shaocong's picture
Initial commit
cf7f9c0
import torch, copy
from typing import Union
from ..models.utils import init_weights_on_device
def cast_to(weight, dtype, device):
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight)
return r
class AutoTorchModule(torch.nn.Module):
def __init__(self):
super().__init__()
def check_free_vram(self):
gpu_mem_state = torch.cuda.mem_get_info(self.computation_device)
used_memory = (gpu_mem_state[1] - gpu_mem_state[0]) / (1024 ** 3)
return used_memory < self.vram_limit
def offload(self):
if self.state != 0:
self.to(dtype=self.offload_dtype, device=self.offload_device)
self.state = 0
def onload(self):
if self.state != 1:
self.to(dtype=self.onload_dtype, device=self.onload_device)
self.state = 1
def keep(self):
if self.state != 2:
self.to(dtype=self.computation_dtype, device=self.computation_device)
self.state = 2
class AutoWrappedModule(AutoTorchModule):
def __init__(self, module: torch.nn.Module, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device, vram_limit, **kwargs):
super().__init__()
self.module = module.to(dtype=offload_dtype, device=offload_device)
self.offload_dtype = offload_dtype
self.offload_device = offload_device
self.onload_dtype = onload_dtype
self.onload_device = onload_device
self.computation_dtype = computation_dtype
self.computation_device = computation_device
self.vram_limit = vram_limit
self.state = 0
def forward(self, *args, **kwargs):
if self.state == 2:
module = self.module
else:
if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device:
module = self.module
elif self.vram_limit is not None and self.check_free_vram():
self.keep()
module = self.module
else:
module = copy.deepcopy(self.module).to(dtype=self.computation_dtype, device=self.computation_device)
return module(*args, **kwargs)
class WanAutoCastLayerNorm(torch.nn.LayerNorm, AutoTorchModule):
def __init__(self, module: torch.nn.LayerNorm, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device, vram_limit, **kwargs):
with init_weights_on_device(device=torch.device("meta")):
super().__init__(module.normalized_shape, eps=module.eps, elementwise_affine=module.elementwise_affine, bias=module.bias is not None, dtype=offload_dtype, device=offload_device)
self.weight = module.weight
self.bias = module.bias
self.offload_dtype = offload_dtype
self.offload_device = offload_device
self.onload_dtype = onload_dtype
self.onload_device = onload_device
self.computation_dtype = computation_dtype
self.computation_device = computation_device
self.vram_limit = vram_limit
self.state = 0
def forward(self, x, *args, **kwargs):
if self.state == 2:
weight, bias = self.weight, self.bias
else:
if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device:
weight, bias = self.weight, self.bias
elif self.vram_limit is not None and self.check_free_vram():
self.keep()
weight, bias = self.weight, self.bias
else:
weight = None if self.weight is None else cast_to(self.weight, self.computation_dtype, self.computation_device)
bias = None if self.bias is None else cast_to(self.bias, self.computation_dtype, self.computation_device)
with torch.amp.autocast(device_type=x.device.type):
x = torch.nn.functional.layer_norm(x.float(), self.normalized_shape, weight, bias, self.eps).type_as(x)
return x
class AutoWrappedLinear(torch.nn.Linear, AutoTorchModule):
def __init__(self, module: torch.nn.Linear, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device, vram_limit, name="", **kwargs):
with init_weights_on_device(device=torch.device("meta")):
super().__init__(in_features=module.in_features, out_features=module.out_features, bias=module.bias is not None, dtype=offload_dtype, device=offload_device)
self.weight = module.weight
self.bias = module.bias
self.offload_dtype = offload_dtype
self.offload_device = offload_device
self.onload_dtype = onload_dtype
self.onload_device = onload_device
self.computation_dtype = computation_dtype
self.computation_device = computation_device
self.vram_limit = vram_limit
self.state = 0
self.name = name
self.lora_A_weights = []
self.lora_B_weights = []
self.lora_merger = None
self.enable_fp8 = computation_dtype in [torch.float8_e4m3fn, torch.float8_e4m3fnuz]
def fp8_linear(
self,
input: torch.Tensor,
weight: torch.Tensor,
bias: Union[torch.Tensor, None] = None):
device = input.device
origin_dtype = input.dtype
origin_shape = input.shape
input = input.reshape(-1, origin_shape[-1])
x_max = torch.max(torch.abs(input), dim=-1, keepdim=True).values
fp8_max = 448.0
# For float8_e4m3fnuz, the maximum representable value is half of that of e4m3fn.
# To avoid overflow and ensure numerical compatibility during FP8 computation,
# we scale down the input by 2.0 in advance.
# This scaling will be compensated later during the final result scaling.
if self.computation_dtype == torch.float8_e4m3fnuz:
fp8_max = fp8_max / 2.0
scale_a = torch.clamp(x_max / fp8_max, min=1.0).float().to(device=device)
scale_b = torch.ones((weight.shape[0], 1)).to(device=device)
input = input / (scale_a + 1e-8)
input = input.to(self.computation_dtype)
weight = weight.to(self.computation_dtype)
bias = bias.to(torch.bfloat16)
result = torch._scaled_mm(
input,
weight.T,
scale_a=scale_a,
scale_b=scale_b.T,
bias=bias,
out_dtype=origin_dtype,
)
new_shape = origin_shape[:-1] + result.shape[-1:]
result = result.reshape(new_shape)
return result
def forward(self, x, *args, **kwargs):
# VRAM management
if self.state == 2:
weight, bias = self.weight, self.bias
else:
if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device:
weight, bias = self.weight, self.bias
elif self.vram_limit is not None and self.check_free_vram():
self.keep()
weight, bias = self.weight, self.bias
else:
weight = cast_to(self.weight, self.computation_dtype, self.computation_device)
bias = None if self.bias is None else cast_to(self.bias, self.computation_dtype, self.computation_device)
# Linear forward
if self.enable_fp8:
out = self.fp8_linear(x, weight, bias)
else:
out = torch.nn.functional.linear(x, weight, bias)
# LoRA
if len(self.lora_A_weights) == 0:
# No LoRA
return out
elif self.lora_merger is None:
# Native LoRA inference
for lora_A, lora_B in zip(self.lora_A_weights, self.lora_B_weights):
out = out + x @ lora_A.T @ lora_B.T
else:
# LoRA fusion
lora_output = []
for lora_A, lora_B in zip(self.lora_A_weights, self.lora_B_weights):
lora_output.append(x @ lora_A.T @ lora_B.T)
lora_output = torch.stack(lora_output)
out = self.lora_merger(out, lora_output)
return out
def enable_vram_management_recursively(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, total_num_param=0, vram_limit=None, name_prefix=""):
for name, module in model.named_children():
layer_name = name if name_prefix == "" else name_prefix + "." + name
for source_module, target_module in module_map.items():
if isinstance(module, source_module):
num_param = sum(p.numel() for p in module.parameters())
if max_num_param is not None and total_num_param + num_param > max_num_param:
module_config_ = overflow_module_config
else:
module_config_ = module_config
module_ = target_module(module, **module_config_, vram_limit=vram_limit, name=layer_name)
setattr(model, name, module_)
total_num_param += num_param
break
else:
total_num_param = enable_vram_management_recursively(module, module_map, module_config, max_num_param, overflow_module_config, total_num_param, vram_limit=vram_limit, name_prefix=layer_name)
return total_num_param
def enable_vram_management(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, vram_limit=None):
enable_vram_management_recursively(model, module_map, module_config, max_num_param, overflow_module_config, total_num_param=0, vram_limit=vram_limit)
model.vram_management_enabled = True