File size: 24,822 Bytes
cf7f9c0
 
 
 
 
 
6357077
caa1927
cf7f9c0
 
 
 
 
 
 
53c249d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf7f9c0
 
 
 
a959b08
cf7f9c0
 
660d02c
cf7f9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
675d3e2
42437d6
45a142d
42437d6
 
 
d4b8273
45a142d
 
 
98ca41e
8adf7c4
d4b8273
 
 
8adf7c4
d4b8273
45a142d
 
42437d6
98ca41e
45a142d
42437d6
45a142d
d4b8273
45a142d
42437d6
98ca41e
 
 
 
d4b8273
 
 
 
 
 
 
45a142d
 
675d3e2
 
 
 
 
 
 
 
 
cf7f9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42437d6
81d4d32
 
 
 
43742ef
bc24d70
cf7f9c0
 
 
 
 
 
6985ac5
cf7f9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660d02c
 
 
 
cf7f9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8adf7c4
cf7f9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d4d32
 
 
42437d6
aec8db1
81d4d32
 
 
cf7f9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d823b65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
675d3e2
d823b65
 
cf7f9c0
 
d823b65
 
 
 
 
 
 
 
 
 
 
cf7f9c0
 
d823b65
 
 
 
 
 
 
 
 
 
 
cf7f9c0
d823b65
 
 
 
 
f5052b1
 
d823b65
 
 
cf7f9c0
 
d823b65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837628c
d823b65
 
 
 
 
a959b08
d823b65
 
 
 
 
a959b08
d823b65
 
 
 
837628c
d823b65
 
837628c
d823b65
a959b08
d823b65
 
 
 
 
a959b08
d823b65
 
 
 
cf7f9c0
d823b65
aa54deb
 
660d02c
d823b65
 
 
 
cf7f9c0
d823b65
660d02c
d823b65
cf7f9c0
 
 
d823b65
 
cf7f9c0
d823b65
 
 
 
 
cf7f9c0
 
 
d823b65
cf7f9c0
d823b65
 
 
cf7f9c0
d823b65
 
 
 
 
 
 
6985ac5
d823b65
 
 
675d3e2
d823b65
675d3e2
 
cf7f9c0
675d3e2
 
 
 
 
 
 
 
d4b8273
264ed10
675d3e2
cf7f9c0
 
d823b65
 
cf7f9c0
 
d823b65
6985ac5
 
cf7f9c0
 
640e6b5
 
6985ac5
cf7f9c0
53c249d
 
 
 
 
cac3afa
 
ea33dd7
cf7f9c0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

import os



import gradio as gr
# gr.set_config(schema_inference=False)

import numpy as np
import torch
from PIL import Image
from loguru import logger
from tqdm import tqdm
from tools.common_utils import save_video
from dkt.pipelines.wan_video_new import WanVideoPipeline, ModelConfig

# try:
#     import gradio_client.utils as _gc_utils
#     if hasattr(_gc_utils, "get_type"):
#         _orig_get_type = _gc_utils.get_type
#         def _get_type_safe(schema):
#             if not isinstance(schema, dict):
#                 return "Any"
#             return _orig_get_type(schema)
#         _gc_utils.get_type = _get_type_safe
# except Exception:
#     pass

# # Additional guard: handle boolean JSON Schemas and parsing errors
# try:
#     import gradio_client.utils as _gc_utils
#     # Wrap the internal _json_schema_to_python_type if present
#     if hasattr(_gc_utils, "_json_schema_to_python_type"):
#         _orig_internal = _gc_utils._json_schema_to_python_type
#         def _json_schema_to_python_type_safe(schema, defs=None):
#             if isinstance(schema, bool):
#                 return "Any"
#             try:
#                 return _orig_internal(schema, defs)
#             except Exception:
#                 return "Any"
#         _gc_utils._json_schema_to_python_type = _json_schema_to_python_type_safe

#     # Also wrap the public json_schema_to_python_type to be extra defensive
#     if hasattr(_gc_utils, "json_schema_to_python_type"):
#         _orig_public = _gc_utils.json_schema_to_python_type
#         def json_schema_to_python_type_safe(schema):
#             try:
#                 return _orig_public(schema)
#             except Exception:
#                 return "Any"
#         _gc_utils.json_schema_to_python_type = json_schema_to_python_type_safe
# except Exception:
#     pass

import cv2
import copy
import trimesh

from os.path import join
from tools.depth2pcd import depth2pcd
from moge.model.v2 import MoGeModel


from tools.eval_utils import transfer_pred_disp2depth, colorize_depth_map
import glob
import datetime
import shutil
import tempfile
import spaces


PIPE_1_3B = None
MOGE_MODULE =  None
#* better for bg:  logs/outs/train/remote/sft-T2SQNet_glassverse_cleargrasp_HISS_DREDS_DREDS_glassverse_interiorverse-4gpus-origin-lora128-1.3B-rgb_depth-w832-h480-Wan2.1-Fun-Control-2025-10-28-23:26:41/epoch-0-20000.safetensors
PROMPT = 'depth'
NEGATIVE_PROMPT = ''

example_inputs = [
    
    ["examples/1.mp4", "1.3B", 5, 3],
    ["examples/33.mp4", "1.3B", 5, 3],
    
    
    
    ["examples/7.mp4", "1.3B", 5, 3],
    ["examples/8.mp4", "1.3B", 5, 3],
    ["examples/9.mp4", "1.3B", 5, 3],
    
    # ["examples/178db6e89ab682bfc612a3290fec58dd.mp4", "1.3B", 5, 3],
    ["examples/36.mp4", "1.3B", 5, 3],
    ["examples/39.mp4", "1.3B", 5, 3],
    
    # ["examples/b1f1fa44f414d7731cd7d77751093c44.mp4", "1.3B", 5, 3],
    
    ["examples/10.mp4", "1.3B", 5, 3],
    ["examples/30.mp4", "1.3B", 5, 3],
    ["examples/3.mp4", "1.3B", 5, 3],
    
    ["examples/32.mp4", "1.3B", 5, 3],
    
    ["examples/35.mp4", "1.3B", 5, 3],
    
    ["examples/40.mp4", "1.3B", 5, 3],
    ["examples/2.mp4", "1.3B", 5, 3],

    # ["examples/31.mp4", "1.3B", 5, 3],
    # ["examples/DJI_20250912164311_0007_D.mp4", "1.3B", 5, 3],
    # ["examples/DJI_20250912163642_0003_D.mp4", "1.3B", 5, 3],

    # ["examples/5.mp4", "1.3B", 5, 3],

    # ["examples/1b0daeb776471c7389b36cee53049417.mp4", "1.3B", 5, 3],
    # ["examples/8a6dfb8cfe80634f4f77ae9aa830d075.mp4", "1.3B", 5, 3],
    # ["examples/69230f105ad8740e08d743a8ee11c651.mp4", "1.3B", 5, 3],
    # ["examples/b68045aa2128ab63d9c7518f8d62eafe.mp4", "1.3B", 5, 3],
]

        



height = 480
width = 832
window_size = 21



def resize_frame(frame, height, width):
    frame = np.array(frame)
    frame = torch.from_numpy(frame).permute(2, 0, 1).unsqueeze(0).float() / 255.0
    frame = torch.nn.functional.interpolate(frame, (height, width), mode="bicubic", align_corners=False, antialias=True)
    frame = (frame.squeeze(0).permute(1, 2, 0).clamp(0, 1) * 255).byte().numpy()
    frame = Image.fromarray(frame)
    return frame



def pmap_to_glb(point_map, valid_mask, frame) -> trimesh.Scene:
    pts_3d = point_map[valid_mask] * np.array([-1, -1, 1])
    pts_rgb = frame[valid_mask] 

    # Initialize a 3D scene
    scene_3d = trimesh.Scene()

    # Add point cloud data to the scene
    point_cloud_data = trimesh.PointCloud(
        vertices=pts_3d, colors=pts_rgb
    )
    
    scene_3d.add_geometry(point_cloud_data)
    return scene_3d



def create_simple_glb_from_pointcloud(points, colors, glb_filename):
    try:
        if len(points) == 0:
            logger.warning(f"No valid points to create GLB for {glb_filename}")
            return False
        
        if colors is not None:
            # logger.info(f"Adding colors to GLB: shape={colors.shape}, range=[{colors.min():.3f}, {colors.max():.3f}]")
            pts_rgb = colors
        else:
            logger.info("No colors provided, adding default white colors")
            pts_rgb = np.ones((len(points), 3))
        
        valid_mask = np.ones(len(points), dtype=bool)
        
        scene_3d = pmap_to_glb(points, valid_mask, pts_rgb)
        
        scene_3d.export(glb_filename)
        # logger.info(f"Saved GLB file using trimesh: {glb_filename}")
        
        return True
        
    except Exception as e:
        logger.error(f"Error creating GLB from pointcloud using trimesh: {str(e)}")
        return False





def extract_frames_from_video_file(video_path):
    try:
        cap = cv2.VideoCapture(video_path)
        frames = []
        
        fps = cap.get(cv2.CAP_PROP_FPS)
        if fps <= 0:
            fps = 15.0
        
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frame_rgb = Image.fromarray(frame_rgb)
            frames.append(frame_rgb)
        
        cap.release()
        return frames, fps
    except Exception as e:
        logger.error(f"Error extracting frames from {video_path}: {str(e)}")
        return [], 15.0



def load_moge_model(device="cuda:0"):
    global MOGE_MODULE
    if MOGE_MODULE is not None:
        return MOGE_MODULE
    logger.info(f"Loading MoGe model on {device}...")
    MOGE_MODULE = MoGeModel.from_pretrained('Ruicheng/moge-2-vitl-normal').to(device)
    return MOGE_MODULE


def load_model_1_3b(device="cuda:0"):
    global PIPE_1_3B
    
    if PIPE_1_3B is not None:
        return PIPE_1_3B
    
    logger.info(f"Loading 1.3B model on {device}...")
    
    pipe = WanVideoPipeline.from_pretrained(
        torch_dtype=torch.bfloat16,
        device=device,
        model_configs=[
            ModelConfig(
                model_id="PAI/Wan2.1-Fun-1.3B-Control",
                origin_file_pattern="diffusion_pytorch_model*.safetensors",
                offload_device="cpu",
            ),
            ModelConfig(
                model_id="PAI/Wan2.1-Fun-1.3B-Control",
                origin_file_pattern="models_t5_umt5-xxl-enc-bf16.pth",
                offload_device="cpu",
            ),
            ModelConfig(
                model_id="PAI/Wan2.1-Fun-1.3B-Control",
                origin_file_pattern="Wan2.1_VAE.pth",
                offload_device="cpu",
            ),
            ModelConfig(
                model_id="PAI/Wan2.1-Fun-1.3B-Control",
                origin_file_pattern="models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth",
                offload_device="cpu",
            ),
        ],
        training_strategy="origin",
    )
    
    
    lora_config = ModelConfig(
        model_id="Daniellesry/DKT-Depth-1-3B",
        origin_file_pattern="dkt-1-3B.safetensors",
        offload_device="cpu",
    )

    lora_config.download_if_necessary(use_usp=False)
    
    pipe.load_lora(pipe.dit, lora_config.path, alpha=1.0)#todo is it work?
    pipe.enable_vram_management()

    
    PIPE_1_3B = pipe
    
    return pipe



    

def get_model(model_size):
    if model_size == "1.3B":
        assert PIPE_1_3B is not None, "1.3B model not initialized"
        return PIPE_1_3B
    else:
        raise ValueError(f"Unsupported model size: {model_size}")







@spaces.GPU(duration=120)
@torch.inference_mode()
def process_video(
    video_file,
    model_size,
    num_inference_steps,
    overlap
):
    print('process_video called')
    try:
        pipe = get_model(model_size)
        if pipe is None:
            return None, f"Model {model_size} not initialized. Please restart the application."
        
        tmp_video_path = video_file
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")

        # 使用临时目录存储所有文件
        cur_save_dir = tempfile.mkdtemp(prefix=f'dkt_{timestamp}_{model_size}_')
        
        
        original_filename = f"input_{timestamp}.mp4"
        dst_path = os.path.join(cur_save_dir, original_filename)
        shutil.copy2(tmp_video_path, dst_path)
        origin_frames, input_fps = extract_frames_from_video_file(tmp_video_path)
        
        if not origin_frames:
            return None, "Failed to extract frames from video"
        
        logger.info(f"Extracted {len(origin_frames)} frames from video")

        
        original_width, original_height = origin_frames[0].size
        ROTATE = False 
        if original_width <  original_height:
            ROTATE = True
            origin_frames = [x.transpose(Image.ROTATE_90) for x in origin_frames]
            tmp = original_width
            original_width = original_height
            original_height = tmp

        
                
        global height
        global width
        global window_size

        frames = [resize_frame(frame, height, width) for frame in origin_frames]
        frame_length = len(frames)
        if (frame_length - 1) % 4 != 0:
            new_len = ((frame_length - 1) // 4 + 1) * 4 + 1
            frames = frames + [copy.deepcopy(frames[-1]) for _ in range(new_len - frame_length)]

        
        control_video = frames
        video, vae_outs = pipe(
            prompt=PROMPT,
            negative_prompt=NEGATIVE_PROMPT,
            control_video=control_video,
            height=height,
            width=width,
            num_frames=len(control_video),
            seed=1,
            tiled=False,
            num_inference_steps=num_inference_steps,
            sliding_window_size=window_size,
            sliding_window_stride=window_size - overlap,
            cfg_scale=1.0,
        )

        #* moge process 
        torch.cuda.empty_cache()
        processed_video = video[:frame_length]


        processed_video = [resize_frame(frame, original_height, original_width) for frame in processed_video]
        if ROTATE:
            processed_video = [x.transpose(Image.ROTATE_270) for x in processed_video]
            origin_frames = [x.transpose(Image.ROTATE_270) for x in origin_frames]
            

        output_filename = f"output_{timestamp}.mp4"
        output_path = os.path.join(cur_save_dir, output_filename)
        color_predictions = []
        if PROMPT == 'depth':
            prediced_depth_map_np = [np.array(item).astype(np.float32).mean(-1)  for item in processed_video]
            prediced_depth_map_np = np.stack(prediced_depth_map_np)
            prediced_depth_map_np = prediced_depth_map_np/ 255.0
            __min = prediced_depth_map_np.min()
            __max = prediced_depth_map_np.max()
            prediced_depth_map_np = (prediced_depth_map_np - __min) / (__max - __min)
            color_predictions = [colorize_depth_map(item) for item in prediced_depth_map_np]
        else:
            color_predictions = processed_video
        save_video(color_predictions, output_path, fps=input_fps, quality=5)


        
        # todo, inference MoGe only once
        frame_num = len(origin_frames)
        resize_W,resize_H = origin_frames[0].size
        
        vis_pc_num = 4
        indices = np.linspace(0, frame_num-1, vis_pc_num)
        indices = np.round(indices).astype(np.int32)
        pc_save_dir = os.path.join(cur_save_dir, 'pointclouds')
        os.makedirs(pc_save_dir, exist_ok=True)

        glb_files = []
        moge_device = MOGE_MODULE.device if MOGE_MODULE is not None else torch.device("cuda:0")
        for idx in tqdm(indices):
            orgin_rgb_frame = origin_frames[idx]
            predicted_depth = processed_video[idx]

            # Read the input image and convert to tensor (3, H, W) with RGB values normalized to [0, 1]
            input_image_np = np.array(orgin_rgb_frame)  # Convert PIL Image to numpy array
            input_image = torch.tensor(input_image_np / 255, dtype=torch.float32, device=moge_device).permute(2, 0, 1) 

            output = MOGE_MODULE.infer(input_image)
            #* "dict_keys(['points', 'intrinsics', 'depth', 'mask', 'normal'])"
            moge_intrinsics = output['intrinsics'].cpu().numpy()
            moge_mask = output['mask'].cpu().numpy()
            moge_depth = output['depth'].cpu().numpy()
        
            predicted_depth = np.array(predicted_depth)
            predicted_depth = predicted_depth.mean(-1) / 255.0
    
            metric_depth = transfer_pred_disp2depth(predicted_depth, moge_depth, moge_mask)
            
            moge_intrinsics[0, 0] *= resize_W 
            moge_intrinsics[1, 1] *= resize_H
            moge_intrinsics[0, 2] *= resize_W
            moge_intrinsics[1, 2] *= resize_H
            
            # pcd = depth2pcd(metric_depth, moge_intrinsics, color=cv2.cvtColor(input_image_np, cv2.COLOR_BGR2RGB), input_mask=moge_mask, ret_pcd=True)
            pcd = depth2pcd(metric_depth, moge_intrinsics, color=input_image_np, input_mask=moge_mask, ret_pcd=True)
            
            # pcd.points = o3d.utility.Vector3dVector(np.asarray(pcd.points) * np.array([1, -1, -1], dtype=np.float32))
            
            apply_filter = True
            if apply_filter:
                cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=3.0)
                pcd = pcd.select_by_index(ind)

            #* save pcd:  o3d.io.write_point_cloud(f'{pc_save_dir}/{timestamp}_{idx:02d}.ply', pcd)
            points = np.asarray(pcd.points)
            colors = np.asarray(pcd.colors) if pcd.has_colors() else None


            # ==== 新增:上下翻转点云 ====
            points[:, 2] = -points[:, 2]  
            points[:, 0] = -points[:, 0]  
            # =========================


            glb_filename = os.path.join(pc_save_dir, f'{timestamp}_{idx:02d}.glb')
            success = create_simple_glb_from_pointcloud(points, colors, glb_filename)
            if not success:
                logger.warning(f"Failed to save GLB file: {glb_filename}")

            glb_files.append(glb_filename)

        return output_path, glb_files
        
    except Exception as e:
        logger.error(f"Error processing video: {str(e)}")
        return None, f"Error: {str(e)}"




#* gradio creation and initialization


css = """
#video-display-container {
    max-height: 100vh;
}
#video-display-input {
    max-height: 80vh;
}
#video-display-output {
    max-height: 80vh;
}
#download {
    height: 62px;
}
.title {
    text-align: center;
}
.description {
    text-align: center;
}
.gradio-examples {
    max-height: 400px;
    overflow-y: auto;
}
.gradio-examples .examples-container {
    display: grid;
    grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
    gap: 10px;
    padding: 10px;
}
.gradio-container .gradio-examples .pagination,
.gradio-container .gradio-examples .pagination button,
div[data-testid="examples"] .pagination,
div[data-testid="examples"] .pagination button {
    font-size: 28px !important;
    font-weight: bold !important;
    padding: 15px 20px !important;
    min-width: 60px !important;
    height: 60px !important;
    border-radius: 10px !important;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    color: white !important;
    border: none !important;
    cursor: pointer !important;
    margin: 8px !important;
    display: inline-block !important;
    box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
    transition: all 0.3s ease !important;
}

div[data-testid="examples"] .pagination button:not(.active),
.gradio-container .gradio-examples .pagination button:not(.active) {
    font-size: 32px !important;
    font-weight: bold !important;
    padding: 15px 20px !important;
    min-width: 60px !important;
    height: 60px !important;
    background: linear-gradient(135deg, #8a9cf0 0%, #9a6bb2 100%) !important;
    opacity: 0.8 !important;
}

div[data-testid="examples"] .pagination button:hover,
.gradio-container .gradio-examples .pagination button:hover {
    background: linear-gradient(135deg, #5a6fd8 0%, #6a4190 100%) !important;
    transform: translateY(-2px) !important;
    box-shadow: 0 6px 12px rgba(0,0,0,0.3) !important;
    opacity: 1 !important;
}

div[data-testid="examples"] .pagination button.active,
.gradio-container .gradio-examples .pagination button.active {
    background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%) !important;
    box-shadow: 0 4px 8px rgba(17,153,142,0.4) !important;
    opacity: 1 !important;
}

button[class*="pagination"],
button[class*="page"] {
    font-size: 28px !important;
    font-weight: bold !important;
    padding: 15px 20px !important;
    min-width: 60px !important;
    height: 60px !important;
    border-radius: 10px !important;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    color: white !important;
    border: none !important;
    cursor: pointer !important;
    margin: 8px !important;
    box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
    transition: all 0.3s ease !important;
}
"""



head_html = """
<link rel="icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
<link rel="shortcut icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
<link rel="icon" type="image/png" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
"""



# description = """Official demo for **DKT **."""

# with gr.Blocks(css=css, title="DKT - Diffusion Knows Transparency", favicon_path="favicon.ico") as demo:


with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
    # gr.Markdown(title, elem_classes=["title"])
    """

    <a title="Website" href="https://stable-x.github.io/StableNormal/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
            <img src="https://www.obukhov.ai/img/badges/badge-website.svg">
        </a>
        <a title="arXiv" href="https://arxiv.org/abs/2406.16864" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
            <img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
        </a>
        <a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
            <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
        </a>
    
    
    """

    gr.Markdown(
        """
        # Diffusion Knows Transparency: Repurposing Video Diffusion for Transparent Object Depth and Normal Estimation 
        <p align="center">
        <a title="Github" href="https://github.com/Daniellli/DKT" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
            <img src="https://img.shields.io/github/stars/Daniellli/DKT?style=social" alt="badge-github-stars">
        </a>
    """
    )
    # gr.Markdown(description, elem_classes=["description"])
    # gr.Markdown("### Video Processing Demo", elem_classes=["description"])

    with gr.Row():
        with gr.Column():
            input_video = gr.Video(label="Input Video", elem_id='video-display-input')
            
            model_size = gr.Radio(
                # choices=["1.3B", "14B"],
                choices=["1.3B"],
                value="1.3B",
                label="Model Size"
            )


            with gr.Accordion("Advanced Parameters", open=False):
                num_inference_steps = gr.Slider(
                    minimum=1, maximum=50, value=5, step=1,
                    label="Number of Inference Steps"
                )
                overlap = gr.Slider(
                    minimum=1, maximum=20, value=3, step=1,
                    label="Overlap"
                )
                
            submit = gr.Button(value="Compute Depth", variant="primary")
        
        with gr.Column():
            output_video = gr.Video(
                label="Depth Outputs", 
                elem_id='video-display-output',
                autoplay=True
            )
            vis_video = gr.Video(
                label="Visualization Video", 
                visible=False,
                autoplay=True
            )

    with gr.Row():
        gr.Markdown("### 3D Point Cloud Visualization", elem_classes=["title"])
    
    with gr.Row(equal_height=True):
        with gr.Column(scale=1):
            output_point_map0 = gr.Model3D(
                label="Point Cloud Key Frame 1",
                clear_color=[1.0, 1.0, 1.0, 1.0],
                interactive=False,
            )
        with gr.Column(scale=1):
            output_point_map1 = gr.Model3D(
                label="Point Cloud Key Frame 2",
                clear_color=[1.0, 1.0, 1.0, 1.0],
                interactive=False
            )
        
    
    with gr.Row(equal_height=True):
        
        with gr.Column(scale=1):
            output_point_map2 = gr.Model3D(
                label="Point Cloud Key Frame 3",
                clear_color=[1.0, 1.0, 1.0, 1.0],
                interactive=False
            )
        with gr.Column(scale=1):
            output_point_map3 = gr.Model3D(
                label="Point Cloud Key Frame 4",
                clear_color=[1.0, 1.0, 1.0, 1.0],
                interactive=False
            )

    def on_submit(video_file, model_size, num_inference_steps, overlap):
        print('on_submit is calling')
        logger.info('on_submit is calling')

        if video_file is None:
            return None, None, None, None, None, None, "Please upload a video file"
        
        try:

            output_path, glb_files = process_video(
                video_file, model_size, num_inference_steps, overlap
            )

            
            
            if output_path is None:
                return None, None, None, None, None, None, glb_files
            
            model3d_outputs = [None] * 4
            if glb_files:
                for i, glb_file in enumerate(glb_files[:4]):
                    if os.path.exists(glb_file):
                        model3d_outputs[i] = glb_file
            


            return output_path, None, *model3d_outputs
                
        except Exception as e:
            logger.error(e)
            return None, None, None, None, None, None

    
    submit.click(
        on_submit,
        inputs=[
            input_video, model_size, num_inference_steps, overlap
        ],
        outputs=[
            output_video, vis_video, output_point_map0, output_point_map1, output_point_map2, output_point_map3
        ]
    )
    

    
    logger.info(f'there are {len(example_inputs)} demo files')
    print(f'there are {len(example_inputs)} demo files')
        
    examples = gr.Examples(
        examples=example_inputs, 
        inputs=[input_video, model_size, num_inference_steps, overlap], 
        outputs=[
            output_video, vis_video, 
            output_point_map0, output_point_map1, output_point_map2, output_point_map3
        ], 
        fn=on_submit,
        examples_per_page=12,
        cache_examples=False
    )


if __name__ == '__main__':
    
    #* main code, model and moge model initialization
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    logger.info(f"device = {device}")
    print(f"device = {device}")
    
    load_model_1_3b(device=device)
    load_moge_model(device=device)
    # torch.cuda.empty_cache()
    logger.info('model init done!')
    print('model init done!')

    demo.queue().launch(share = True)
    
    # demo.queue(
    #     api_open=False,
    # ).launch()

    
    # server_name="0.0.0.0", server_port=7860