36300 | 0.1042 | - | - | - |
|
| 748 |
+
| 4.5167 | 36400 | 0.1055 | - | - | - |
|
| 749 |
+
| 4.5291 | 36500 | 0.1035 | - | - | - |
|
| 750 |
+
| 4.5415 | 36600 | 0.1038 | - | - | - |
|
| 751 |
+
| 4.5539 | 36700 | 0.1033 | - | - | - |
|
| 752 |
+
| 4.5663 | 36800 | 0.1046 | - | - | - |
|
| 753 |
+
| 4.5787 | 36900 | 0.104 | - | - | - |
|
| 754 |
+
| 4.5911 | 37000 | 0.1038 | - | - | - |
|
| 755 |
+
| 4.6035 | 37100 | 0.1031 | - | - | - |
|
| 756 |
+
| 4.6160 | 37200 | 0.1051 | - | - | - |
|
| 757 |
+
| 4.6284 | 37300 | 0.1034 | - | - | - |
|
| 758 |
+
| 4.6408 | 37400 | 0.1034 | - | - | - |
|
| 759 |
+
| 4.6532 | 37500 | 0.1045 | - | - | - |
|
| 760 |
+
| 4.6656 | 37600 | 0.1049 | - | - | - |
|
| 761 |
+
| 4.6780 | 37700 | 0.1034 | - | - | - |
|
| 762 |
+
| 4.6904 | 37800 | 0.1043 | - | - | - |
|
| 763 |
+
| 4.7028 | 37900 | 0.1026 | - | - | - |
|
| 764 |
+
| 4.7152 | 38000 | 0.104 | - | - | - |
|
| 765 |
+
| 4.7276 | 38100 | 0.103 | - | - | - |
|
| 766 |
+
| 4.7400 | 38200 | 0.1034 | - | - | - |
|
| 767 |
+
| 4.7525 | 38300 | 0.1045 | - | - | - |
|
| 768 |
+
| 4.7649 | 38400 | 0.1032 | - | - | - |
|
| 769 |
+
| 4.7773 | 38500 | 0.1029 | - | - | - |
|
| 770 |
+
| 4.7897 | 38600 | 0.1026 | - | - | - |
|
| 771 |
+
| 4.8021 | 38700 | 0.1017 | - | - | - |
|
| 772 |
+
| 4.8145 | 38800 | 0.103 | - | - | - |
|
| 773 |
+
| 4.8269 | 38900 | 0.1021 | - | - | - |
|
| 774 |
+
| 4.8393 | 39000 | 0.1029 | - | - | - |
|
| 775 |
+
| 4.8517 | 39100 | 0.1029 | - | - | - |
|
| 776 |
+
| 4.8641 | 39200 | 0.1033 | - | - | - |
|
| 777 |
+
| 4.8765 | 39300 | 0.1021 | - | - | - |
|
| 778 |
+
| 4.8889 | 39400 | 0.102 | - | - | - |
|
| 779 |
+
| 4.9014 | 39500 | 0.1027 | - | - | - |
|
| 780 |
+
| 4.9138 | 39600 | 0.1032 | - | - | - |
|
| 781 |
+
| 4.9262 | 39700 | 0.1018 | - | - | - |
|
| 782 |
+
| 4.9386 | 39800 | 0.1011 | - | - | - |
|
| 783 |
+
| 4.9510 | 39900 | 0.103 | - | - | - |
|
| 784 |
+
| 4.9634 | 40000 | 0.1023 | 0.1152 | -14.0327 | 0.9 |
|
| 785 |
+
| 4.9758 | 40100 | 0.102 | - | - | - |
|
| 786 |
+
| 4.9882 | 40200 | 0.1018 | - | - | - |
|
| 787 |
+
| 5.0006 | 40300 | 0.1012 | - | - | - |
|
| 788 |
+
| 5.0130 | 40400 | 0.1029 | - | - | - |
|
| 789 |
+
| 5.0254 | 40500 | 0.1014 | - | - | - |
|
| 790 |
+
| 5.0378 | 40600 | 0.103 | - | - | - |
|
| 791 |
+
| 5.0503 | 40700 | 0.1019 | - | - | - |
|
| 792 |
+
| 5.0627 | 40800 | 0.1019 | - | - | - |
|
| 793 |
+
| 5.0751 | 40900 | 0.1003 | - | - | - |
|
| 794 |
+
| 5.0875 | 41000 | 0.1016 | - | - | - |
|
| 795 |
+
| 5.0999 | 41100 | 0.1019 | - | - | - |
|
| 796 |
+
| 5.1123 | 41200 | 0.1028 | - | - | - |
|
| 797 |
+
| 5.1247 | 41300 | 0.1011 | - | - | - |
|
| 798 |
+
| 5.1371 | 41400 | 0.1012 | - | - | - |
|
| 799 |
+
| 5.1495 | 41500 | 0.1005 | - | - | - |
|
| 800 |
+
| 5.1619 | 41600 | 0.101 | - | - | - |
|
| 801 |
+
| 5.1743 | 41700 | 0.101 | - | - | - |
|
| 802 |
+
| 5.1867 | 41800 | 0.1004 | - | - | - |
|
| 803 |
+
| 5.1992 | 41900 | 0.1006 | - | - | - |
|
| 804 |
+
| 5.2116 | 42000 | 0.101 | - | - | - |
|
| 805 |
+
| 5.2240 | 42100 | 0.1004 | - | - | - |
|
| 806 |
+
| 5.2364 | 42200 | 0.1006 | - | - | - |
|
| 807 |
+
| 5.2488 | 42300 | 0.1012 | - | - | - |
|
| 808 |
+
| 5.2612 | 42400 | 0.1005 | - | - | - |
|
| 809 |
+
| 5.2736 | 42500 | 0.0997 | - | - | - |
|
| 810 |
+
| 5.2860 | 42600 | 0.1004 | - | - | - |
|
| 811 |
+
| 5.2984 | 42700 | 0.0998 | - | - | - |
|
| 812 |
+
| 5.3108 | 42800 | 0.1008 | - | - | - |
|
| 813 |
+
| 5.3232 | 42900 | 0.1008 | - | - | - |
|
| 814 |
+
| 5.3356 | 43000 | 0.1001 | - | - | - |
|
| 815 |
+
| 5.3481 | 43100 | 0.1007 | - | - | - |
|
| 816 |
+
| 5.3605 | 43200 | 0.1005 | - | - | - |
|
| 817 |
+
| 5.3729 | 43300 | 0.1007 | - | - | - |
|
| 818 |
+
| 5.3853 | 43400 | 0.1019 | - | - | - |
|
| 819 |
+
| 5.3977 | 43500 | 0.1016 | - | - | - |
|
| 820 |
+
| 5.4101 | 43600 | 0.1004 | - | - | - |
|
| 821 |
+
| 5.4225 | 43700 | 0.0987 | - | - | - |
|
| 822 |
+
| 5.4349 | 43800 | 0.1001 | - | - | - |
|
| 823 |
+
| 5.4473 | 43900 | 0.1003 | - | - | - |
|
| 824 |
+
| 5.4597 | 44000 | 0.0996 | - | - | - |
|
| 825 |
+
| 5.4721 | 44100 | 0.1004 | - | - | - |
|
| 826 |
+
| 5.4846 | 44200 | 0.0994 | - | - | - |
|
| 827 |
+
| 5.4970 | 44300 | 0.1002 | - | - | - |
|
| 828 |
+
| 5.5094 | 44400 | 0.0996 | - | - | - |
|
| 829 |
+
| 5.5218 | 44500 | 0.1012 | - | - | - |
|
| 830 |
+
| 5.5342 | 44600 | 0.0983 | - | - | - |
|
| 831 |
+
| 5.5466 | 44700 | 0.0992 | - | - | - |
|
| 832 |
+
| 5.5590 | 44800 | 0.0987 | - | - | - |
|
| 833 |
+
| 5.5714 | 44900 | 0.1005 | - | - | - |
|
| 834 |
+
| 5.5838 | 45000 | 0.0996 | - | - | - |
|
| 835 |
+
| 5.5962 | 45100 | 0.0986 | - | - | - |
|
| 836 |
+
| 5.6086 | 45200 | 0.0995 | - | - | - |
|
| 837 |
+
| 5.6210 | 45300 | 0.0999 | - | - | - |
|
| 838 |
+
| 5.6335 | 45400 | 0.0984 | - | - | - |
|
| 839 |
+
| 5.6459 | 45500 | 0.1001 | - | - | - |
|
| 840 |
+
| 5.6583 | 45600 | 0.1006 | - | - | - |
|
| 841 |
+
| 5.6707 | 45700 | 0.0994 | - | - | - |
|
| 842 |
+
| 5.6831 | 45800 | 0.0994 | - | - | - |
|
| 843 |
+
| 5.6955 | 45900 | 0.0988 | - | - | - |
|
| 844 |
+
| 5.7079 | 46000 | 0.0985 | - | - | - |
|
| 845 |
+
| 5.7203 | 46100 | 0.0991 | - | - | - |
|
| 846 |
+
| 5.7327 | 46200 | 0.0996 | - | - | - |
|
| 847 |
+
| 5.7451 | 46300 | 0.0991 | - | - | - |
|
| 848 |
+
| 5.7575 | 46400 | 0.0997 | - | - | - |
|
| 849 |
+
| 5.7699 | 46500 | 0.0984 | - | - | - |
|
| 850 |
+
| 5.7824 | 46600 | 0.0987 | - | - | - |
|
| 851 |
+
| 5.7948 | 46700 | 0.0977 | - | - | - |
|
| 852 |
+
| 5.8072 | 46800 | 0.0984 | - | - | - |
|
| 853 |
+
| 5.8196 | 46900 | 0.0977 | - | - | - |
|
| 854 |
+
| 5.8320 | 47000 | 0.0987 | - | - | - |
|
| 855 |
+
| 5.8444 | 47100 | 0.0983 | - | - | - |
|
| 856 |
+
| 5.8568 | 47200 | 0.0985 | - | - | - |
|
| 857 |
+
| 5.8692 | 47300 | 0.0993 | - | - | - |
|
| 858 |
+
| 5.8816 | 47400 | 0.0974 | - | - | - |
|
| 859 |
+
| 5.8940 | 47500 | 0.0978 | - | - | - |
|
| 860 |
+
| 5.9064 | 47600 | 0.0996 | - | - | - |
|
| 861 |
+
| 5.9188 | 47700 | 0.0981 | - | - | - |
|
| 862 |
+
| 5.9313 | 47800 | 0.0981 | - | - | - |
|
| 863 |
+
| 5.9437 | 47900 | 0.0969 | - | - | - |
|
| 864 |
+
| 5.9561 | 48000 | 0.0997 | - | - | - |
|
| 865 |
+
| 5.9685 | 48100 | 0.098 | - | - | - |
|
| 866 |
+
| 5.9809 | 48200 | 0.0981 | - | - | - |
|
| 867 |
+
| 5.9933 | 48300 | 0.0969 | - | - | - |
|
| 868 |
+
| 6.0057 | 48400 | 0.0982 | - | - | - |
|
| 869 |
+
| 6.0181 | 48500 | 0.0983 | - | - | - |
|
| 870 |
+
| 6.0305 | 48600 | 0.0974 | - | - | - |
|
| 871 |
+
| 6.0429 | 48700 | 0.0991 | - | - | - |
|
| 872 |
+
| 6.0553 | 48800 | 0.0978 | - | - | - |
|
| 873 |
+
| 6.0678 | 48900 | 0.0973 | - | - | - |
|
| 874 |
+
| 6.0802 | 49000 | 0.0976 | - | - | - |
|
| 875 |
+
| 6.0926 | 49100 | 0.0978 | - | - | - |
|
| 876 |
+
| 6.1050 | 49200 | 0.0976 | - | - | - |
|
| 877 |
+
| 6.1174 | 49300 | 0.0981 | - | - | - |
|
| 878 |
+
| 6.1298 | 49400 | 0.0974 | - | - | - |
|
| 879 |
+
| 6.1422 | 49500 | 0.0967 | - | - | - |
|
| 880 |
+
| 6.1546 | 49600 | 0.0966 | - | - | - |
|
| 881 |
+
| 6.1670 | 49700 | 0.098 | - | - | - |
|
| 882 |
+
| 6.1794 | 49800 | 0.0967 | - | - | - |
|
| 883 |
+
| 6.1918 | 49900 | 0.0964 | - | - | - |
|
| 884 |
+
| 6.2042 | 50000 | 0.0966 | 0.1101 | -13.5564 | 0.9045 |
|
| 885 |
+
| 6.2167 | 50100 | 0.0975 | - | - | - |
|
| 886 |
+
| 6.2291 | 50200 | 0.0968 | - | - | - |
|
| 887 |
+
| 6.2415 | 50300 | 0.0972 | - | - | - |
|
| 888 |
+
| 6.2539 | 50400 | 0.0967 | - | - | - |
|
| 889 |
+
| 6.2663 | 50500 | 0.0971 | - | - | - |
|
| 890 |
+
| 6.2787 | 50600 | 0.0961 | - | - | - |
|
| 891 |
+
| 6.2911 | 50700 | 0.0967 | - | - | - |
|
| 892 |
+
| 6.3035 | 50800 | 0.0969 | - | - | - |
|
| 893 |
+
| 6.3159 | 50900 | 0.0965 | - | - | - |
|
| 894 |
+
| 6.3283 | 51000 | 0.0972 | - | - | - |
|
| 895 |
+
| 6.3407 | 51100 | 0.0967 | - | - | - |
|
| 896 |
+
| 6.3531 | 51200 | 0.0972 | - | - | - |
|
| 897 |
+
| 6.3656 | 51300 | 0.0965 | - | - | - |
|
| 898 |
+
| 6.3780 | 51400 | 0.0978 | - | - | - |
|
| 899 |
+
| 6.3904 | 51500 | 0.0976 | - | - | - |
|
| 900 |
+
| 6.4028 | 51600 | 0.0986 | - | - | - |
|
| 901 |
+
| 6.4152 | 51700 | 0.0957 | - | - | - |
|
| 902 |
+
| 6.4276 | 51800 | 0.0957 | - | - | - |
|
| 903 |
+
| 6.4400 | 51900 | 0.0966 | - | - | - |
|
| 904 |
+
| 6.4524 | 52000 | 0.096 | - | - | - |
|
| 905 |
+
| 6.4648 | 52100 | 0.097 | - | - | - |
|
| 906 |
+
| 6.4772 | 52200 | 0.0971 | - | - | - |
|
| 907 |
+
| 6.4896 | 52300 | 0.0959 | - | - | - |
|
| 908 |
+
| 6.5020 | 52400 | 0.0967 | - | - | - |
|
| 909 |
+
| 6.5145 | 52500 | 0.0967 | - | - | - |
|
| 910 |
+
| 6.5269 | 52600 | 0.0964 | - | - | - |
|
| 911 |
+
| 6.5393 | 52700 | 0.0954 | - | - | - |
|
| 912 |
+
| 6.5517 | 52800 | 0.096 | - | - | - |
|
| 913 |
+
| 6.5641 | 52900 | 0.0963 | - | - | - |
|
| 914 |
+
| 6.5765 | 53000 | 0.0963 | - | - | - |
|
| 915 |
+
| 6.5889 | 53100 | 0.0958 | - | - | - |
|
| 916 |
+
| 6.6013 | 53200 | 0.0951 | - | - | - |
|
| 917 |
+
| 6.6137 | 53300 | 0.0973 | - | - | - |
|
| 918 |
+
| 6.6261 | 53400 | 0.0955 | - | - | - |
|
| 919 |
+
| 6.6385 | 53500 | 0.0958 | - | - | - |
|
| 920 |
+
| 6.6509 | 53600 | 0.0967 | - | - | - |
|
| 921 |
+
| 6.6634 | 53700 | 0.0971 | - | - | - |
|
| 922 |
+
| 6.6758 | 53800 | 0.0957 | - | - | - |
|
| 923 |
+
| 6.6882 | 53900 | 0.0968 | - | - | - |
|
| 924 |
+
| 6.7006 | 54000 | 0.0951 | - | - | - |
|
| 925 |
+
| 6.7130 | 54100 | 0.0957 | - | - | - |
|
| 926 |
+
| 6.7254 | 54200 | 0.0958 | - | - | - |
|
| 927 |
+
| 6.7378 | 54300 | 0.0962 | - | - | - |
|
| 928 |
+
| 6.7502 | 54400 | 0.0971 | - | - | - |
|
| 929 |
+
| 6.7626 | 54500 | 0.0957 | - | - | - |
|
| 930 |
+
| 6.7750 | 54600 | 0.0955 | - | - | - |
|
| 931 |
+
| 6.7874 | 54700 | 0.0953 | - | - | - |
|
| 932 |
+
| 6.7999 | 54800 | 0.0951 | - | - | - |
|
| 933 |
+
| 6.8123 | 54900 | 0.095 | - | - | - |
|
| 934 |
+
| 6.8247 | 55000 | 0.095 | - | - | - |
|
| 935 |
+
| 6.8371 | 55100 | 0.0954 | - | - | - |
|
| 936 |
+
| 6.8495 | 55200 | 0.0955 | - | - | - |
|
| 937 |
+
| 6.8619 | 55300 | 0.0959 | - | - | - |
|
| 938 |
+
| 6.8743 | 55400 | 0.0952 | - | - | - |
|
| 939 |
+
| 6.8867 | 55500 | 0.0951 | - | - | - |
|
| 940 |
+
| 6.8991 | 55600 | 0.0951 | - | - | - |
|
| 941 |
+
| 6.9115 | 55700 | 0.0966 | - | - | - |
|
| 942 |
+
| 6.9239 | 55800 | 0.0947 | - | - | - |
|
| 943 |
+
| 6.9363 | 55900 | 0.0943 | - | - | - |
|
| 944 |
+
| 6.9488 | 56000 | 0.0955 | - | - | - |
|
| 945 |
+
| 6.9612 | 56100 | 0.0959 | - | - | - |
|
| 946 |
+
| 6.9736 | 56200 | 0.095 | - | - | - |
|
| 947 |
+
| 6.9860 | 56300 | 0.0941 | - | - | - |
|
| 948 |
+
| 6.9984 | 56400 | 0.0945 | - | - | - |
|
| 949 |
+
| 7.0108 | 56500 | 0.0957 | - | - | - |
|
| 950 |
+
| 7.0232 | 56600 | 0.0952 | - | - | - |
|
| 951 |
+
| 7.0356 | 56700 | 0.0956 | - | - | - |
|
| 952 |
+
| 7.0480 | 56800 | 0.0955 | - | - | - |
|
| 953 |
+
| 7.0604 | 56900 | 0.0951 | - | - | - |
|
| 954 |
+
| 7.0728 | 57000 | 0.0938 | - | - | - |
|
| 955 |
+
| 7.0852 | 57100 | 0.0947 | - | - | - |
|
| 956 |
+
| 7.0977 | 57200 | 0.0952 | - | - | - |
|
| 957 |
+
| 7.1101 | 57300 | 0.0956 | - | - | - |
|
| 958 |
+
| 7.1225 | 57400 | 0.0949 | - | - | - |
|
| 959 |
+
| 7.1349 | 57500 | 0.0947 | - | - | - |
|
| 960 |
+
| 7.1473 | 57600 | 0.0937 | - | - | - |
|
| 961 |
+
| 7.1597 | 57700 | 0.0943 | - | - | - |
|
| 962 |
+
| 7.1721 | 57800 | 0.0948 | - | - | - |
|
| 963 |
+
| 7.1845 | 57900 | 0.094 | - | - | - |
|
| 964 |
+
| 7.1969 | 58000 | 0.0942 | - | - | - |
|
| 965 |
+
| 7.2093 | 58100 | 0.0939 | - | - | - |
|
| 966 |
+
| 7.2217 | 58200 | 0.0944 | - | - | - |
|
| 967 |
+
| 7.2341 | 58300 | 0.0943 | - | - | - |
|
| 968 |
+
| 7.2466 | 58400 | 0.0944 | - | - | - |
|
| 969 |
+
| 7.2590 | 58500 | 0.0945 | - | - | - |
|
| 970 |
+
| 7.2714 | 58600 | 0.0936 | - | - | - |
|
| 971 |
+
| 7.2838 | 58700 | 0.0941 | - | - | - |
|
| 972 |
+
| 7.2962 | 58800 | 0.0937 | - | - | - |
|
| 973 |
+
| 7.3086 | 58900 | 0.0942 | - | - | - |
|
| 974 |
+
| 7.3210 | 59000 | 0.0942 | - | - | - |
|
| 975 |
+
| 7.3334 | 59100 | 0.0945 | - | - | - |
|
| 976 |
+
| 7.3458 | 59200 | 0.0942 | - | - | - |
|
| 977 |
+
| 7.3582 | 59300 | 0.0944 | - | - | - |
|
| 978 |
+
| 7.3706 | 59400 | 0.0943 | - | - | - |
|
| 979 |
+
| 7.3831 | 59500 | 0.0951 | - | - | - |
|
| 980 |
+
| 7.3955 | 59600 | 0.0952 | - | - | - |
|
| 981 |
+
| 7.4079 | 59700 | 0.0949 | - | - | - |
|
| 982 |
+
| 7.4203 | 59800 | 0.0931 | - | - | - |
|
| 983 |
+
| 7.4327 | 59900 | 0.0936 | - | - | - |
|
| 984 |
+
| 7.4451 | 60000 | 0.095 | 0.1070 | -13.2648 | 0.9125 |
|
| 985 |
+
| 7.4575 | 60100 | 0.0931 | - | - | - |
|
| 986 |
+
| 7.4699 | 60200 | 0.095 | - | - | - |
|
| 987 |
+
| 7.4823 | 60300 | 0.0936 | - | - | - |
|
| 988 |
+
| 7.4947 | 60400 | 0.0943 | - | - | - |
|
| 989 |
+
| 7.5071 | 60500 | 0.0934 | - | - | - |
|
| 990 |
+
| 7.5195 | 60600 | 0.095 | - | - | - |
|
| 991 |
+
| 7.5320 | 60700 | 0.0927 | - | - | - |
|
| 992 |
+
| 7.5444 | 60800 | 0.0939 | - | - | - |
|
| 993 |
+
| 7.5568 | 60900 | 0.0931 | - | - | - |
|
| 994 |
+
| 7.5692 | 61000 | 0.0944 | - | - | - |
|
| 995 |
+
| 7.5816 | 61100 | 0.0938 | - | - | - |
|
| 996 |
+
| 7.5940 | 61200 | 0.0931 | - | - | - |
|
| 997 |
+
| 7.6064 | 61300 | 0.0935 | - | - | - |
|
| 998 |
+
| 7.6188 | 61400 | 0.0945 | - | - | - |
|
| 999 |
+
| 7.6312 | 61500 | 0.0932 | - | - | - |
|
| 1000 |
+
| 7.6436 | 61600 | 0.094 | - | - | - |
|
| 1001 |
+
| 7.6560 | 61700 | 0.0944 | - | - | - |
|
| 1002 |
+
| 7.6684 | 61800 | 0.0942 | - | - | - |
|
| 1003 |
+
| 7.6809 | 61900 | 0.0941 | - | - | - |
|
| 1004 |
+
| 7.6933 | 62000 | 0.0932 | - | - | - |
|
| 1005 |
+
| 7.7057 | 62100 | 0.0935 | - | - | - |
|
| 1006 |
+
| 7.7181 | 62200 | 0.0932 | - | - | - |
|
| 1007 |
+
| 7.7305 | 62300 | 0.094 | - | - | - |
|
| 1008 |
+
| 7.7429 | 62400 | 0.0935 | - | - | - |
|
| 1009 |
+
| 7.7553 | 62500 | 0.0944 | - | - | - |
|
| 1010 |
+
| 7.7677 | 62600 | 0.0933 | - | - | - |
|
| 1011 |
+
| 7.7801 | 62700 | 0.0938 | - | - | - |
|
| 1012 |
+
| 7.7925 | 62800 | 0.0924 | - | - | - |
|
| 1013 |
+
| 7.8049 | 62900 | 0.0926 | - | - | - |
|
| 1014 |
+
| 7.8173 | 63000 | 0.0935 | - | - | - |
|
| 1015 |
+
| 7.8298 | 63100 | 0.0926 | - | - | - |
|
| 1016 |
+
| 7.8422 | 63200 | 0.0928 | - | - | - |
|
| 1017 |
+
| 7.8546 | 63300 | 0.0937 | - | - | - |
|
| 1018 |
+
| 7.8670 | 63400 | 0.0938 | - | - | - |
|
| 1019 |
+
| 7.8794 | 63500 | 0.0927 | - | - | - |
|
| 1020 |
+
| 7.8918 | 63600 | 0.0929 | - | - | - |
|
| 1021 |
+
| 7.9042 | 63700 | 0.0938 | - | - | - |
|
| 1022 |
+
| 7.9166 | 63800 | 0.0934 | - | - | - |
|
| 1023 |
+
| 7.9290 | 63900 | 0.093 | - | - | - |
|
| 1024 |
+
| 7.9414 | 64000 | 0.0916 | - | - | - |
|
| 1025 |
+
| 7.9538 | 64100 | 0.0946 | - | - | - |
|
| 1026 |
+
| 7.9662 | 64200 | 0.0929 | - | - | - |
|
| 1027 |
+
| 7.9787 | 64300 | 0.0934 | - | - | - |
|
| 1028 |
+
| 7.9911 | 64400 | 0.0922 | - | - | - |
|
| 1029 |
+
| 8.0035 | 64500 | 0.0928 | - | - | - |
|
| 1030 |
+
| 8.0159 | 64600 | 0.0938 | - | - | - |
|
| 1031 |
+
| 8.0283 | 64700 | 0.092 | - | - | - |
|
| 1032 |
+
| 8.0407 | 64800 | 0.0944 | - | - | - |
|
| 1033 |
+
| 8.0531 | 64900 | 0.093 | - | - | - |
|
| 1034 |
+
| 8.0655 | 65000 | 0.0924 | - | - | - |
|
| 1035 |
+
| 8.0779 | 65100 | 0.0924 | - | - | - |
|
| 1036 |
+
| 8.0903 | 65200 | 0.093 | - | - | - |
|
| 1037 |
+
| 8.1027 | 65300 | 0.0931 | - | - | - |
|
| 1038 |
+
| 8.1152 | 65400 | 0.0935 | - | - | - |
|
| 1039 |
+
| 8.1276 | 65500 | 0.0927 | - | - | - |
|
| 1040 |
+
| 8.1400 | 65600 | 0.0921 | - | - | - |
|
| 1041 |
+
| 8.1524 | 65700 | 0.0923 | - | - | - |
|
| 1042 |
+
| 8.1648 | 65800 | 0.0925 | - | - | - |
|
| 1043 |
+
| 8.1772 | 65900 | 0.0926 | - | - | - |
|
| 1044 |
+
| 8.1896 | 66000 | 0.0916 | - | - | - |
|
| 1045 |
+
| 8.2020 | 66100 | 0.0925 | - | - | - |
|
| 1046 |
+
| 8.2144 | 66200 | 0.0921 | - | - | - |
|
| 1047 |
+
| 8.2268 | 66300 | 0.0927 | - | - | - |
|
| 1048 |
+
| 8.2392 | 66400 | 0.0924 | - | - | - |
|
| 1049 |
+
| 8.2516 | 66500 | 0.0927 | - | - | - |
|
| 1050 |
+
| 8.2641 | 66600 | 0.0923 | - | - | - |
|
| 1051 |
+
| 8.2765 | 66700 | 0.0919 | - | - | - |
|
| 1052 |
+
| 8.2889 | 66800 | 0.0918 | - | - | - |
|
| 1053 |
+
| 8.3013 | 66900 | 0.0923 | - | - | - |
|
| 1054 |
+
| 8.3137 | 67000 | 0.0922 | - | - | - |
|
| 1055 |
+
| 8.3261 | 67100 | 0.0925 | - | - | - |
|
| 1056 |
+
| 8.3385 | 67200 | 0.0923 | - | - | - |
|
| 1057 |
+
| 8.3509 | 67300 | 0.093 | - | - | - |
|
| 1058 |
+
| 8.3633 | 67400 | 0.0923 | - | - | - |
|
| 1059 |
+
| 8.3757 | 67500 | 0.093 | - | - | - |
|
| 1060 |
+
| 8.3881 | 67600 | 0.0939 | - | - | - |
|
| 1061 |
+
| 8.4005 | 67700 | 0.0931 | - | - | - |
|
| 1062 |
+
| 8.4130 | 67800 | 0.0922 | - | - | - |
|
| 1063 |
+
| 8.4254 | 67900 | 0.091 | - | - | - |
|
| 1064 |
+
| 8.4378 | 68000 | 0.0922 | - | - | - |
|
| 1065 |
+
| 8.4502 | 68100 | 0.0922 | - | - | - |
|
| 1066 |
+
| 8.4626 | 68200 | 0.0923 | - | - | - |
|
| 1067 |
+
| 8.4750 | 68300 | 0.0927 | - | - | - |
|
| 1068 |
+
| 8.4874 | 68400 | 0.092 | - | - | - |
|
| 1069 |
+
| 8.4998 | 68500 | 0.0922 | - | - | - |
|
| 1070 |
+
| 8.5122 | 68600 | 0.0923 | - | - | - |
|
| 1071 |
+
| 8.5246 | 68700 | 0.0927 | - | - | - |
|
| 1072 |
+
| 8.5370 | 68800 | 0.0914 | - | - | - |
|
| 1073 |
+
| 8.5494 | 68900 | 0.0916 | - | - | - |
|
| 1074 |
+
| 8.5619 | 69000 | 0.0923 | - | - | - |
|
| 1075 |
+
| 8.5743 | 69100 | 0.0921 | - | - | - |
|
| 1076 |
+
| 8.5867 | 69200 | 0.092 | - | - | - |
|
| 1077 |
+
| 8.5991 | 69300 | 0.091 | - | - | - |
|
| 1078 |
+
| 8.6115 | 69400 | 0.0929 | - | - | - |
|
| 1079 |
+
| 8.6239 | 69500 | 0.0917 | - | - | - |
|
| 1080 |
+
| 8.6363 | 69600 | 0.0915 | - | - | - |
|
| 1081 |
+
| 8.6487 | 69700 | 0.0931 | - | - | - |
|
| 1082 |
+
| 8.6611 | 69800 | 0.0937 | - | - | - |
|
| 1083 |
+
| 8.6735 | 69900 | 0.0916 | - | - | - |
|
| 1084 |
+
| 8.6859 | 70000 | 0.0924 | 0.1055 | -13.1395 | 0.9135 |
|
| 1085 |
+
| 8.6983 | 70100 | 0.0915 | - | - | - |
|
| 1086 |
+
| 8.7108 | 70200 | 0.0918 | - | - | - |
|
| 1087 |
+
| 8.7232 | 70300 | 0.0919 | - | - | - |
|
| 1088 |
+
| 8.7356 | 70400 | 0.0927 | - | - | - |
|
| 1089 |
+
| 8.7480 | 70500 | 0.0926 | - | - | - |
|
| 1090 |
+
| 8.7604 | 70600 | 0.0926 | - | - | - |
|
| 1091 |
+
| 8.7728 | 70700 | 0.0914 | - | - | - |
|
| 1092 |
+
| 8.7852 | 70800 | 0.0916 | - | - | - |
|
| 1093 |
+
| 8.7976 | 70900 | 0.0907 | - | - | - |
|
| 1094 |
+
| 8.8100 | 71000 | 0.0916 | - | - | - |
|
| 1095 |
+
| 8.8224 | 71100 | 0.0914 | - | - | - |
|
| 1096 |
+
| 8.8348 | 71200 | 0.0916 | - | - | - |
|
| 1097 |
+
| 8.8473 | 71300 | 0.092 | - | - | - |
|
| 1098 |
+
| 8.8597 | 71400 | 0.0917 | - | - | - |
|
| 1099 |
+
| 8.8721 | 71500 | 0.0923 | - | - | - |
|
| 1100 |
+
| 8.8845 | 71600 | 0.0908 | - | - | - |
|
| 1101 |
+
| 8.8969 | 71700 | 0.0917 | - | - | - |
|
| 1102 |
+
| 8.9093 | 71800 | 0.093 | - | - | - |
|
| 1103 |
+
| 8.9217 | 71900 | 0.0912 | - | - | - |
|
| 1104 |
+
| 8.9341 | 72000 | 0.0911 | - | - | - |
|
| 1105 |
+
| 8.9465 | 72100 | 0.0912 | - | - | - |
|
| 1106 |
+
| 8.9589 | 72200 | 0.0923 | - | - | - |
|
| 1107 |
+
| 8.9713 | 72300 | 0.0914 | - | - | - |
|
| 1108 |
+
| 8.9837 | 72400 | 0.0911 | - | - | - |
|
| 1109 |
+
| 8.9962 | 72500 | 0.0908 | - | - | - |
|
| 1110 |
+
| 9.0086 | 72600 | 0.0922 | - | - | - |
|
| 1111 |
+
| 9.0210 | 72700 | 0.0918 | - | - | - |
|
| 1112 |
+
| 9.0334 | 72800 | 0.0917 | - | - | - |
|
| 1113 |
+
| 9.0458 | 72900 | 0.0925 | - | - | - |
|
| 1114 |
+
| 9.0582 | 73000 | 0.0914 | - | - | - |
|
| 1115 |
+
| 9.0706 | 73100 | 0.0907 | - | - | - |
|
| 1116 |
+
| 9.0830 | 73200 | 0.0916 | - | - | - |
|
| 1117 |
+
| 9.0954 | 73300 | 0.0916 | - | - | - |
|
| 1118 |
+
| 9.1078 | 73400 | 0.0918 | - | - | - |
|
| 1119 |
+
| 9.1202 | 73500 | 0.0918 | - | - | - |
|
| 1120 |
+
| 9.1326 | 73600 | 0.0913 | - | - | - |
|
| 1121 |
+
| 9.1451 | 73700 | 0.0901 | - | - | - |
|
| 1122 |
+
| 9.1575 | 73800 | 0.0912 | - | - | - |
|
| 1123 |
+
| 9.1699 | 73900 | 0.0916 | - | - | - |
|
| 1124 |
+
| 9.1823 | 74000 | 0.0906 | - | - | - |
|
| 1125 |
+
| 9.1947 | 74100 | 0.0913 | - | - | - |
|
| 1126 |
+
| 9.2071 | 74200 | 0.0899 | - | - | - |
|
| 1127 |
+
| 9.2195 | 74300 | 0.0919 | - | - | - |
|
| 1128 |
+
| 9.2319 | 74400 | 0.0908 | - | - | - |
|
| 1129 |
+
| 9.2443 | 74500 | 0.0911 | - | - | - |
|
| 1130 |
+
| 9.2567 | 74600 | 0.0913 | - | - | - |
|
| 1131 |
+
| 9.2691 | 74700 | 0.0909 | - | - | - |
|
| 1132 |
+
| 9.2815 | 74800 | 0.0905 | - | - | - |
|
| 1133 |
+
| 9.2940 | 74900 | 0.091 | - | - | - |
|
| 1134 |
+
| 9.3064 | 75000 | 0.091 | - | - | - |
|
| 1135 |
+
| 9.3188 | 75100 | 0.0908 | - | - | - |
|
| 1136 |
+
| 9.3312 | 75200 | 0.0915 | - | - | - |
|
| 1137 |
+
| 9.3436 | 75300 | 0.091 | - | - | - |
|
| 1138 |
+
| 9.3560 | 75400 | 0.0915 | - | - | - |
|
| 1139 |
+
| 9.3684 | 75500 | 0.0915 | - | - | - |
|
| 1140 |
+
| 9.3808 | 75600 | 0.0917 | - | - | - |
|
| 1141 |
+
| 9.3932 | 75700 | 0.0925 | - | - | - |
|
| 1142 |
+
| 9.4056 | 75800 | 0.0918 | - | - | - |
|
| 1143 |
+
| 9.4180 | 75900 | 0.0903 | - | - | - |
|
| 1144 |
+
| 9.4305 | 76000 | 0.0907 | - | - | - |
|
| 1145 |
+
| 9.4429 | 76100 | 0.0916 | - | - | - |
|
| 1146 |
+
| 9.4553 | 76200 | 0.0906 | - | - | - |
|
| 1147 |
+
| 9.4677 | 76300 | 0.0919 | - | - | - |
|
| 1148 |
+
| 9.4801 | 76400 | 0.0907 | - | - | - |
|
| 1149 |
+
| 9.4925 | 76500 | 0.0915 | - | - | - |
|
| 1150 |
+
| 9.5049 | 76600 | 0.0908 | - | - | - |
|
| 1151 |
+
| 9.5173 | 76700 | 0.092 | - | - | - |
|
| 1152 |
+
| 9.5297 | 76800 | 0.0902 | - | - | - |
|
| 1153 |
+
| 9.5421 | 76900 | 0.0909 | - | - | - |
|
| 1154 |
+
| 9.5545 | 77000 | 0.09 | - | - | - |
|
| 1155 |
+
| 9.5669 | 77100 | 0.0917 | - | - | - |
|
| 1156 |
+
| 9.5794 | 77200 | 0.091 | - | - | - |
|
| 1157 |
+
| 9.5918 | 77300 | 0.0906 | - | - | - |
|
| 1158 |
+
| 9.6042 | 77400 | 0.0902 | - | - | - |
|
| 1159 |
+
| 9.6166 | 77500 | 0.0921 | - | - | - |
|
| 1160 |
+
| 9.6290 | 77600 | 0.0907 | - | - | - |
|
| 1161 |
+
| 9.6414 | 77700 | 0.0908 | - | - | - |
|
| 1162 |
+
| 9.6538 | 77800 | 0.0917 | - | - | - |
|
| 1163 |
+
| 9.6662 | 77900 | 0.092 | - | - | - |
|
| 1164 |
+
| 9.6786 | 78000 | 0.091 | - | - | - |
|
| 1165 |
+
| 9.6910 | 78100 | 0.0909 | - | - | - |
|
| 1166 |
+
| 9.7034 | 78200 | 0.0903 | - | - | - |
|
| 1167 |
+
| 9.7158 | 78300 | 0.0914 | - | - | - |
|
| 1168 |
+
| 9.7283 | 78400 | 0.091 | - | - | - |
|
| 1169 |
+
| 9.7407 | 78500 | 0.0909 | - | - | - |
|
| 1170 |
+
| 9.7531 | 78600 | 0.0922 | - | - | - |
|
| 1171 |
+
| 9.7655 | 78700 | 0.0907 | - | - | - |
|
| 1172 |
+
| 9.7779 | 78800 | 0.0909 | - | - | - |
|
| 1173 |
+
| 9.7903 | 78900 | 0.0905 | - | - | - |
|
| 1174 |
+
| 9.8027 | 79000 | 0.0898 | - | - | - |
|
| 1175 |
+
| 9.8151 | 79100 | 0.091 | - | - | - |
|
| 1176 |
+
| 9.8275 | 79200 | 0.09 | - | - | - |
|
| 1177 |
+
| 9.8399 | 79300 | 0.0908 | - | - | - |
|
| 1178 |
+
| 9.8523 | 79400 | 0.0911 | - | - | - |
|
| 1179 |
+
| 9.8647 | 79500 | 0.0913 | - | - | - |
|
| 1180 |
+
| 9.8772 | 79600 | 0.0902 | - | - | - |
|
| 1181 |
+
| 9.8896 | 79700 | 0.0904 | - | - | - |
|
| 1182 |
+
| 9.9020 | 79800 | 0.0908 | - | - | - |
|
| 1183 |
+
| 9.9144 | 79900 | 0.0918 | - | - | - |
|
| 1184 |
+
| 9.9268 | 80000 | 0.0905 | 0.1044 | -13.0248 | 0.915 |
|
| 1185 |
+
| 9.9392 | 80100 | 0.0894 | - | - | - |
|
| 1186 |
+
| 9.9516 | 80200 | 0.0917 | - | - | - |
|
| 1187 |
+
| 9.9640 | 80300 | 0.0908 | - | - | - |
|
| 1188 |
+
| 9.9764 | 80400 | 0.0907 | - | - | - |
|
| 1189 |
+
| 9.9888 | 80500 | 0.0905 | - | - | - |
|
| 1190 |
+
|
| 1191 |
+
</details>
|
| 1192 |
+
|
| 1193 |
+
### Framework Versions
|
| 1194 |
+
- Python: 3.10.17
|
| 1195 |
+
- Sentence Transformers: 4.1.0
|
| 1196 |
+
- Transformers: 4.46.3
|
| 1197 |
+
- PyTorch: 2.2.0+cu121
|
| 1198 |
+
- Accelerate: 1.1.1
|
| 1199 |
+
- Datasets: 2.18.0
|
| 1200 |
+
- Tokenizers: 0.20.3
|
| 1201 |
+
|
| 1202 |
+
## Citation
|
| 1203 |
+
|
| 1204 |
+
### BibTeX
|
| 1205 |
+
|
| 1206 |
+
#### Sentence Transformers
|
| 1207 |
+
```bibtex
|
| 1208 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1209 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1210 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1211 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1212 |
+
month = "11",
|
| 1213 |
+
year = "2019",
|
| 1214 |
+
publisher = "Association for Computational Linguistics",
|
| 1215 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1216 |
+
}
|
| 1217 |
+
```
|
| 1218 |
+
|
| 1219 |
+
#### MSELoss
|
| 1220 |
+
```bibtex
|
| 1221 |
+
@inproceedings{reimers-2020-multilingual-sentence-bert,
|
| 1222 |
+
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
|
| 1223 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1224 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
|
| 1225 |
+
month = "11",
|
| 1226 |
+
year = "2020",
|
| 1227 |
+
publisher = "Association for Computational Linguistics",
|
| 1228 |
+
url = "https://arxiv.org/abs/2004.09813",
|
| 1229 |
+
}
|
| 1230 |
+
```
|
| 1231 |
+
|
| 1232 |
+
<!--
|
| 1233 |
+
## Glossary
|
| 1234 |
+
|
| 1235 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1236 |
+
-->
|
| 1237 |
+
|
| 1238 |
+
<!--
|
| 1239 |
+
## Model Card Authors
|
| 1240 |
+
|
| 1241 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1242 |
+
-->
|
| 1243 |
+
|
| 1244 |
+
<!--
|
| 1245 |
+
## Model Card Contact
|
| 1246 |
+
|
| 1247 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1248 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "xlm-roberta-base",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"XLMRobertaModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 768,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 3072,
|
| 15 |
+
"layer_norm_eps": 1e-05,
|
| 16 |
+
"max_position_embeddings": 514,
|
| 17 |
+
"model_type": "xlm-roberta",
|
| 18 |
+
"num_attention_heads": 12,
|
| 19 |
+
"num_hidden_layers": 12,
|
| 20 |
+
"output_past": true,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"position_embedding_type": "absolute",
|
| 23 |
+
"torch_dtype": "float32",
|
| 24 |
+
"transformers_version": "4.46.3",
|
| 25 |
+
"type_vocab_size": 1,
|
| 26 |
+
"use_cache": true,
|
| 27 |
+
"vocab_size": 250002
|
| 28 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.46.3",
|
| 5 |
+
"pytorch": "2.2.0+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3a2e763c409081c28f10d1bad5c9973b0e22f5510df06f92fd4fb2584d8de561
|
| 3 |
+
size 1112197096
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 128,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
sentencepiece.bpe.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
| 3 |
+
size 5069051
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": {
|
| 6 |
+
"content": "<mask>",
|
| 7 |
+
"lstrip": true,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"pad_token": "<pad>",
|
| 13 |
+
"sep_token": "</s>",
|
| 14 |
+
"unk_token": "<unk>"
|
| 15 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
| 3 |
+
size 17082987
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": false,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"mask_token": "<mask>",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "<pad>",
|
| 51 |
+
"sep_token": "</s>",
|
| 52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
| 53 |
+
"unk_token": "<unk>"
|
| 54 |
+
}
|