FLARE / magma /run_magma.py
yzhouchen001's picture
magma runner
7b7a7b6
raw
history blame
8.05 kB
""" run_magma.py
Accept input processed spectra and make subformula peak assignments
accordingly.
"""
import logging
from pathlib import Path
import numpy as np
import pandas as pd
import argparse
import sys
from multiprocessing import Pool
from tqdm import tqdm
from collections import defaultdict
import json
# add parent path
import os
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
# Custom import
from magma.fragmentation import FragmentEngine, ionmasses
from magma import magma_utils
from magma.fragmentation import ionmasses
# Define basic logger
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s %(levelname)s: %(message)s",
handlers=[
logging.StreamHandler(sys.stdout),
],
)
FRAGMENT_ENGINE_PARAMS = {
"max_broken_bonds": 3,
"max_water_losses": 1,
"ionisation_mode": 1,
"skip_fragmentation": 0,
"molcharge": 0,
}
PEAK_ASSIGNMENT_PARAMS = {
'lowest_penalty_filter': True,
'tolerance': 1
}
def get_args():
"""get args"""
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_pth',
required=True
)
parser.add_argument(
"--output_dir",
required=True,
help="Output directory to save MAGMA files",
)
parser.add_argument(
"--workers", default=30, action="store", type=int, help="Num workers"
)
return parser.parse_args()
def get_matching_fragment(
fragment_df, mass_comparison_vector, lowest_penalty_filter: bool
):
"""get_matching_fragment.
Compare frag
Args:
fragment_df
mass_comparison_vec
lowest_penalty_filter
"""
# Step 1 - Determine and filter for fragments whose mass range cover the peak mass
matched_fragments_df = fragment_df[mass_comparison_vector]
# If no candidate fragments exist, exit function
if matched_fragments_df.shape[0] == 0:
return []
# Step 2 - If multiple candidate substructures, filter for those with the lowest penalty scores
if lowest_penalty_filter:
if matched_fragments_df.shape[0] > 1:
min_score = matched_fragments_df["score"].min()
matched_fragments_df = matched_fragments_df[
matched_fragments_df["score"] == min_score
]
# Step 3 - Save all remaining candidate fragments
matched_fragment_idxs = list(matched_fragments_df.index)
return matched_fragment_idxs
def get_fragment_mass_range(fragment_engine, fragment_df, tolerance):
"""get_fragment_mass_range.
Define min and max masses in the range that are available based upon
hydrogen diffs.
Args:
fragment_engine: Fragment engine
fragment_df: fragment_df
tolerance: Tolerance
"""
fragment_masses_np = fragment_engine.fragment_masses_np
# Build a list of the min and max mass of each fragment
fragment_mass_min_max = []
for fragment_idx in range(fragment_masses_np.shape[0]):
fragment_masses = fragment_masses_np[fragment_idx, :]
if np.sum(fragment_masses) == 0:
min_frag_mass = 0
max_frag_mass = 0
else:
min_frag_mass = (
fragment_masses[np.nonzero(fragment_masses)[0][0]] - tolerance
)
max_frag_mass = max(fragment_masses) + tolerance
fragment_mass_min_max.append((min_frag_mass, max_frag_mass))
fragment_mass_min_max = np.array(fragment_mass_min_max)
fragment_df["min_mass"] = fragment_mass_min_max[:, 0]
fragment_df["max_mass"] = fragment_mass_min_max[:, 1]
return fragment_df
def run_magma_wrapper(args):
if os.path.exists(args[-1]): # skip over ones that have been processed
return
return run_magma(*args)
def run_magma(identifier, mzs, intensities, smiles, adduct, save_filename=''):
'''YZC
Run fragmentation, assignment, and save results
'''
# Step 1 - Load fragmentation engine and generate fragments
(
max_broken_bonds,
max_water_losses,
ionisation_mode,
skip_fragmentation,
molcharge,
) = FRAGMENT_ENGINE_PARAMS.values()
try:
engine = FragmentEngine(
smiles=smiles,
max_broken_bonds=max_broken_bonds,
max_water_losses=max_water_losses,
ionisation_mode=ionisation_mode,
skip_fragmentation=skip_fragmentation,
molcharge=molcharge,
)
engine.generate_fragments()
except Exception as e:
logging.info(f"Error for spec {identifier}")
print(e)
return None
# Step 2 - Assign fragments to peaks
assignment_dict = peak_fragment_assignment(
engine,
mzs,
intensities,
adduct,
)
# Step 3 - Save assignments
if save_filename:
with open(save_filename, 'w') as f:
json.dump(assignment_dict, f)
else:
return assignment_dict
def peak_fragment_assignment(fragment_engine, mzs, intensities, adduct):
''' returns a df with columns
Args:
fragment_engine: FragmentEngine
mzs: np array of mz values
adduct: str eg. [M+H]+ [M+Na]+
Returns:
assignment_df
'''
fragments_info = fragment_engine.fragment_info
fragment_df = pd.DataFrame(
fragment_engine.fragment_info, columns=["id", "score", "bond_breaks"]
)
fragment_df = get_fragment_mass_range(fragment_engine, fragment_df, tolerance=PEAK_ASSIGNMENT_PARAMS['tolerance'])
# Need to build comparison values here
min_fragment_mass = fragment_df["min_mass"].values
max_fragment_mass = fragment_df["max_mass"].values
adduct = magma_utils.extract_adduct_ion(adduct)
charge = 1 if adduct.startswith('+') else -1
exact_masses = mzs + ionmasses[charge][adduct]
mass_comparison_matrix = np.logical_and(
exact_masses[None, :] >= min_fragment_mass[:, None],
exact_masses[None, :] <= max_fragment_mass[:, None],
)
# Iterate over each peak to find a match
assignments = defaultdict(list) # {mz, intensity, subformulas, candidates}
for k, (m, i) in enumerate(zip(mzs, intensities)):
mass_comparison_vector = mass_comparison_matrix[:, k]
matched_fragment_idxs = get_matching_fragment(
fragment_df,
mass_comparison_vector,
lowest_penalty_filter=PEAK_ASSIGNMENT_PARAMS['lowest_penalty_filter'],
)
# Save selected fragments info
subformulas = set([])
substructures = set([])
for idx in matched_fragment_idxs:
fragment_info = fragment_engine.get_fragment_info(fragments_info[idx][0], 0)
subformulas.add(fragment_info[2])
substructures.add(fragment_info[3])
subformulas = list(subformulas)
substructures = list(substructures)
assignments['mz'].append(m)
assignments['intensities'].append(i)
assignments['subformulas'].append(subformulas)
assignments['substructures'].append(substructures)
return assignments
if __name__ == "__main__":
import time
start_time = time.time()
args = get_args()
kwargs = args.__dict__
os.makedirs(args.output_dir, exist_ok=True)
df = pd.read_csv(args.data_pth, sep='\t')
df['save_filename'] = df['identifier'].apply(lambda x: os.path.join(args.output_dir, x + '.json'))
df['mzs'] = df['mzs'].apply(lambda x: np.array([float(m) for m in x.split(',')]))
df['intensities'] = df['intensities'].apply(lambda x: np.array([float(i) for i in x.split(',')]))
df = df[['identifier', 'mzs', 'intensities', 'smiles', 'adduct', 'save_filename']]
tasks = list(df.itertuples(index=False, name=None))
with Pool(processes=args.workers) as pool:
results = list(tqdm(pool.imap_unordered(run_magma_wrapper, tasks), total=len(tasks)))
# pool.starmap(run_magma, tasks)
end_time = time.time()
print(f"Program finished in: {end_time - start_time} seconds")