File size: 16,575 Bytes
f96f6d4
1191303
 
ec7ddd1
 
32575e3
 
 
 
 
 
 
 
 
 
 
ec7ddd1
493df63
ec7ddd1
32575e3
ae9100f
 
 
 
 
32575e3
 
 
 
ae9100f
 
ec7ddd1
 
 
 
 
 
 
 
 
 
 
 
 
ae9100f
 
 
 
3570753
 
ec7ddd1
 
3570753
ec7ddd1
 
 
 
3570753
32575e3
cd866dd
 
 
3570753
 
 
32575e3
3570753
 
 
 
 
 
ec7ddd1
ae9100f
ec7ddd1
32575e3
ec7ddd1
 
 
ae9100f
ec7ddd1
 
 
 
32575e3
ec7ddd1
 
 
 
 
 
 
2fc3cdf
 
e14555c
32575e3
ec7ddd1
ae9100f
 
 
32575e3
ae9100f
 
ec7ddd1
 
 
 
 
 
 
 
 
 
 
 
64276e8
5b18cbd
ec7ddd1
 
 
 
 
 
 
5b18cbd
111c8be
 
 
cd866dd
111c8be
cd866dd
 
 
111c8be
 
ec7ddd1
 
 
cd866dd
 
ec7ddd1
 
 
0fcb9c1
64276e8
7986235
 
 
 
 
 
 
 
32575e3
 
7986235
 
 
721c955
 
 
 
bf5580a
 
721c955
 
0fcb9c1
bf5580a
0fcb9c1
 
 
7986235
 
 
 
 
 
 
 
12a118d
 
 
 
 
 
 
 
 
 
 
 
 
 
0fcb9c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12a118d
 
 
 
 
0fcb9c1
12a118d
 
 
 
 
 
 
 
 
 
 
7986235
 
 
 
0fcb9c1
64276e8
 
32575e3
 
 
62835ea
 
 
 
 
32575e3
 
 
 
 
 
 
 
 
 
 
 
 
 
ec7ddd1
e32fbfc
 
 
 
e49cf2a
 
 
 
 
 
 
 
 
 
 
7a0f264
e49cf2a
7a0f264
e49cf2a
319dd59
616e47d
ca3e624
32575e3
03cd4eb
7bd7b3e
 
32575e3
4aad40a
 
ec7ddd1
3ed92ae
ec7ddd1
 
b4411fc
 
32575e3
 
 
 
ec7ddd1
 
 
5158cbc
 
313e06c
608887a
16cee10
 
 
 
 
 
313e06c
7146722
b8be095
b4411fc
 
 
 
 
 
 
 
89636c2
5158cbc
89636c2
4aad40a
 
313e06c
608887a
16cee10
 
 
 
 
 
313e06c
32575e3
c1edf87
32575e3
 
b4411fc
 
c1edf87
 
 
32575e3
4aad40a
32575e3
4aad40a
 
313e06c
608887a
16cee10
 
 
 
 
 
c1edf87
0fcb9c1
 
 
 
 
 
 
 
 
 
 
 
 
 
c1edf87
7986235
b4411fc
0fcb9c1
 
 
 
 
c1edf87
 
 
111c8be
 
 
 
 
 
 
 
 
c1edf87
32575e3
c1edf87
32575e3
5158cbc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# add support for multiple pdf/pdf urls + audio query + generate qa audio
# include - key features of the app + limitations + future work + workflow diagram + sample outputs
# 
import streamlit as st
import os
from openai import OpenAI
import tempfile
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import (
    PyPDFLoader, 
    TextLoader, 
    CSVLoader
)
from datetime import datetime
from pydub import AudioSegment
import pytz

from langchain.chains import ConversationalRetrievalChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader
import os
import tempfile
from datetime import datetime
import pytz


class DocumentRAG:
    def __init__(self):
        self.document_store = None
        self.qa_chain = None
        self.document_summary = ""
        self.chat_history = []
        self.last_processed_time = None
        self.api_key = os.getenv("OPENAI_API_KEY")  # Fetch the API key from environment variable
        self.init_time = datetime.now(pytz.UTC)

        if not self.api_key:
            raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.")

        # Persistent directory for Chroma to avoid tenant-related errors
        self.chroma_persist_dir = "./chroma_storage"
        os.makedirs(self.chroma_persist_dir, exist_ok=True)

    def process_documents(self, uploaded_files):
        """Process uploaded files by saving them temporarily and extracting content."""
        if not self.api_key:
            return "Please set the OpenAI API key in the environment variables."
        if not uploaded_files:
            return "Please upload documents first."

        try:
            documents = []
            for uploaded_file in uploaded_files:
                # Save uploaded file to a temporary location
                temp_file_path = tempfile.NamedTemporaryFile(
                    delete=False, suffix=os.path.splitext(uploaded_file.name)[1]
                ).name
                with open(temp_file_path, "wb") as temp_file:
                    temp_file.write(uploaded_file.read())

                # Determine the loader based on the file type
                if temp_file_path.endswith('.pdf'):
                    loader = PyPDFLoader(temp_file_path)
                elif temp_file_path.endswith('.txt'):
                    loader = TextLoader(temp_file_path)
                elif temp_file_path.endswith('.csv'):
                    loader = CSVLoader(temp_file_path)
                else:
                    return f"Unsupported file type: {uploaded_file.name}"

                # Load the documents
                try:
                    documents.extend(loader.load())
                except Exception as e:
                    return f"Error loading {uploaded_file.name}: {str(e)}"

            if not documents:
                return "No valid documents were processed. Please check your files."

            # Split text for better processing
            text_splitter = RecursiveCharacterTextSplitter(
                chunk_size=1000,
                chunk_overlap=200,
                length_function=len
            )
            documents = text_splitter.split_documents(documents)

            # Combine text for later summary generation
            self.document_text = " ".join([doc.page_content for doc in documents])  # Store for later use

            # Create embeddings and initialize retrieval chain
            embeddings = OpenAIEmbeddings(api_key=self.api_key)
            self.document_store = Chroma.from_documents(
                documents,
                embeddings,
                persist_directory=self.chroma_persist_dir  # Persistent directory for Chroma
            )

            self.qa_chain = ConversationalRetrievalChain.from_llm(
                ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key),
                self.document_store.as_retriever(search_kwargs={'k': 6}),
                return_source_documents=True,
                verbose=False
            )

            self.last_processed_time = datetime.now(pytz.UTC)
            return "Documents processed successfully!"
        except Exception as e:
            return f"Error processing documents: {str(e)}"

    def generate_summary(self, text, language):
        """Generate a summary of the provided text focusing on specific sections in the specified language."""
        if not self.api_key:
            return "API Key not set. Please set it in the environment variables."
        try:
            client = OpenAI(api_key=self.api_key)
            response = client.chat.completions.create(
                model="gpt-4",
                messages=[
                    {"role": "system", "content": f"""
                    Summarize the following document in **{language}**.
                    
                    While generating summary, focus mainly on the following sections of the document:
                    1. Abstract
                    2. In the Introduction, highlight key contributions.
                    3. Conclusion
                    4. Limitations
                    5. Future Work
                    Write the summary entirely in **{language}**. Provide 7–9 key points in bullet format. Be concise and well-structured.
                    """},
                    {"role": "user", "content": text[:4000]}
                ],
                temperature=0.3
            )
            return response.choices[0].message.content
        except Exception as e:
            return f"Error generating summary: {str(e)}"

    def create_podcast(self, language, tts_engine, elevenlabs_api_key=None):
        """Generate a podcast script and audio based on doc summary in the specified language."""
        if not self.document_summary:
            return "Please process documents before generating a podcast.", None

        if not self.api_key:
            return "Please set the OpenAI API key in the environment variables.", None

        try:
            client = OpenAI(api_key=self.api_key)

            # Generate podcast script
            script_response = client.chat.completions.create(
                model="gpt-4",
                messages=[
                    {"role": "system", "content": f"""
                    You are a professional podcast producer. Create a 1-2 minute structured podcast dialogue in {language} 
                    based on the provided document summary. Follow this flow:
                    1. Brief Introduction of the Topic
                    2. Highlight the limitations of existing methods, the key contributions of the research paper, and its advantages over the current state of the art.
                    3. Discuss Limitations of the research work. 
                    4. Present the Conclusion
                    5. Mention Future Work

                    Clearly label the dialogue as 'Host 1:' and 'Host 2:'. Maintain a tone that is engaging, conversational,
                    and insightful. Include a clear, thoughtful closing.
                    """},
                    {"role": "user", "content": f"Document Summary: {self.document_summary}"}
                ],
                temperature=0.7
            )

            script = script_response.choices[0].message.content
            if not script:
                return "Error: Failed to generate podcast script.", None

            # Convert script to audio
            final_audio = AudioSegment.empty()
            is_first_speaker = True

            lines = [line.strip() for line in script.split("\n") if line.strip()]
            for line in lines:
                if ":" not in line:
                    continue

                speaker, text = line.split(":", 1)
                if not text.strip():
                    continue

                try:
                    if tts_engine == "OpenAI":
                        voice = "nova" if is_first_speaker else "onyx"
                        audio_response = client.audio.speech.create(
                            model="tts-1",
                            voice=voice,
                            input=text.strip()
                        )

                        temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
                        audio_response.stream_to_file(temp_audio_file.name)

                    elif tts_engine == "ElevenLabs":
                        if not elevenlabs_api_key:
                            return "Please provide your ElevenLabs API key.", None

                        from elevenlabs import generate, set_api_key
                        set_api_key(elevenlabs_api_key)

                        voice_name = "Bella" if is_first_speaker else "Adam"
                        audio_bytes = generate(
                            text[:250],
                            voice=voice_name,
                            model="eleven_multilingual_v2"
                        )

                        temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
                        temp_audio_file.write(audio_bytes)
                        temp_audio_file.flush()

                    else:
                        return "Invalid TTS engine selected.", None

                    segment = AudioSegment.from_file(temp_audio_file.name)
                    final_audio += segment
                    final_audio += AudioSegment.silent(duration=300)
                    is_first_speaker = not is_first_speaker

                except Exception as e:
                    print(f"Error generating audio for line: {text}")
                    print(f"Details: {e}")
                    continue

            if len(final_audio) == 0:
                return "Error: No audio could be generated.", None

            output_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
            final_audio.export(output_file, format="mp3")
            return script, output_file

        except Exception as e:
            return f"Error generating podcast: {str(e)}", None


    def handle_query(self, question, history, language):
        """Handle user queries in the specified language."""
        if not self.qa_chain:
            return history + [("System", "Please process the documents first.")]
        try:
            preface = (
            f"Instruction: Respond in {language}. Be professional and concise, "
            f"keeping the response under 300 words. If you cannot provide an answer, say: "
            f'"I am not sure about this question. Please try asking something else."'
        )
            query = f"{preface}\nQuery: {question}"

            result = self.qa_chain({
                "question": query,
                "chat_history": [(q, a) for q, a in history]
            })

            if "answer" not in result:
                return history + [("System", "Sorry, an error occurred.")]

            history.append((question, result["answer"]))
            return history
        except Exception as e:
            return history + [("System", f"Error: {str(e)}")]

# Initialize RAG system in session state
if "rag_system" not in st.session_state:
    st.session_state.rag_system = DocumentRAG()

# Sidebar
with st.sidebar:
    st.title("About")
    st.markdown(
        """
        This app is inspired by the [RAG_HW HuggingFace Space](https://huggingface.co/spaces/wint543/RAG_HW).  
        It allows users to upload documents, generate summaries, ask questions, and create podcasts.
        """
    )
    st.markdown("### Steps:")
    st.markdown("1. Upload documents.")
    st.markdown("2. Generate summary.")
    st.markdown("3. Ask questions.")
    st.markdown("4. Create podcast.")

    st.markdown("### Credits:")
    st.markdown("Image Source: [Geeksforgeeks](https://www.geeksforgeeks.org/how-to-convert-document-into-podcast/)")

# Streamlit UI
st.title("Document Analyzer & Podcast Generator")
st.image("./cover_image.png", use_container_width=True)


# Step 1: Upload and Process Documents
st.subheader("Step 1: Upload and Process Documents")
uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True)

if st.button("Process Documents"):
    if uploaded_files:
        with st.spinner("Processing documents, please wait..."):
            result = st.session_state.rag_system.process_documents(uploaded_files)
        if "successfully" in result:
            st.success(result)
        else:
            st.error(result)
    else:
        st.warning("No files uploaded.")

# Step 2: Generate Summary
st.subheader("Step 2: Generate Summary")
st.write("Select Summary Language:")
summary_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"]
summary_language = st.radio(
    "", 
    summary_language_options, 
    horizontal=True, 
    key="summary_language"
)

if st.button("Generate Summary"):
    if hasattr(st.session_state.rag_system, "document_text") and st.session_state.rag_system.document_text:
        with st.spinner("Generating summary, please wait..."):
            summary = st.session_state.rag_system.generate_summary(st.session_state.rag_system.document_text, summary_language)
        if summary:
            st.session_state.rag_system.document_summary = summary
            st.text_area("Document Summary", summary, height=200)
            st.success("Summary generated successfully!")
        else:
            st.error("Failed to generate summary.")
    else:
        st.info("Please process documents first to generate summary.")

# Step 3: Ask Questions
st.subheader("Step 3: Ask Questions")
st.write("Select Q&A Language:")
qa_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"]
qa_language = st.radio(
    "", 
    qa_language_options, 
    horizontal=True, 
    key="qa_language"
)

if st.session_state.rag_system.qa_chain:
    history = []
    user_question = st.text_input("Ask a question:")
    if st.button("Submit Question"):
        with st.spinner("Answering your question, please wait..."):
            history = st.session_state.rag_system.handle_query(user_question, history, qa_language)
        for question, answer in history:
            st.chat_message("user").write(question)
            st.chat_message("assistant").write(answer)
else:
    st.info("Please process documents first to enable Q&A.")

# Step 4: Generate Podcast
st.subheader("Step 4: Generate Podcast")
st.write("Select Podcast Language:")
podcast_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"]
podcast_language = st.radio(
    "", 
    podcast_language_options, 
    horizontal=True, 
    key="podcast_language"
)

# TTS Engine Selector
st.write("Select TTS Engine:")
tts_engine = st.radio(
    "Choose voice generation engine:",
    options=["OpenAI", "ElevenLabs"],
    horizontal=True,
    key="tts_engine"
)

# Optional ElevenLabs API Key Input
elevenlabs_api_key = None
if tts_engine == "ElevenLabs":
    elevenlabs_api_key = st.text_input("Enter your ElevenLabs API Key:", type="password")

if st.session_state.rag_system.document_summary:
    if st.button("Generate Podcast"):
        with st.spinner("Generating podcast, please wait..."):
            script, audio_path = st.session_state.rag_system.create_podcast(
                podcast_language,
                tts_engine,
                elevenlabs_api_key=elevenlabs_api_key
            )
        if audio_path:
            st.text_area("Generated Podcast Script", script, height=200)
            st.audio(audio_path, format="audio/mp3")

            with open(audio_path, "rb") as audio_file:
                st.download_button(
                    label="Download Podcast (.mp3)",
                    data=audio_file,
                    file_name="podcast.mp3",
                    mime="audio/mpeg"
                )

            st.success("Podcast generated successfully! You can listen to it above.")
        else:
            st.error(script)
else:
    st.info("Please process documents and generate summary before creating a podcast.")