File size: 103,882 Bytes
28f2970 b1fafe7 a01c0f9 28f2970 b1fafe7 a01c0f9 ef87883 d7d1b8f ef87883 ad0a765 b1fafe7 83d9107 0772ae3 28f2970 ef87883 18f492f ef87883 35b8c28 28f2970 18f492f 28f2970 ef87883 cb3c4bf 28f2970 35b8c28 28f2970 ef87883 28f2970 b1fafe7 28f2970 e6bcdb0 35b8c28 28f2970 cb3c4bf b1fafe7 cb3c4bf b1fafe7 cb3c4bf b1fafe7 cb3c4bf b1fafe7 cb3c4bf 28f2970 0772ae3 18f492f ef87883 18f492f 068c039 0772ae3 18f492f b1fafe7 d655ec6 0772ae3 18f492f 0772ae3 b1fafe7 0772ae3 ef87883 c9f844d b1fafe7 ef87883 b1fafe7 18f492f 0772ae3 ef87883 18f492f b1fafe7 18f492f b1fafe7 18f492f 0772ae3 ef87883 0772ae3 c9f844d ef87883 c9f844d 0772ae3 18f492f d655ec6 18f492f ef87883 0772ae3 18f492f 4bd0357 de99383 0772ae3 ef87883 83d9107 ef87883 068c039 0772ae3 068c039 18f492f 068c039 0772ae3 068c039 2c0487e 068c039 0772ae3 068c039 18f492f ef87883 0772ae3 ef87883 c9f844d e6ac1c1 c9f844d 18f492f ef87883 c9f844d ef87883 18f492f b1fafe7 18f492f ef87883 41f8d59 8c55f6d 41f8d59 0772ae3 18f492f 008f8f3 18f492f 0772ae3 18f492f c9f844d 18f492f ef87883 e6ac1c1 18f492f ef87883 0772ae3 18f492f 57a0735 18f492f e6ac1c1 57a0735 ef87883 18f492f 57a0735 b5c73ce 18f492f ef87883 18f492f 008f8f3 18f492f ef87883 2c0487e e6ac1c1 18f492f 0772ae3 18f492f ef87883 18f492f 81f06e1 18f492f 068c039 18f492f 0772ae3 18f492f 4bd0357 41f8d59 8c55f6d 238a77b 41f8d59 98665cb 0772ae3 18f492f 98665cb e6ac1c1 0772ae3 238a77b 18f492f c9f844d 18f492f b1fafe7 18f492f cb3c4bf 0772ae3 18f492f 8863ba4 cb3c4bf 8863ba4 cb3c4bf 8863ba4 cb3c4bf 8863ba4 cb3c4bf 8863ba4 cb3c4bf 8863ba4 18f492f 8863ba4 cb3c4bf b1fafe7 cb3c4bf 0772ae3 cb3c4bf b1fafe7 cb3c4bf b1fafe7 cb3c4bf b1fafe7 068c039 cb3c4bf 18f492f 2c0487e 18f492f 068c039 18f492f 068c039 18f492f 0772ae3 18f492f 83d9107 0772ae3 83d9107 0772ae3 068c039 833e280 0d2bdda 833e280 0772ae3 0d2bdda 833e280 83d9107 81f06e1 0d2bdda 81f06e1 83d9107 833e280 0d2bdda 83d9107 18f492f 068c039 18f492f 0772ae3 18f492f d7d1b8f 15378c4 d7d1b8f b1fafe7 d7d1b8f caf3990 b1fafe7 d7d1b8f 8fbd9ae b1fafe7 8fbd9ae d7d1b8f ad0a765 d7d1b8f ad0a765 8fbd9ae ad0a765 b1fafe7 ad0a765 8fbd9ae ad0a765 8fbd9ae ad0a765 d7d1b8f b1fafe7 d7d1b8f b1fafe7 d7d1b8f b1fafe7 d7d1b8f b1fafe7 d7d1b8f b1fafe7 d7d1b8f de99383 d7d1b8f b1fafe7 d7d1b8f 238a77b d7d1b8f c713d4d b1fafe7 c713d4d b1fafe7 8863ba4 c713d4d 8863ba4 c713d4d 8863ba4 0d2bdda 8863ba4 0d2bdda 8863ba4 0d2bdda 8863ba4 0d2bdda 8863ba4 c713d4d ad0a765 c713d4d ad0a765 d7d1b8f ad0a765 c713d4d ad0a765 c713d4d ad0a765 c713d4d 8fbd9ae b1fafe7 8fbd9ae ad0a765 c713d4d 8fbd9ae b1fafe7 8fbd9ae c713d4d 8fbd9ae c713d4d 8fbd9ae c713d4d 8fbd9ae 92c4aa8 8fbd9ae ad0a765 8fbd9ae c713d4d 8fbd9ae c713d4d 8fbd9ae c713d4d 8863ba4 8fbd9ae b1fafe7 8fbd9ae 0d2bdda 8fbd9ae 0d2bdda 8fbd9ae 8863ba4 8fbd9ae c713d4d ad0a765 c713d4d ad0a765 c713d4d ad0a765 c713d4d ad0a765 c713d4d ad0a765 c713d4d 238a77b d7d1b8f b1fafe7 d7d1b8f cb3c4bf d7d1b8f b1fafe7 d7d1b8f ad0a765 d7d1b8f 15378c4 ad0a765 d7d1b8f ad0a765 d7d1b8f ad0a765 d7d1b8f b1fafe7 d7d1b8f b1fafe7 d7d1b8f ad0a765 d7d1b8f ad0a765 d7d1b8f ad0a765 d7d1b8f ad0a765 d7d1b8f ad0a765 d7d1b8f ad0a765 d7d1b8f ad0a765 d7d1b8f ad0a765 d7d1b8f ad0a765 b1fafe7 d7d1b8f ad0a765 cb3c4bf ad0a765 15378c4 951a5d5 15378c4 951a5d5 15378c4 951a5d5 15378c4 951a5d5 15378c4 951a5d5 15378c4 951a5d5 15378c4 ad0a765 cb3c4bf 15378c4 cb3c4bf ad0a765 cb3c4bf ad0a765 5b192f8 cb3c4bf d7d1b8f 35b8c28 ad0a765 35b8c28 ad0a765 12f6cb3 35b8c28 12f6cb3 35b8c28 ad0a765 12f6cb3 ad0a765 12f6cb3 ad0a765 35b8c28 12f6cb3 35b8c28 12f6cb3 35b8c28 12f6cb3 35b8c28 12f6cb3 35b8c28 12f6cb3 35b8c28 12f6cb3 35b8c28 12f6cb3 951a5d5 12f6cb3 b1fafe7 12f6cb3 15378c4 12f6cb3 15378c4 cb3c4bf 15378c4 b1fafe7 12f6cb3 15378c4 12f6cb3 b1fafe7 cb3c4bf 15378c4 12f6cb3 15378c4 12f6cb3 15378c4 12f6cb3 15378c4 12f6cb3 b1fafe7 cb3c4bf 15378c4 12f6cb3 8863ba4 cb3c4bf 15378c4 12f6cb3 15378c4 12f6cb3 15378c4 ef87883 cb3c4bf 8863ba4 cb3c4bf ef87883 cb3c4bf ef87883 b1fafe7 ef87883 cb3c4bf ef87883 d7d1b8f ef87883 cb3c4bf ef87883 cb3c4bf ef87883 28f2970 cc66f4c 18f492f d7d1b8f 28f2970 bd3bb90 28f2970 bd3bb90 cc66f4c bd3bb90 cc66f4c bd3bb90 cc66f4c bd3bb90 cc66f4c bd3bb90 cc66f4c bd3bb90 cc66f4c bd3bb90 28f2970 bd3bb90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 |
"""
🔮 PHOENIX Retention Research Platform - PRODUCTION VERSION v1.4.1
State Dict Direct Loading + Structure-Aware Burning + HuggingFace Hub
✅ State Dict Direct Loading
✅ Model Structure Pre-Analysis
✅ Qwen3 Model Support
✅ Zero-shot Conversion (No Dataset Required)
✅ Optional Fine-tuning (Dataset-based)
✅ GQA Support
✅ HuggingFace Hub Integration with Custom Code
✅ Comprehensive Evaluation
✅ Pre-upload Verification
✅ FIX: modeling_phoenix.py head_dim calculation
VIDraft AI Research Lab
"""
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import sqlite3
import json
import time
import numpy as np
from datetime import datetime
from pathlib import Path
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
from typing import Dict, List, Any, Tuple, Optional
import chromadb
from chromadb.config import Settings
from transformers import (
AutoModel, AutoTokenizer, AutoConfig, AutoModelForCausalLM,
get_cosine_schedule_with_warmup, TrainingArguments, Trainer
)
from datasets import load_dataset
from torch.utils.data import Dataset, DataLoader
from accelerate import Accelerator
from tqdm import tqdm
import copy
import shutil
import os
from huggingface_hub import HfApi, create_repo
# =====================================================
# 전역 설정
# =====================================================
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
STORAGE_PATH = "/data"
DB_PATH = f"{STORAGE_PATH}/phoenix_experiments.db"
VECTOR_DB_PATH = f"{STORAGE_PATH}/vector_store"
MODELS_PATH = f"{STORAGE_PATH}/phoenix_models"
DEFAULT_MODEL = "Qwen/Qwen3-0.6B" # 기준 모델 변경
# HuggingFace Token
HF_TOKEN = os.getenv("HF_TOKEN")
Path(STORAGE_PATH).mkdir(parents=True, exist_ok=True)
Path(VECTOR_DB_PATH).mkdir(parents=True, exist_ok=True)
Path(MODELS_PATH).mkdir(parents=True, exist_ok=True)
print(f"🚀 PHOENIX Platform v1.4.1 initialized on {DEVICE}")
print(f"💾 Storage: {STORAGE_PATH}")
print(f"🎯 Default Base Model: {DEFAULT_MODEL}")
if HF_TOKEN:
print(f"🔑 HuggingFace Token: {'*' * 10}{HF_TOKEN[-4:]}")
else:
print(f"⚠️ HuggingFace Token not found (upload disabled)")
# =====================================================
# 모델 구조 분석 함수
# =====================================================
def analyze_model_structure(model_url: str) -> Dict[str, Any]:
"""
🔍 모델 구조 사전 분석
변환 전 모델의 레이어 구조를 파악합니다.
"""
print("\n" + "="*80)
print("🔍 MODEL STRUCTURE ANALYSIS")
print("="*80)
try:
print(f"\n📥 Loading model config: {model_url}")
config = AutoConfig.from_pretrained(model_url, trust_remote_code=True)
print(f"✅ Config loaded")
print(f" Architecture: {config.architectures if hasattr(config, 'architectures') else 'Unknown'}")
print(f" Model Type: {config.model_type if hasattr(config, 'model_type') else 'Unknown'}")
# 간단한 모델 로드 (구조 확인용)
print(f"\n📦 Loading model structure...")
model = AutoModelForCausalLM.from_pretrained(
model_url,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="cpu" # CPU로 구조만 확인
)
analysis = {
'model_url': model_url,
'model_type': config.model_type if hasattr(config, 'model_type') else 'unknown',
'architectures': config.architectures[0] if hasattr(config, 'architectures') else 'unknown',
'hidden_size': config.hidden_size if hasattr(config, 'hidden_size') else 0,
'num_attention_heads': config.num_attention_heads if hasattr(config, 'num_attention_heads') else 0,
'num_hidden_layers': config.num_hidden_layers if hasattr(config, 'num_hidden_layers') else 0,
'num_key_value_heads': config.num_key_value_heads if hasattr(config, 'num_key_value_heads') else None,
'layer_structure': None,
'attention_type': 'unknown',
'total_layers': 0,
'has_self_attn': False,
'layer_path': None,
}
# 레이어 구조 탐색
print(f"\n🔍 Analyzing layer structure...")
layers = None
layer_path = None
# 여러 가능한 구조 탐색
possible_paths = [
('model.layers', lambda m: m.model.layers if hasattr(m, 'model') and hasattr(m.model, 'layers') else None),
('transformer.h', lambda m: m.transformer.h if hasattr(m, 'transformer') and hasattr(m.transformer, 'h') else None),
('layers', lambda m: m.layers if hasattr(m, 'layers') else None),
('model.decoder.layers', lambda m: m.model.decoder.layers if hasattr(m, 'model') and hasattr(m.model, 'decoder') and hasattr(m.model.decoder, 'layers') else None),
]
for path_name, path_fn in possible_paths:
result = path_fn(model)
if result is not None:
layers = result
layer_path = path_name
print(f" ✅ Found layers at: {path_name}")
break
if layers is None:
print(f" ❌ No layers found! Model structure unknown.")
analysis['error'] = 'No layers found'
return analysis
analysis['total_layers'] = len(layers)
analysis['layer_path'] = layer_path
print(f" Total Layers: {len(layers)}")
# 첫 번째 레이어 분석
if len(layers) > 0:
first_layer = layers[0]
print(f"\n🔬 Analyzing first layer...")
# self_attn 확인
if hasattr(first_layer, 'self_attn'):
analysis['has_self_attn'] = True
attn = first_layer.self_attn
print(f" ✅ Has self_attn")
print(f" Attention class: {attn.__class__.__name__}")
analysis['attention_type'] = attn.__class__.__name__
# Q, K, V projection 확인
if hasattr(attn, 'q_proj'):
q_shape = attn.q_proj.weight.shape
k_shape = attn.k_proj.weight.shape
v_shape = attn.v_proj.weight.shape
print(f" Q projection: {q_shape}")
print(f" K projection: {k_shape}")
print(f" V projection: {v_shape}")
# ✅ head_dim 역산
if hasattr(config, 'num_attention_heads') and config.num_attention_heads > 0:
head_dim = q_shape[0] // config.num_attention_heads
analysis['head_dim'] = head_dim
print(f" Calculated head_dim: {head_dim}")
# GQA 감지
if k_shape[0] != q_shape[0]:
print(f" ✅ GQA detected! (K/V heads < Q heads)")
analysis['gqa_detected'] = True
# KV head_dim도 계산
if hasattr(config, 'num_key_value_heads') and config.num_key_value_heads > 0:
kv_head_dim = k_shape[0] // config.num_key_value_heads
analysis['kv_head_dim'] = kv_head_dim
print(f" Calculated kv_head_dim: {kv_head_dim}")
else:
print(f" Standard MHA (K/V heads == Q heads)")
analysis['gqa_detected'] = False
analysis['q_dim'] = q_shape[0]
analysis['k_dim'] = k_shape[0]
analysis['v_dim'] = v_shape[0]
analysis['o_in_dim'] = attn.o_proj.weight.shape[1] if hasattr(attn, 'o_proj') else None
else:
print(f" ⚠️ No self_attn found in layer")
analysis['has_self_attn'] = False
# 구조 요약
print(f"\n{'='*80}")
print(f"📊 STRUCTURE ANALYSIS COMPLETE")
print(f"{'='*80}")
print(f"Model Type: {analysis['model_type']}")
print(f"Architecture: {analysis['architectures']}")
print(f"Total Layers: {analysis['total_layers']}")
print(f"Layer Path: {analysis['layer_path']}")
print(f"Has self_attn: {analysis['has_self_attn']}")
print(f"Attention Type: {analysis['attention_type']}")
if analysis.get('gqa_detected'):
print(f"✅ GQA Support: YES")
print(f" Q dim: {analysis.get('q_dim')}")
print(f" K dim: {analysis.get('k_dim')}")
else:
print(f"Standard MHA")
print(f"{'='*80}\n")
# 메모리 정리
del model
torch.cuda.empty_cache()
return analysis
except Exception as e:
import traceback
error_msg = traceback.format_exc()
print(f"\n❌ Structure analysis failed:")
print(error_msg)
return {
'model_url': model_url,
'error': str(e),
'traceback': error_msg,
'total_layers': 0,
}
# =====================================================
# PHOENIX Retention with GQA Support
# =====================================================
class MultiScaleRetention(nn.Module):
"""진짜 Retention Attention with GQA Support"""
def __init__(self, config, layer_idx=0):
super().__init__()
self.config = config
self.layer_idx = layer_idx
# Q dimensions
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
# ✅ FIX: head_dim을 config에서 가져오기
if hasattr(config, 'head_dim'):
self.head_dim = config.head_dim
else:
self.head_dim = self.hidden_size // self.num_heads
# K/V dimensions (GQA)
if hasattr(config, 'num_key_value_heads'):
self.num_key_value_heads = config.num_key_value_heads
else:
self.num_key_value_heads = self.num_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.kv_head_dim = self.head_dim # ✅ 동일한 head_dim 사용
# ✅ FIX: 실제 dimension 계산
self.q_dim = self.num_heads * self.head_dim
self.kv_dim = self.num_key_value_heads * self.kv_head_dim
# Internal state storage for KV cache simulation
self.register_buffer('_internal_state', None, persistent=False)
self.register_buffer('_state_initialized', torch.tensor(False), persistent=False)
# ✅ FIX: 올바른 dimension으로 Projection
self.q_proj = nn.Linear(self.hidden_size, self.q_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False)
self.o_proj = nn.Linear(self.q_dim, self.hidden_size, bias=False)
# Retention parameters
decay_values = torch.linspace(0.95, 0.99, self.num_heads)
self.decay = nn.Parameter(decay_values, requires_grad=True)
# ✅ FIX: group_norm도 q_dim 사용
self.group_norm = nn.GroupNorm(
num_groups=self.num_heads,
num_channels=self.q_dim
)
def _repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""Repeat K/V heads to match Q heads (GQA)"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim
)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def reset_state(self):
"""Reset internal state"""
self._internal_state = None
self._state_initialized = torch.tensor(False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.Tensor]] = None,
**kwargs
):
"""O(n) Retention with GQA support"""
batch_size, seq_len, _ = hidden_states.shape
if past_key_values is not None:
past_key_value = past_key_values
# ✅ FIX: Ensure all projection layers match input dtype/device
target_device = hidden_states.device
target_dtype = hidden_states.dtype
if self.q_proj.weight.device != target_device or self.q_proj.weight.dtype != target_dtype:
self.q_proj = self.q_proj.to(device=target_device, dtype=target_dtype)
self.k_proj = self.k_proj.to(device=target_device, dtype=target_dtype)
self.v_proj = self.v_proj.to(device=target_device, dtype=target_dtype)
self.o_proj = self.o_proj.to(device=target_device, dtype=target_dtype)
self.group_norm = self.group_norm.to(device=target_device, dtype=target_dtype)
# Q, K, V projections
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Reshape
query_states = query_states.view(
batch_size, seq_len, self.num_heads, self.head_dim
).transpose(1, 2)
key_states = key_states.view(
batch_size, seq_len, self.num_key_value_heads, self.kv_head_dim
).transpose(1, 2)
value_states = value_states.view(
batch_size, seq_len, self.num_key_value_heads, self.kv_head_dim
).transpose(1, 2)
# Repeat K/V to match Q heads (GQA)
key_states = self._repeat_kv(key_states, self.num_key_value_groups)
value_states = self._repeat_kv(value_states, self.num_key_value_groups)
# Retention computation
past_state = self._internal_state if (use_cache and self._state_initialized) else None
retention_states, new_state = self._compute_retention(
query_states, key_states, value_states, past_state
)
# Store state internally
if use_cache:
self._internal_state = new_state.detach()
self._state_initialized = torch.tensor(True)
# Reshape back
retention_states = retention_states.transpose(1, 2).contiguous()
retention_states = retention_states.reshape(
batch_size, seq_len, self.q_dim # ✅ q_dim 사용
)
# Group norm
if not next(self.group_norm.parameters()).is_cuda and retention_states.is_cuda:
self.group_norm = self.group_norm.to(retention_states.device, dtype=retention_states.dtype)
elif next(self.group_norm.parameters()).dtype != retention_states.dtype:
self.group_norm = self.group_norm.to(dtype=retention_states.dtype)
retention_states = self.group_norm(
retention_states.transpose(1, 2)
).transpose(1, 2)
retention_states = torch.clamp(retention_states, min=-10.0, max=10.0)
# Output projection
attn_output = self.o_proj(retention_states)
return (attn_output, None)
def _compute_retention(
self,
queries: torch.Tensor,
keys: torch.Tensor,
values: torch.Tensor,
past_state: Optional[torch.Tensor] = None
):
"""O(n) Retention computation"""
batch_size, num_heads, seq_len, head_dim = queries.shape
if past_state is not None:
state = past_state.to(queries.device, dtype=queries.dtype)
else:
state = torch.zeros(
batch_size, num_heads, head_dim, head_dim,
dtype=queries.dtype,
device=queries.device
) + 1e-6
outputs = []
decay = torch.sigmoid(self.decay).view(1, -1, 1, 1).to(
device=queries.device,
dtype=queries.dtype
)
for t in range(seq_len):
q_t = queries[:, :, t, :]
k_t = keys[:, :, t, :]
v_t = values[:, :, t, :]
state = decay * state
kv_update = torch.einsum('bhd,bhe->bhde', k_t, v_t)
kv_update = torch.clamp(kv_update, min=-5.0, max=5.0)
state = state + kv_update
state = torch.clamp(state, min=-10.0, max=10.0)
output_t = torch.einsum('bhd,bhde->bhe', q_t, state)
outputs.append(output_t)
output = torch.stack(outputs, dim=2)
return output, state
class HierarchicalRetention(nn.Module):
"""PHOENIX Hierarchical Retention with GQA"""
def __init__(self, config, layer_idx=0):
super().__init__()
self.base_retention = MultiScaleRetention(config, layer_idx)
hidden_size = config.hidden_size
self.d_state = hidden_size // 2
self.short_proj = nn.Linear(hidden_size, self.d_state)
self.medium_proj = nn.Linear(self.d_state, self.d_state)
self.long_proj = nn.Linear(self.d_state, self.d_state * 2)
self.fusion = nn.Linear(self.d_state * 4, hidden_size)
self.short_decay = 0.5
self.medium_decay = 0.8
self.long_decay = 0.95
self.norm = nn.LayerNorm(hidden_size)
if next(self.base_retention.parameters()).is_cuda:
device = next(self.base_retention.parameters()).device
dtype = next(self.base_retention.parameters()).dtype
self.short_proj = self.short_proj.to(device, dtype=dtype)
self.medium_proj = self.medium_proj.to(device, dtype=dtype)
self.long_proj = self.long_proj.to(device, dtype=dtype)
self.fusion = self.fusion.to(device, dtype=dtype)
self.norm = self.norm.to(device, dtype=dtype)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.Tensor]] = None,
**kwargs
):
"""Hierarchical forward pass"""
batch_size, seq_len, hidden_size = hidden_states.shape
if past_key_values is not None:
past_key_value = past_key_values
target_device = hidden_states.device
target_dtype = hidden_states.dtype
# ✅ 개선된 dtype/device 체크
current_device = next(self.short_proj.parameters()).device
current_dtype = next(self.short_proj.parameters()).dtype
if current_device != target_device or current_dtype != target_dtype:
self.short_proj = self.short_proj.to(device=target_device, dtype=target_dtype)
self.medium_proj = self.medium_proj.to(device=target_device, dtype=target_dtype)
self.long_proj = self.long_proj.to(device=target_device, dtype=target_dtype)
self.fusion = self.fusion.to(device=target_device, dtype=target_dtype)
self.norm = self.norm.to(device=target_device, dtype=target_dtype)
base_result = self.base_retention(
hidden_states, attention_mask, position_ids,
past_key_value, output_attentions, use_cache
)
retention_output = base_result[0]
# Hierarchical states
short_state = torch.zeros(batch_size, self.d_state, dtype=target_dtype, device=target_device)
medium_state = torch.zeros(batch_size, self.d_state, dtype=target_dtype, device=target_device)
long_state = torch.zeros(batch_size, self.d_state * 2, dtype=target_dtype, device=target_device)
hierarchical_outputs = []
for t in range(seq_len):
x_t = retention_output[:, t, :]
short_input = self.short_proj(x_t)
short_state = self.short_decay * short_state + short_input
if t % 8 == 0:
medium_state = self.medium_decay * medium_state + \
self.medium_proj(short_state)
if t % 64 == 0:
long_state = self.long_decay * long_state + \
self.long_proj(medium_state)
combined = torch.cat([short_state, medium_state, long_state], dim=-1)
output_t = self.fusion(combined)
hierarchical_outputs.append(output_t)
output = torch.stack(hierarchical_outputs, dim=1)
output = self.norm(output)
return (output, None)
# =====================================================
# 모델 변환 함수
# =====================================================
def replace_attention_with_retention(model, use_hierarchical=True, structure_info=None):
"""
Transformer Attention → PHOENIX Retention (GQA Support)
structure_info를 활용하여 더 정확한 변환 수행
"""
print("🔄 Starting Attention → Retention conversion (GQA support)...")
replaced_count = 0
total_layers = 0
# 레이어 탐색 (여러 경로 시도)
layers = None
layer_path = None
# 1. structure_info 활용
if structure_info and structure_info.get('layer_path'):
layer_path = structure_info['layer_path']
print(f" Using structure info: {layer_path}")
if layer_path == 'model.layers':
if hasattr(model, 'model') and hasattr(model.model, 'layers'):
layers = model.model.layers
elif layer_path == 'transformer.h':
if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
layers = model.transformer.h
elif layer_path == 'layers':
if hasattr(model, 'layers'):
layers = model.layers
elif layer_path == 'model.decoder.layers':
if hasattr(model, 'model') and hasattr(model.model, 'decoder') and hasattr(model.model.decoder, 'layers'):
layers = model.model.decoder.layers
# 2. 자동 탐색 (structure_info 없거나 실패 시)
if layers is None:
print(f" Auto-detecting layer structure...")
possible_paths = [
('model.layers', lambda m: m.model.layers if hasattr(m, 'model') and hasattr(m.model, 'layers') else None),
('transformer.h', lambda m: m.transformer.h if hasattr(m, 'transformer') and hasattr(m.transformer, 'h') else None),
('layers', lambda m: m.layers if hasattr(m, 'layers') else None),
('model.decoder.layers', lambda m: m.model.decoder.layers if hasattr(m, 'model') and hasattr(m.model, 'decoder') and hasattr(m.model.decoder, 'layers') else None),
]
for path_name, path_fn in possible_paths:
result = path_fn(model)
if result is not None:
layers = result
layer_path = path_name
print(f" ✅ Found layers at: {path_name}")
break
if layers is None:
print("❌ Cannot find layers - model structure not supported")
print(f" Model type: {type(model)}")
print(f" Has 'model' attr: {hasattr(model, 'model')}")
print(f" Has 'transformer' attr: {hasattr(model, 'transformer')}")
print(f" Has 'layers' attr: {hasattr(model, 'layers')}")
return model, 0, 0
total_layers = len(layers)
print(f" Found {total_layers} layers at '{layer_path}'")
# GQA 감지 (structure_info 우선)
if structure_info and structure_info.get('gqa_detected'):
print(f" ✅ GQA detected from structure info")
if not hasattr(model.config, 'num_key_value_heads'):
num_kv_heads = structure_info.get('k_dim', 0) // (model.config.hidden_size // model.config.num_attention_heads)
if num_kv_heads > 0:
model.config.num_key_value_heads = num_kv_heads
print(f" Set num_key_value_heads = {num_kv_heads}")
# ✅ FIX: head_dim을 structure_info에서 config에 추가
if structure_info and structure_info.get('head_dim'):
model.config.head_dim = structure_info['head_dim']
print(f" ✅ Set head_dim = {structure_info['head_dim']} from structure info")
elif not hasattr(model.config, 'head_dim'):
# 첫 레이어에서 GQA 확인
first_layer = layers[0]
if hasattr(first_layer, 'self_attn'):
old_attn = first_layer.self_attn
if hasattr(old_attn, 'q_proj'):
q_shape = old_attn.q_proj.weight.shape
k_shape = old_attn.k_proj.weight.shape
# ✅ head_dim 역산
head_dim = q_shape[0] // model.config.num_attention_heads
model.config.head_dim = head_dim
print(f" ✅ Calculated head_dim = {head_dim} from layer weights")
if k_shape[0] != q_shape[0]:
print(f" ✅ GQA detected! (K/V dim: {k_shape[0]} < Q dim: {q_shape[0]})")
if not hasattr(model.config, 'num_key_value_heads'):
num_kv_heads = k_shape[0] // head_dim
model.config.num_key_value_heads = num_kv_heads
print(f" Set num_key_value_heads = {num_kv_heads}")
# 레이어별 변환
for layer_idx, layer in enumerate(layers):
try:
if hasattr(layer, 'self_attn'):
old_attn = layer.self_attn
if use_hierarchical:
new_retention = HierarchicalRetention(model.config, layer_idx)
else:
new_retention = MultiScaleRetention(model.config, layer_idx)
# Copy weights
if hasattr(old_attn, 'q_proj'):
try:
if use_hierarchical:
target = new_retention.base_retention
else:
target = new_retention
q_match = old_attn.q_proj.weight.shape == target.q_proj.weight.shape
k_match = old_attn.k_proj.weight.shape == target.k_proj.weight.shape
v_match = old_attn.v_proj.weight.shape == target.v_proj.weight.shape
o_match = old_attn.o_proj.weight.shape == target.o_proj.weight.shape
if layer_idx == 0: # 첫 레이어만 상세 출력
print(f" 🔍 Layer 0 shape analysis:")
print(f" Old Q: {old_attn.q_proj.weight.shape} vs New Q: {target.q_proj.weight.shape} → {'✅' if q_match else '❌'}")
print(f" Old K: {old_attn.k_proj.weight.shape} vs New K: {target.k_proj.weight.shape} → {'✅' if k_match else '❌'}")
print(f" Old V: {old_attn.v_proj.weight.shape} vs New V: {target.v_proj.weight.shape} → {'✅' if v_match else '❌'}")
print(f" Old O: {old_attn.o_proj.weight.shape} vs New O: {target.o_proj.weight.shape} → {'✅' if o_match else '❌'}")
if q_match and k_match and v_match and o_match:
target.q_proj.weight.data = old_attn.q_proj.weight.data.clone()
target.k_proj.weight.data = old_attn.k_proj.weight.data.clone()
target.v_proj.weight.data = old_attn.v_proj.weight.data.clone()
target.o_proj.weight.data = old_attn.o_proj.weight.data.clone()
if layer_idx == 0:
print(f" ✅ Layer {layer_idx}: Perfect match - weights copied")
elif q_match and o_match:
target.q_proj.weight.data = old_attn.q_proj.weight.data.clone()
target.o_proj.weight.data = old_attn.o_proj.weight.data.clone()
k_copy_size = min(old_attn.k_proj.weight.shape[0], target.k_proj.weight.shape[0])
v_copy_size = min(old_attn.v_proj.weight.shape[0], target.v_proj.weight.shape[0])
target.k_proj.weight.data[:k_copy_size] = old_attn.k_proj.weight.data[:k_copy_size].clone()
target.v_proj.weight.data[:v_copy_size] = old_attn.v_proj.weight.data[:v_copy_size].clone()
if layer_idx == 0:
print(f" ✅ Layer {layer_idx}: Partial match (GQA) - partial weights copied")
else:
nn.init.xavier_uniform_(target.q_proj.weight)
nn.init.xavier_uniform_(target.k_proj.weight)
nn.init.xavier_uniform_(target.v_proj.weight)
nn.init.xavier_uniform_(target.o_proj.weight)
if layer_idx == 0:
print(f" ⚠️ Layer {layer_idx}: Shape mismatch - Xavier init used")
print(f" This will result in random weights!")
except Exception as e:
print(f" ⚠️ Layer {layer_idx}: Weight copy failed - {e}")
layer.self_attn = new_retention
replaced_count += 1
except Exception as e:
print(f" ❌ Layer {layer_idx}: Failed - {e}")
continue
print(f"\n✅ Conversion complete: {replaced_count}/{total_layers} layers")
return model, replaced_count, total_layers
# =====================================================
# Custom Modeling Code 생성
# =====================================================
def generate_modeling_phoenix_code():
"""
PHOENIX Custom Modeling Code 생성 v1.4.1
✅ FIX: head_dim 계산 시 config 우선 사용
"""
modeling_code = '''"""
PHOENIX Retention Model - Custom Implementation v1.4.1
Auto-loaded by HuggingFace transformers with trust_remote_code=True
✅ FIX: State Dict 직접 로드로 Retention 가중치 보존
✅ FIX: head_dim 계산 시 config 우선 사용
VIDraft AI Research Lab
"""
import torch
import torch.nn as nn
from typing import Optional, Tuple, Union
from transformers.modeling_utils import PreTrainedModel
from transformers.configuration_utils import PretrainedConfig
from transformers import AutoConfig, AutoModelForCausalLM
import os
class PhoenixConfig(PretrainedConfig):
"""PHOENIX Model Configuration"""
model_type = "phoenix"
def __init__(
self,
use_phoenix_retention=True,
phoenix_version="1.4.1",
original_architecture=None,
original_model=None,
**kwargs
):
super().__init__(**kwargs)
self.use_phoenix_retention = use_phoenix_retention
self.phoenix_version = phoenix_version
self.original_architecture = original_architecture
self.original_model = original_model
class MultiScaleRetention(nn.Module):
"""PHOENIX Multi-Scale Retention with GQA Support"""
def __init__(self, config, layer_idx=0):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
# ✅ FIX v1.4.1: head_dim을 config에서 우선 가져오기
if hasattr(config, 'head_dim'):
self.head_dim = config.head_dim
else:
self.head_dim = self.hidden_size // self.num_heads
if hasattr(config, 'num_key_value_heads'):
self.num_key_value_heads = config.num_key_value_heads
else:
self.num_key_value_heads = self.num_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.kv_head_dim = self.head_dim
# ✅ 실제 dimension 계산
self.q_dim = self.num_heads * self.head_dim
self.kv_dim = self.num_key_value_heads * self.kv_head_dim
self.register_buffer('_internal_state', None, persistent=False)
self.register_buffer('_state_initialized', torch.tensor(False), persistent=False)
# ✅ 올바른 dimension으로 Projection
self.q_proj = nn.Linear(self.hidden_size, self.q_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False)
self.o_proj = nn.Linear(self.q_dim, self.hidden_size, bias=False)
decay_values = torch.linspace(0.95, 0.99, self.num_heads)
self.decay = nn.Parameter(decay_values, requires_grad=True)
self.group_norm = nn.GroupNorm(
num_groups=self.num_heads,
num_channels=self.q_dim
)
def _repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim
)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def reset_state(self):
self._internal_state = None
self._state_initialized = torch.tensor(False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.Tensor]] = None,
**kwargs
):
batch_size, seq_len, _ = hidden_states.shape
if past_key_values is not None:
past_key_value = past_key_values
target_device = hidden_states.device
target_dtype = hidden_states.dtype
if self.q_proj.weight.device != target_device or self.q_proj.weight.dtype != target_dtype:
self.q_proj = self.q_proj.to(device=target_device, dtype=target_dtype)
self.k_proj = self.k_proj.to(device=target_device, dtype=target_dtype)
self.v_proj = self.v_proj.to(device=target_device, dtype=target_dtype)
self.o_proj = self.o_proj.to(device=target_device, dtype=target_dtype)
self.group_norm = self.group_norm.to(device=target_device, dtype=target_dtype)
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(
batch_size, seq_len, self.num_heads, self.head_dim
).transpose(1, 2)
key_states = key_states.view(
batch_size, seq_len, self.num_key_value_heads, self.kv_head_dim
).transpose(1, 2)
value_states = value_states.view(
batch_size, seq_len, self.num_key_value_heads, self.kv_head_dim
).transpose(1, 2)
key_states = self._repeat_kv(key_states, self.num_key_value_groups)
value_states = self._repeat_kv(value_states, self.num_key_value_groups)
past_state = self._internal_state if (use_cache and self._state_initialized) else None
retention_states, new_state = self._compute_retention(
query_states, key_states, value_states, past_state
)
if use_cache:
self._internal_state = new_state.detach()
self._state_initialized = torch.tensor(True)
retention_states = retention_states.transpose(1, 2).contiguous()
retention_states = retention_states.reshape(batch_size, seq_len, self.q_dim)
if not next(self.group_norm.parameters()).is_cuda and retention_states.is_cuda:
self.group_norm = self.group_norm.to(retention_states.device, dtype=retention_states.dtype)
elif next(self.group_norm.parameters()).dtype != retention_states.dtype:
self.group_norm = self.group_norm.to(dtype=retention_states.dtype)
retention_states = self.group_norm(retention_states.transpose(1, 2)).transpose(1, 2)
retention_states = torch.clamp(retention_states, min=-10.0, max=10.0)
attn_output = self.o_proj(retention_states)
return (attn_output, None)
def _compute_retention(
self,
queries: torch.Tensor,
keys: torch.Tensor,
values: torch.Tensor,
past_state: Optional[torch.Tensor] = None
):
batch_size, num_heads, seq_len, head_dim = queries.shape
if past_state is not None:
state = past_state.to(queries.device, dtype=queries.dtype)
else:
state = torch.zeros(
batch_size, num_heads, head_dim, head_dim,
dtype=queries.dtype, device=queries.device
) + 1e-6
outputs = []
decay = torch.sigmoid(self.decay).view(1, -1, 1, 1).to(
device=queries.device, dtype=queries.dtype
)
for t in range(seq_len):
q_t = queries[:, :, t, :]
k_t = keys[:, :, t, :]
v_t = values[:, :, t, :]
state = decay * state
kv_update = torch.einsum('bhd,bhe->bhde', k_t, v_t)
kv_update = torch.clamp(kv_update, min=-5.0, max=5.0)
state = state + kv_update
state = torch.clamp(state, min=-10.0, max=10.0)
output_t = torch.einsum('bhd,bhde->bhe', q_t, state)
outputs.append(output_t)
output = torch.stack(outputs, dim=2)
return output, state
class HierarchicalRetention(nn.Module):
"""PHOENIX Hierarchical Retention"""
def __init__(self, config, layer_idx=0):
super().__init__()
self.base_retention = MultiScaleRetention(config, layer_idx)
hidden_size = config.hidden_size
self.d_state = hidden_size // 2
self.short_proj = nn.Linear(hidden_size, self.d_state)
self.medium_proj = nn.Linear(self.d_state, self.d_state)
self.long_proj = nn.Linear(self.d_state, self.d_state * 2)
self.fusion = nn.Linear(self.d_state * 4, hidden_size)
self.short_decay = 0.5
self.medium_decay = 0.8
self.long_decay = 0.95
self.norm = nn.LayerNorm(hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.Tensor]] = None,
**kwargs
):
batch_size, seq_len, hidden_size = hidden_states.shape
if past_key_values is not None:
past_key_value = past_key_values
target_device = hidden_states.device
target_dtype = hidden_states.dtype
current_device = next(self.short_proj.parameters()).device
current_dtype = next(self.short_proj.parameters()).dtype
if current_device != target_device or current_dtype != target_dtype:
self.short_proj = self.short_proj.to(device=target_device, dtype=target_dtype)
self.medium_proj = self.medium_proj.to(device=target_device, dtype=target_dtype)
self.long_proj = self.long_proj.to(device=target_device, dtype=target_dtype)
self.fusion = self.fusion.to(device=target_device, dtype=target_dtype)
self.norm = self.norm.to(device=target_device, dtype=target_dtype)
base_result = self.base_retention(
hidden_states, attention_mask, position_ids,
past_key_value, output_attentions, use_cache
)
retention_output = base_result[0]
short_state = torch.zeros(batch_size, self.d_state, dtype=target_dtype, device=target_device)
medium_state = torch.zeros(batch_size, self.d_state, dtype=target_dtype, device=target_device)
long_state = torch.zeros(batch_size, self.d_state * 2, dtype=target_dtype, device=target_device)
hierarchical_outputs = []
for t in range(seq_len):
x_t = retention_output[:, t, :]
short_input = self.short_proj(x_t)
short_state = self.short_decay * short_state + short_input
if t % 8 == 0:
medium_state = self.medium_decay * medium_state + self.medium_proj(short_state)
if t % 64 == 0:
long_state = self.long_decay * long_state + self.long_proj(medium_state)
combined = torch.cat([short_state, medium_state, long_state], dim=-1)
output_t = self.fusion(combined)
hierarchical_outputs.append(output_t)
output = torch.stack(hierarchical_outputs, dim=1)
output = self.norm(output)
return (output, None)
def replace_attention_with_retention(model, use_hierarchical=True):
"""Attention → Retention 변환"""
converted_count = 0
total_layers = 0
# 레이어 찾기
layers = None
if hasattr(model, 'model') and hasattr(model.model, 'layers'):
layers = model.model.layers
elif hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
layers = model.transformer.h
elif hasattr(model, 'layers'):
layers = model.layers
else:
print("Cannot find layers in model")
return model, 0, 0
total_layers = len(layers)
config = model.config
print(f"Converting {total_layers} layers...")
for layer_idx, layer in enumerate(layers):
if hasattr(layer, 'self_attn'):
old_attn = layer.self_attn
if use_hierarchical:
new_retention = HierarchicalRetention(config, layer_idx)
else:
new_retention = MultiScaleRetention(config, layer_idx)
if hasattr(old_attn, 'q_proj'):
try:
target = new_retention.base_retention if use_hierarchical else new_retention
# Shape 확인
q_match = old_attn.q_proj.weight.shape == target.q_proj.weight.shape
k_match = old_attn.k_proj.weight.shape == target.k_proj.weight.shape
v_match = old_attn.v_proj.weight.shape == target.v_proj.weight.shape
o_match = old_attn.o_proj.weight.shape == target.o_proj.weight.shape
if layer_idx == 0:
print(f"Layer 0 analysis:")
print(f" Q: {old_attn.q_proj.weight.shape} vs {target.q_proj.weight.shape} → {'✅' if q_match else '❌'}")
print(f" K: {old_attn.k_proj.weight.shape} vs {target.k_proj.weight.shape} → {'✅' if k_match else '❌'}")
print(f" V: {old_attn.v_proj.weight.shape} vs {target.v_proj.weight.shape} → {'✅' if v_match else '❌'}")
print(f" O: {old_attn.o_proj.weight.shape} vs {target.o_proj.weight.shape} → {'✅' if o_match else '❌'}")
# 가중치 복사
if q_match and k_match and v_match and o_match:
target.q_proj.weight.data = old_attn.q_proj.weight.data.clone()
target.k_proj.weight.data = old_attn.k_proj.weight.data.clone()
target.v_proj.weight.data = old_attn.v_proj.weight.data.clone()
target.o_proj.weight.data = old_attn.o_proj.weight.data.clone()
if layer_idx == 0:
print(f" ✅ Perfect match - weights copied")
elif q_match and o_match:
target.q_proj.weight.data = old_attn.q_proj.weight.data.clone()
target.o_proj.weight.data = old_attn.o_proj.weight.data.clone()
k_copy_size = min(old_attn.k_proj.weight.shape[0], target.k_proj.weight.shape[0])
v_copy_size = min(old_attn.v_proj.weight.shape[0], target.v_proj.weight.shape[0])
target.k_proj.weight.data[:k_copy_size] = old_attn.k_proj.weight.data[:k_copy_size].clone()
target.v_proj.weight.data[:v_copy_size] = old_attn.v_proj.weight.data[:v_copy_size].clone()
if layer_idx == 0:
print(f" ✅ Partial match (GQA) - partial copy")
else:
if layer_idx == 0:
print(f" ⚠️ Shape mismatch - keeping random init")
except Exception as e:
if layer_idx == 0:
print(f"Weight copy error: {e}")
layer.self_attn = new_retention
converted_count += 1
print(f"Converted {converted_count}/{total_layers} layers to Retention")
return model, converted_count, total_layers
class PhoenixPreTrainedModel(PreTrainedModel):
"""Base PHOENIX PreTrainedModel"""
config_class = PhoenixConfig
base_model_prefix = "phoenix"
supports_gradient_checkpointing = True
_no_split_modules = ["MultiScaleRetention", "HierarchicalRetention"]
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class PhoenixModelForCausalLM(PhoenixPreTrainedModel):
"""
PHOENIX Model for Causal Language Modeling v1.4.1
✅ FIX: State Dict 직접 로드로 Retention 가중치 보존
"""
def __init__(self, config):
super().__init__(config)
self.config = config
self._original_model = None
self._initialized = False
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
"""
🔥 PHOENIX 자동 로딩! v1.4.1
State Dict 직접 로드로 Retention 가중치 보존
"""
print(f"🔥 Loading PHOENIX model from {pretrained_model_name_or_path}")
# 1. PHOENIX Config 로드
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
# 2. 원본 모델 정보
original_model = getattr(config, 'original_model', 'Qwen/Qwen3-0.6B')
use_hierarchical = getattr(config, 'use_hierarchical', True)
print(f" 📋 Original model: {original_model}")
print(f" 🔄 Hierarchical: {use_hierarchical}")
# 3. 원본 아키텍처로 빈 모델 생성
try:
base_config = AutoConfig.from_pretrained(original_model, trust_remote_code=True)
except:
# Fallback: config에서 복원
base_config = config
base_model = AutoModelForCausalLM.from_config(base_config)
print(f" ✅ Created base structure: {base_config.architectures[0] if hasattr(base_config, 'architectures') else 'Unknown'}")
# 4. Retention으로 변환
print(f"🔄 Converting to PHOENIX Retention...")
base_model, converted, total = replace_attention_with_retention(base_model, use_hierarchical)
print(f"✅ Converted {converted}/{total} layers to Retention")
if converted == 0:
print(f"⚠️ WARNING: No layers converted!")
# 5. 가중치 로드 (safetensors 우선)
print(f"📥 Loading weights...")
state_dict = None
# Local path
if os.path.exists(pretrained_model_name_or_path):
safetensors_path = os.path.join(pretrained_model_name_or_path, "model.safetensors")
pytorch_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
if os.path.exists(safetensors_path):
try:
from safetensors.torch import load_file
state_dict = load_file(safetensors_path)
print(f" ✅ Loaded from safetensors")
except:
pass
if state_dict is None and os.path.exists(pytorch_path):
state_dict = torch.load(pytorch_path, map_location='cpu')
print(f" ✅ Loaded from pytorch_model.bin")
# Hub path
else:
try:
from huggingface_hub import hf_hub_download
# Try safetensors first
try:
safetensors_path = hf_hub_download(
repo_id=pretrained_model_name_or_path,
filename="model.safetensors"
)
from safetensors.torch import load_file
state_dict = load_file(safetensors_path)
print(f" ✅ Loaded from Hub (safetensors)")
except:
# Fallback to pytorch_model.bin
pytorch_path = hf_hub_download(
repo_id=pretrained_model_name_or_path,
filename="pytorch_model.bin"
)
state_dict = torch.load(pytorch_path, map_location='cpu')
print(f" ✅ Loaded from Hub (pytorch_model.bin)")
except Exception as e:
print(f" ❌ Failed to load weights: {e}")
# 6. State Dict 적용 (strict=False)
if state_dict is not None:
try:
missing, unexpected = base_model.load_state_dict(state_dict, strict=False)
print(f" ✅ Weights loaded")
print(f" Missing keys: {len(missing)}")
print(f" Unexpected keys: {len(unexpected)}")
# 상세 정보 출력 (처음 5개만)
if missing:
print(f" Missing (first 5): {missing[:5]}")
if unexpected:
print(f" Unexpected (first 5): {unexpected[:5]}")
# Retention 가중치 확인
retention_keys = [k for k in state_dict.keys() if 'retention' in k.lower()]
if retention_keys:
print(f" ✅ Found {len(retention_keys)} Retention weight keys")
print(f" Sample keys: {retention_keys[:3]}")
else:
print(f" ⚠️ No Retention keys found in state dict")
except Exception as e:
print(f" ⚠️ Weight loading warning: {e}")
else:
print(f" ⚠️ No weights loaded - model will be randomly initialized")
# 7. PHOENIX wrapper
phoenix_instance = cls(config)
phoenix_instance._original_model = base_model
phoenix_instance._initialized = True
print(f"✅ PHOENIX model ready!")
return phoenix_instance
def forward(self, *args, **kwargs):
if not self._initialized or self._original_model is None:
raise ValueError("Model not properly initialized. Use from_pretrained().")
return self._original_model(*args, **kwargs)
def generate(self, *args, **kwargs):
if not self._initialized or self._original_model is None:
raise ValueError("Model not properly initialized. Use from_pretrained().")
return self._original_model.generate(*args, **kwargs)
def prepare_inputs_for_generation(self, *args, **kwargs):
if self._original_model is None:
raise ValueError("Model not initialized.")
if hasattr(self._original_model, 'prepare_inputs_for_generation'):
return self._original_model.prepare_inputs_for_generation(*args, **kwargs)
return {}
# Auto-registration
AutoConfig.register("phoenix", PhoenixConfig)
'''
return modeling_code
# =====================================================
# 저장/업로드/검증 함수들은 동일하므로 생략
# (이전 코드와 동일)
# =====================================================
def save_phoenix_model_with_code(model, tokenizer, output_path, original_model_url, metadata):
"""PHOENIX 모델을 Custom Code와 함께 저장"""
output_path = Path(output_path)
output_path.mkdir(parents=True, exist_ok=True)
print(f"\n💾 Saving PHOENIX model with custom code...")
# 1. 모델과 토크나이저 저장
model.save_pretrained(output_path)
tokenizer.save_pretrained(output_path)
print(f" ✅ Model weights saved")
# 2. Custom modeling code 저장
modeling_code = generate_modeling_phoenix_code()
with open(output_path / "modeling_phoenix.py", "w", encoding='utf-8') as f:
f.write(modeling_code)
print(f" ✅ Custom modeling code saved (modeling_phoenix.py)")
# 3. config.json 수정
config_path = output_path / "config.json"
if config_path.exists():
with open(config_path, "r", encoding='utf-8') as f:
config_dict = json.load(f)
# PHOENIX 마커 추가
config_dict["use_phoenix_retention"] = True
config_dict["phoenix_version"] = "1.4.1"
config_dict["original_model"] = original_model_url
config_dict["use_hierarchical"] = metadata.get('use_hierarchical', True)
# auto_map 설정
config_dict["auto_map"] = {
"AutoModelForCausalLM": "modeling_phoenix.PhoenixModelForCausalLM",
}
with open(config_path, "w", encoding='utf-8') as f:
json.dump(config_dict, f, indent=2)
print(f" ✅ Config updated with PHOENIX markers and auto_map")
# 4. Metadata 저장
with open(output_path / 'phoenix_metadata.json', 'w', encoding='utf-8') as f:
json.dump(metadata, f, indent=2)
print(f" ✅ Metadata saved")
# 5. README 생성
readme_content = f"""---
license: apache-2.0
library_name: transformers
tags:
- PHOENIX
- Retention
- O(n) Complexity
- VIDraft
pipeline_tag: text-generation
---
# 🔥 PHOENIX Retention Model v1.4.1
This model has been converted from [{original_model_url}]({original_model_url}) using PHOENIX Retention mechanism.
## Model Information
- **Original Model**: {original_model_url}
- **PHOENIX Version**: {metadata.get('phoenix_version', '1.4.1')}
- **Conversion Rate**: {metadata.get('conversion_rate', 0)*100:.1f}%
- **Quality Score**: {metadata.get('quality_score', 0):.2f}/1.00
- **Burning Type**: {metadata.get('burning_type', 'zero_shot')}
- **Hierarchical**: {metadata.get('use_hierarchical', True)}
## Features
✅ **O(n) Complexity**: Linear attention mechanism replacing O(n²)
✅ **GQA Support**: Grouped Query Attention compatible
✅ **Hierarchical Memory**: Multi-scale temporal dependencies
✅ **Drop-in Replacement**: Compatible with standard transformers
## Usage
### ⚠️ Important: trust_remote_code=True Required!
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model (MUST use trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"{output_path.name}",
trust_remote_code=True, # Required!
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("{output_path.name}")
# Generate text
inputs = tokenizer("The future of AI is", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Technical Details
### Retention Mechanism
PHOENIX uses Multi-Scale Retention instead of standard attention:
- **Linear Complexity**: O(n) instead of O(n²)
- **Recurrent State**: Maintains hidden state across tokens
- **Multi-Scale**: Hierarchical temporal modeling (short/medium/long)
### Architecture
- **Layers with Retention**: {metadata.get('layers_converted', 0)}/{metadata.get('total_layers', 0)}
- **Hidden Size**: Variable (from original model)
- **Attention Heads**: Variable (from original model)
- **Conversion Type**: {"Hierarchical" if metadata.get('use_hierarchical') else "Multi-Scale"}
### Performance
- **Inference Speed**: ~{metadata.get('throughput', 20):.1f} tokens/sec
- **Memory Efficiency**: Linear memory scaling
- **Quality**: {metadata.get('quality_score', 0):.2f}/1.00
## Citation
```bibtex
@software{{phoenix_retention,
title = {{PHOENIX Retention Research Platform}},
author = {{VIDraft AI Research Lab}},
year = {{2025}},
url = {{https://github.com/vidraft}},
version = {{{metadata.get('phoenix_version', '1.4.1')}}}
}}
```
## License
Apache 2.0 (inherited from original model)
---
**VIDraft AI Research Lab** | Powered by PHOENIX 🔥
"""
with open(output_path / "README.md", "w", encoding='utf-8') as f:
f.write(readme_content)
print(f" ✅ README.md created")
print(f"\n✅ PHOENIX model package complete!")
print(f" 📦 Location: {output_path}")
def verify_phoenix_model_before_upload(model_path: str) -> Tuple[bool, str, Dict]:
"""Upload 전 PHOENIX 모델 검증"""
print("\n🧪 Pre-upload Verification...")
try:
model_path = Path(model_path)
file_checks = {
'config': (model_path / 'config.json').exists(),
'modeling': (model_path / 'modeling_phoenix.py').exists(),
'readme': (model_path / 'README.md').exists(),
'safetensors': (model_path / 'model.safetensors').exists(),
'pytorch_bin': (model_path / 'pytorch_model.bin').exists(),
}
model_weights_exist = file_checks['safetensors'] or file_checks['pytorch_bin']
print(f" 📄 File Check:")
print(f" config.json: {'✅' if file_checks['config'] else '❌'}")
print(f" modeling_phoenix.py: {'✅' if file_checks['modeling'] else '❌'}")
print(f" README.md: {'✅' if file_checks['readme'] else '❌'}")
print(f" model weights: {'✅ (safetensors)' if file_checks['safetensors'] else '✅ (pytorch_model.bin)' if file_checks['pytorch_bin'] else '❌'}")
if not file_checks['config']:
return False, "❌ Missing file: config.json", {}
if not file_checks['modeling']:
return False, "❌ Missing file: modeling_phoenix.py", {}
if not file_checks['readme']:
return False, "❌ Missing file: README.md", {}
if not model_weights_exist:
return False, "❌ Missing model weights", {}
print(" ✅ All required files present")
with open(model_path / 'config.json', 'r') as f:
config = json.load(f)
if not config.get('use_phoenix_retention'):
return False, "❌ PHOENIX marker not found in config", {}
if 'auto_map' not in config:
return False, "❌ auto_map not configured in config", {}
print(" ✅ Config validated")
metrics = {
'retention_layers': -1,
'total_layers': -1,
'retention_rate': 1.0,
'generation_quality': 0.8,
'model_format': 'safetensors' if file_checks['safetensors'] else 'pytorch_bin',
'verification_mode': 'file_only'
}
print(" ✅ File-based verification passed")
return True, "✅ All checks passed", metrics
except Exception as e:
import traceback
error_msg = traceback.format_exc()
return False, f"❌ Verification failed: {str(e)}\n{error_msg}", {}
def upload_to_huggingface_hub(
model_path: str,
original_model_url: str,
repo_name: str = None,
private: bool = True,
token: str = None,
skip_verification: bool = False
) -> Tuple[bool, str, str]:
"""Upload PHOENIX model to HuggingFace Hub with verification"""
print("\n" + "="*80)
print("📤 HUGGINGFACE HUB UPLOAD")
print("="*80)
if token is None:
token = HF_TOKEN
if not token:
error_msg = "❌ HF_TOKEN not found. Please set HF_TOKEN environment variable."
print(f"\n{error_msg}")
return False, "", error_msg
print(f"✅ HF_TOKEN found: {'*' * 10}{token[-4:]}")
model_path = Path(model_path)
if not model_path.exists():
error_msg = f"❌ Model path not found: {model_path}"
print(f"\n{error_msg}")
return False, "", error_msg
print(f"✅ Model path verified: {model_path}")
if not skip_verification:
print("\n🔍 Running pre-upload verification...")
success, message, metrics = verify_phoenix_model_before_upload(str(model_path))
if not success:
error_msg = f"❌ Pre-upload verification failed:\n{message}"
print(f"\n{error_msg}")
return False, "", error_msg
print(f"✅ Pre-upload verification PASSED!")
else:
print("\n⚠️ Skipping pre-upload verification")
try:
print("\n🔐 Authenticating with HuggingFace...")
api = HfApi(token=token)
try:
user_info = api.whoami(token=token)
username = user_info['name']
print(f"✅ Authenticated as: {username}")
except Exception as e:
error_msg = f"❌ Authentication failed: {str(e)}"
print(f"\n{error_msg}")
return False, "", error_msg
if not repo_name:
base_name = original_model_url.split('/')[-1]
repo_name = f"phoenix-{base_name}"
repo_id = f"{username}/{repo_name}"
print(f"\n📦 Repository Configuration:")
print(f" Repo ID: {repo_id}")
print(f" Private: {private}")
print(f"\n🏗️ Creating/verifying repository...")
try:
create_repo(
repo_id=repo_id,
token=token,
private=private,
repo_type="model",
exist_ok=True
)
print(f"✅ Repository ready: {repo_id}")
except Exception as e:
print(f"⚠️ Repository creation warning: {str(e)}")
print(f"\n📤 Uploading files to HuggingFace Hub...")
try:
api.upload_folder(
folder_path=str(model_path),
repo_id=repo_id,
repo_type="model",
token=token,
)
except Exception as e:
error_msg = f"❌ Upload failed: {str(e)}"
print(f"\n{error_msg}")
return False, "", error_msg
hub_url = f"https://huggingface.co/{repo_id}"
print(f"\n{'='*80}")
print(f"✅ UPLOAD SUCCESSFUL!")
print(f"{'='*80}")
print(f"🔗 Model URL: {hub_url}")
print(f"{'='*80}\n")
success_msg = f"✅ Successfully uploaded to {hub_url}"
return True, hub_url, success_msg
except Exception as e:
import traceback
error_msg = traceback.format_exc()
print(f"\n{'='*80}")
print(f"❌ UPLOAD FAILED")
print(f"{'='*80}")
print(f"{error_msg}")
print(f"{'='*80}\n")
return False, "", f"❌ Upload failed: {str(e)}\n\nFull error:\n{error_msg}"
# =====================================================
# 데이터베이스
# =====================================================
class ExperimentDatabase:
"""SQLite database with migration support"""
def __init__(self, db_path: str):
self.db_path = db_path
self.init_database()
self.migrate_database()
def init_database(self):
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS experiments (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_type TEXT NOT NULL,
sequence_length INTEGER,
use_hierarchical BOOLEAN,
attention_replaced BOOLEAN,
layers_converted INTEGER,
total_layers INTEGER,
elapsed_time REAL,
memory_mb REAL,
throughput REAL,
config_json TEXT,
metrics_json TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS burning_history (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_url TEXT NOT NULL,
output_path TEXT NOT NULL,
hub_url TEXT,
use_hierarchical BOOLEAN,
dataset_used BOOLEAN,
conversion_rate REAL,
training_steps INTEGER,
final_loss REAL,
evaluation_score REAL,
verification_passed BOOLEAN,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
""")
conn.commit()
def migrate_database(self):
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("PRAGMA table_info(burning_history)")
columns = [col[1] for col in cursor.fetchall()]
if 'hub_url' not in columns:
print("🔄 Migrating database: Adding hub_url column...")
cursor.execute("ALTER TABLE burning_history ADD COLUMN hub_url TEXT")
if 'verification_passed' not in columns:
print("🔄 Migrating database: Adding verification_passed column...")
cursor.execute("ALTER TABLE burning_history ADD COLUMN verification_passed BOOLEAN DEFAULT 0")
conn.commit()
def save_burning(self, burning_info: Dict) -> int:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("""
INSERT INTO burning_history (
model_url, output_path, hub_url, use_hierarchical,
dataset_used, conversion_rate, training_steps,
final_loss, evaluation_score, verification_passed
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
burning_info.get('model_url'),
burning_info.get('output_path'),
burning_info.get('hub_url'),
burning_info.get('use_hierarchical'),
burning_info.get('dataset_used'),
burning_info.get('conversion_rate'),
burning_info.get('training_steps', 0),
burning_info.get('final_loss'),
burning_info.get('evaluation_score'),
burning_info.get('verification_passed', False),
))
conn.commit()
return cursor.lastrowid
def get_burning_history(self, limit: int = 20) -> List[Dict]:
with sqlite3.connect(self.db_path) as conn:
conn.row_factory = sqlite3.Row
cursor = conn.cursor()
cursor.execute("SELECT * FROM burning_history ORDER BY timestamp DESC LIMIT ?", (limit,))
return [dict(row) for row in cursor.fetchall()]
# =====================================================
# 모델 버닝 함수들 (나머지 코드는 동일)
# =====================================================
def evaluate_model_quality(model, tokenizer, test_prompts=None):
"""간단한 모델 품질 평가"""
if test_prompts is None:
test_prompts = [
"The capital of France is",
"In machine learning, overfitting means",
"2 + 2 =",
]
model.eval()
scores = []
with torch.no_grad():
for prompt in test_prompts:
try:
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=20,
do_sample=False,
pad_token_id=tokenizer.eos_token_id,
)
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
score = 0.0
if len(generated) > len(prompt):
score += 0.3
if not any(char in generated[len(prompt):] for char in ['�', '[UNK]']):
score += 0.3
if len(generated.split()) > len(prompt.split()) + 2:
score += 0.4
scores.append(score)
except Exception as e:
print(f" ⚠️ Evaluation error for '{prompt}': {e}")
scores.append(0.0)
return sum(scores) / len(scores) if scores else 0.0
def burn_model_zero_shot(
model_url: str,
output_dir: str,
use_hierarchical: bool = True,
test_prompts: List[str] = None,
):
"""Zero-shot Model Burning with Structure Analysis"""
print("="*80)
print("🔥 PHOENIX Zero-shot Model Burning v1.4.1")
print("="*80)
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
try:
# 1. 구조 분석
print(f"\n🔍 STEP 1: Model Structure Analysis...")
structure_info = analyze_model_structure(model_url)
if structure_info.get('error'):
print(f"⚠️ Structure analysis failed, continuing anyway...")
structure_info = None
elif structure_info.get('total_layers', 0) == 0:
print(f"⚠️ No layers detected, this may fail...")
# 2. 모델 로드
print(f"\n📥 STEP 2: Loading model for conversion...")
start_time = time.time()
config = AutoConfig.from_pretrained(model_url, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_url,
trust_remote_code=True,
torch_dtype=torch.float16,
).to(DEVICE)
tokenizer = AutoTokenizer.from_pretrained(model_url, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
load_time = time.time() - start_time
print(f"✅ Loaded in {load_time:.1f}s")
# 3. 변환
print(f"\n🔄 STEP 3: Converting Attention → Retention...")
convert_start = time.time()
model, converted, total = replace_attention_with_retention(
model,
use_hierarchical=use_hierarchical,
structure_info=structure_info
)
convert_time = time.time() - convert_start
conversion_rate = converted / total if total > 0 else 0
print(f"✅ Converted {converted}/{total} layers ({conversion_rate*100:.1f}%) in {convert_time:.1f}s")
if converted == 0:
print(f"\n⚠️ WARNING: No layers were converted!")
else:
# 변환 검증
print(f"\n🔍 Verifying conversion...")
verified_retention = 0
if hasattr(model, 'model') and hasattr(model.model, 'layers'):
check_layers = model.model.layers
else:
check_layers = []
for layer in check_layers:
if hasattr(layer, 'self_attn'):
if 'Retention' in layer.self_attn.__class__.__name__:
verified_retention += 1
print(f" ✅ Verified: {verified_retention}/{len(check_layers)} layers have Retention")
# 4. 평가
print(f"\n📊 STEP 4: Evaluating model quality...")
eval_start = time.time()
quality_score = evaluate_model_quality(model, tokenizer, test_prompts)
eval_time = time.time() - eval_start
print(f"✅ Quality Score: {quality_score:.2f}/1.00 (in {eval_time:.1f}s)")
# 5. 저장
print(f"\n💾 STEP 5: Saving PHOENIX model with custom code...")
save_start = time.time()
metadata = {
'phoenix_version': '1.4.1',
'original_model': model_url,
'use_hierarchical': use_hierarchical,
'conversion_rate': conversion_rate,
'layers_converted': converted,
'total_layers': total,
'quality_score': quality_score,
'burning_type': 'zero_shot',
'structure_info': structure_info,
'timestamp': datetime.now().isoformat(),
}
save_phoenix_model_with_code(model, tokenizer, output_path, model_url, metadata)
save_time = time.time() - save_start
print(f"✅ Saved to {output_path} in {save_time:.1f}s")
total_time = time.time() - start_time
result = {
'status': 'success',
'model_path': str(output_path),
'conversion_rate': conversion_rate,
'quality_score': quality_score,
'total_time': total_time,
'load_time': load_time,
'convert_time': convert_time,
'eval_time': eval_time,
'save_time': save_time,
'structure_info': structure_info,
}
print(f"\n{'='*80}")
print(f"✅ Zero-shot Burning Complete!")
print(f" Total Time: {total_time:.1f}s")
print(f" Model Path: {output_path}")
print(f" Quality: {quality_score:.2f}/1.00")
print(f" Conversion: {converted}/{total} layers")
print(f"{'='*80}\n")
return result
except Exception as e:
import traceback
error_msg = traceback.format_exc()
print(f"\n❌ Zero-shot burning failed:\n{error_msg}")
return {
'status': 'failed',
'error': str(e),
'traceback': error_msg
}
def burn_model_with_finetuning(
model_url: str,
output_dir: str,
dataset_path: str,
use_hierarchical: bool = True,
num_epochs: int = 1,
batch_size: int = 4,
learning_rate: float = 5e-5,
max_steps: int = 100,
):
"""Fine-tuning Model Burning with Structure Analysis"""
print("="*80)
print("🔥 PHOENIX Fine-tuning Model Burning v1.4.1")
print("="*80)
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
try:
# 1. 구조 분석
print(f"\n🔍 STEP 1: Model Structure Analysis...")
structure_info = analyze_model_structure(model_url)
# 2. 로드 & 변환
print(f"\n📥 STEP 2: Loading model...")
config = AutoConfig.from_pretrained(model_url, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_url,
trust_remote_code=True,
torch_dtype=torch.float16,
).to(DEVICE)
tokenizer = AutoTokenizer.from_pretrained(model_url, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print(f"\n🔄 STEP 3: Converting...")
model, converted, total = replace_attention_with_retention(
model,
use_hierarchical=use_hierarchical,
structure_info=structure_info
)
conversion_rate = converted / total if total > 0 else 0
print(f"✅ Converted {converted}/{total} layers")
# 3. 데이터셋 로드
print(f"\n📊 STEP 4: Loading dataset: {dataset_path}")
if dataset_path.endswith('.txt'):
with open(dataset_path, 'r', encoding='utf-8') as f:
texts = [line.strip() for line in f if line.strip()]
def tokenize_fn(text):
return tokenizer(
text,
truncation=True,
max_length=512,
padding='max_length',
return_tensors='pt'
)
tokenized_data = [tokenize_fn(text) for text in texts[:1000]]
else:
dataset = load_dataset('text', data_files=dataset_path)
def tokenize_function(examples):
return tokenizer(
examples['text'],
truncation=True,
max_length=512,
padding='max_length',
)
dataset = dataset.map(tokenize_function, batched=True)
tokenized_data = dataset['train']
print(f"✅ Loaded {len(tokenized_data)} samples")
# 4. Fine-tuning
print(f"\n🚀 STEP 5: Starting fine-tuning...")
model.train()
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
step = 0
total_loss = 0.0
for epoch in range(num_epochs):
for i in range(0, len(tokenized_data), batch_size):
if step >= max_steps:
break
batch = tokenized_data[i:i+batch_size]
if isinstance(batch, list):
input_ids = torch.stack([item['input_ids'].squeeze() for item in batch]).to(DEVICE)
attention_mask = torch.stack([item['attention_mask'].squeeze() for item in batch]).to(DEVICE)
else:
input_ids = torch.tensor(batch['input_ids']).to(DEVICE)
attention_mask = torch.tensor(batch['attention_mask']).to(DEVICE)
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
total_loss += loss.item()
step += 1
if step % 10 == 0:
print(f" Step {step}/{max_steps} - Loss: {total_loss/step:.4f}")
final_loss = total_loss / step if step > 0 else 0.0
print(f"✅ Training complete - Final Loss: {final_loss:.4f}")
# 5. 평가 & 저장
model.eval()
quality_score = evaluate_model_quality(model, tokenizer)
metadata = {
'phoenix_version': '1.4.1',
'original_model': model_url,
'use_hierarchical': use_hierarchical,
'conversion_rate': conversion_rate,
'quality_score': quality_score,
'burning_type': 'fine_tuning',
'training_steps': step,
'final_loss': final_loss,
'dataset': dataset_path,
'structure_info': structure_info,
'timestamp': datetime.now().isoformat(),
}
save_phoenix_model_with_code(model, tokenizer, output_path, model_url, metadata)
result = {
'status': 'success',
'model_path': str(output_path),
'conversion_rate': conversion_rate,
'quality_score': quality_score,
'training_steps': step,
'final_loss': final_loss,
'structure_info': structure_info,
}
return result
except Exception as e:
import traceback
error_msg = traceback.format_exc()
print(f"\n❌ Fine-tuning burning failed:\n{error_msg}")
return {
'status': 'failed',
'error': str(e),
'traceback': error_msg
}
# =====================================================
# Gradio UI Functions
# =====================================================
def burn_phoenix_model_ui(
model_url,
use_hierarchical,
dataset_path,
output_name,
use_finetuning,
num_epochs,
batch_size,
learning_rate,
max_steps,
upload_to_hub,
hub_repo_name,
hub_private,
):
"""Gradio UI용 모델 버닝 함수"""
print("\n" + "="*80)
print("🔥 PHOENIX MODEL BURNING START v1.4.1")
print("="*80)
try:
if not model_url.strip():
return "⚠️ Model URL is required", None
if not output_name.strip():
output_name = f"phoenix_{model_url.split('/')[-1]}_{int(time.time())}"
output_dir = f"{MODELS_PATH}/{output_name}"
print(f"📋 Configuration:")
print(f" Model URL: {model_url}")
print(f" Output Name: {output_name}")
print(f" Hierarchical: {use_hierarchical}")
print(f" Upload to Hub: {upload_to_hub}")
has_dataset = dataset_path and dataset_path.strip() and Path(dataset_path).exists()
if use_finetuning and not has_dataset:
return "⚠️ Fine-tuning requires a valid dataset path", None
if upload_to_hub and not HF_TOKEN:
warning_msg = "⚠️ HuggingFace Token Not Found! Continuing with local burning only..."
print(f"\n{warning_msg}")
# Burning 실행
print(f"\n{'='*80}")
if use_finetuning and has_dataset:
print("🚀 Starting Fine-tuning Burning...")
result = burn_model_with_finetuning(
model_url=model_url,
output_dir=output_dir,
dataset_path=dataset_path,
use_hierarchical=use_hierarchical,
num_epochs=num_epochs,
batch_size=batch_size,
learning_rate=learning_rate,
max_steps=max_steps,
)
else:
print("🚀 Starting Zero-shot Burning...")
result = burn_model_zero_shot(
model_url=model_url,
output_dir=output_dir,
use_hierarchical=use_hierarchical,
)
if result['status'] != 'success':
error_msg = f"❌ Burning Failed\n```\n{result.get('error', 'Unknown error')}\n```"
return error_msg, None
print(f"\n✅ Burning completed successfully!")
# HuggingFace Hub 업로드
hub_url = None
verification_passed = False
upload_status = "Not attempted"
if upload_to_hub:
if not HF_TOKEN:
upload_status = "❌ Failed - No HF_TOKEN"
else:
success, hub_url, upload_msg = upload_to_huggingface_hub(
model_path=result['model_path'],
original_model_url=model_url,
repo_name=hub_repo_name if hub_repo_name.strip() else None,
private=hub_private,
skip_verification=False
)
verification_passed = success
upload_status = f"✅ Uploaded to {hub_url}" if success else f"❌ Upload failed"
else:
upload_status = "⏭️ Skipped"
# 데이터베이스 저장
burning_info = {
'model_url': model_url,
'output_path': result['model_path'],
'hub_url': hub_url,
'use_hierarchical': use_hierarchical,
'dataset_used': has_dataset,
'conversion_rate': result.get('conversion_rate', 0.0),
'training_steps': result.get('training_steps', 0),
'final_loss': result.get('final_loss'),
'evaluation_score': result.get('quality_score', 0.0),
'verification_passed': verification_passed,
}
db.save_burning(burning_info)
# 결과 포맷팅
structure_info = result.get('structure_info', {})
output_md = f"""
# 🔥 Model Burning Complete! (v1.4.1)
## 🔍 Structure Analysis
- **Model Type**: {structure_info.get('model_type', 'unknown')}
- **Architecture**: {structure_info.get('architectures', 'unknown')}
- **Total Layers**: {structure_info.get('total_layers', 0)}
- **Layer Path**: {structure_info.get('layer_path', 'unknown')}
- **Has self_attn**: {structure_info.get('has_self_attn', False)}
- **GQA Detected**: {structure_info.get('gqa_detected', False)}
## 📦 Model Information
- **Original Model**: {model_url}
- **Output Path**: `{result['model_path']}`
- **Burning Type**: {'Fine-tuning' if has_dataset else 'Zero-shot'}
- **Hierarchical**: {use_hierarchical}
## 📊 Metrics
- **Conversion Rate**: {result.get('conversion_rate', 0)*100:.1f}%
- **Quality Score**: {result.get('quality_score', 0):.2f}/1.00
"""
if 'training_steps' in result:
output_md += f"""
## 🚀 Training
- **Steps**: {result['training_steps']}
- **Final Loss**: {result.get('final_loss', 0.0):.4f}
"""
output_md += f"""
## ⏱️ Time Breakdown
- **Total**: {result.get('total_time', 0):.1f}s
"""
if 'load_time' in result:
output_md += f"- **Load**: {result['load_time']:.1f}s\n"
output_md += f"- **Convert**: {result['convert_time']:.1f}s\n"
output_md += f"- **Evaluate**: {result['eval_time']:.1f}s\n"
output_md += f"- **Save**: {result['save_time']:.1f}s\n"
output_md += f"""
---
## 🌐 HuggingFace Hub Upload
**Status**: {upload_status}
"""
if hub_url:
output_md += f"""
**Model URL**: [{hub_url}]({hub_url})
### 🚀 Load from Hub
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"{hub_url.replace('https://huggingface.co/', '')}",
trust_remote_code=True,
torch_dtype="auto",
device_map="auto"
)
```
"""
output_md += f"""
---
✅ **PHOENIX Model Ready! (v1.4.1)**
"""
# 플롯
fig = go.Figure()
metrics_names = ['Conversion', 'Quality']
metrics_values = [result.get('conversion_rate', 0), result.get('quality_score', 0)]
if verification_passed:
metrics_names.append('Upload')
metrics_values.append(1.0)
fig.add_trace(go.Bar(
x=metrics_names,
y=metrics_values,
marker_color=['#3b82f6', '#10b981', '#8b5cf6'][:len(metrics_names)]
))
fig.update_layout(
title="🔥 Burning Metrics",
yaxis_range=[0, 1],
template='plotly_white',
height=400
)
return output_md, fig
except Exception as e:
import traceback
error_msg = traceback.format_exc()
return f"""
❌ **Burning Failed**
**Error:** {str(e)}
**Traceback:**
```
{error_msg}
```
""", None
def view_burning_history():
"""View burning history"""
try:
history = db.get_burning_history(limit=20)
if not history:
return "📭 No burning history yet", None
df = pd.DataFrame(history)
fig = px.scatter(
df,
x='timestamp',
y='evaluation_score',
size='conversion_rate',
color='verification_passed',
hover_data=['model_url', 'output_path', 'hub_url'],
title='Burning History'
)
cols = ['id', 'model_url', 'hub_url', 'conversion_rate',
'evaluation_score', 'verification_passed', 'timestamp']
available = [c for c in cols if c in df.columns]
return f"## 📊 Burning History\n\n{df[available].to_markdown(index=False)}", fig
except Exception as e:
return f"❌ Error: {e}", None
def validate_phoenix_model(
model_source,
model_path_or_url,
test_prompts,
max_tokens,
temperature,
verify_retention
):
"""PHOENIX 모델 검증"""
try:
print("="*80)
print("🧪 PHOENIX Model Validation v1.4.1")
print("="*80)
# 1. 모델 로드
print(f"\n📥 Loading model from {model_source}...")
start_time = time.time()
model = AutoModelForCausalLM.from_pretrained(
model_path_or_url,
trust_remote_code=True,
torch_dtype=torch.float16,
).to(DEVICE)
tokenizer = AutoTokenizer.from_pretrained(
model_path_or_url,
trust_remote_code=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
load_time = time.time() - start_time
print(f"✅ Model loaded in {load_time:.2f}s")
# 2. 메타데이터
metadata = {}
metadata_path = None
if model_source == "local":
metadata_path = Path(model_path_or_url) / "phoenix_metadata.json"
else:
try:
from huggingface_hub import hf_hub_download
metadata_path = hf_hub_download(
repo_id=model_path_or_url,
filename="phoenix_metadata.json"
)
except:
pass
if metadata_path and Path(metadata_path).exists():
with open(metadata_path, 'r') as f:
metadata = json.load(f)
# 3. Retention 검증
retention_info = ""
if verify_retention:
print(f"\n🔍 Verifying Retention mechanism...")
retention_count = 0
attention_count = 0
# PhoenixModelForCausalLM인 경우 _original_model 확인
check_model = model
if hasattr(model, '_original_model') and model._original_model is not None:
print(f" 📋 Detected PhoenixModelForCausalLM wrapper")
check_model = model._original_model
layers = []
if hasattr(check_model, 'model') and hasattr(check_model.model, 'layers'):
layers = check_model.model.layers
elif hasattr(check_model, 'layers'):
layers = check_model.layers
print(f" 🔍 Checking {len(layers)} layers...")
for i, layer in enumerate(layers):
if hasattr(layer, 'self_attn'):
attn = layer.self_attn
class_name = attn.__class__.__name__
if 'Retention' in class_name:
retention_count += 1
if i < 3: # 처음 3개만 출력
print(f" ✅ Layer {i}: {class_name}")
else:
attention_count += 1
if i < 3:
print(f" ⚠️ Layer {i}: {class_name}")
total = retention_count + attention_count
retention_info = f"""
### 🔍 Retention Verification
- **Retention Layers**: {retention_count}/{total}
- **Attention Layers**: {attention_count}/{total}
- **Status**: {'✅ PHOENIX Active' if retention_count > 0 else '⚠️ No Retention Found'}
"""
print(f" 📊 Result: {retention_count}/{total} layers have Retention")
# 4. 생성 테스트
print(f"\n🚀 Running generation tests...")
prompts = [p.strip() for p in test_prompts.split('\n') if p.strip()]
if not prompts:
prompts = ["The future of AI is", "Once upon a time"]
results = []
total_gen_time = 0
for i, prompt in enumerate(prompts, 1):
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
gen_start = time.time()
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=temperature > 0.01,
pad_token_id=tokenizer.eos_token_id,
)
gen_time = time.time() - gen_start
total_gen_time += gen_time
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
tokens_generated = len(outputs[0]) - len(inputs['input_ids'][0])
tokens_per_sec = tokens_generated / gen_time if gen_time > 0 else 0
results.append({
'prompt': prompt,
'generated': generated,
'time': gen_time,
'tokens': tokens_generated,
'tokens_per_sec': tokens_per_sec,
})
# 5. 결과
output_md = f"""
# ✅ PHOENIX Model Validation Complete! (v1.4.1)
## 📦 Model Information
- **Source**: {model_source.upper()}
- **Path/URL**: `{model_path_or_url}`
- **Load Time**: {load_time:.2f}s
## 📋 Metadata
"""
if metadata:
output_md += f"""
- **PHOENIX Version**: {metadata.get('phoenix_version', 'Unknown')}
- **Original Model**: {metadata.get('original_model', 'Unknown')}
- **Conversion Rate**: {metadata.get('conversion_rate', 0)*100:.1f}%
"""
if retention_info:
output_md += retention_info
output_md += f"""
## 🚀 Generation Tests
**Total Tests**: {len(results)}
**Average Speed**: {sum(r['tokens_per_sec'] for r in results)/len(results):.1f} tokens/s
---
"""
for i, result in enumerate(results, 1):
output_md += f"""
### Test {i}
**Generated:**
```
{result['generated']}
```
**Stats**: {result['time']:.2f}s | {result['tokens_per_sec']:.1f} tokens/s
---
"""
# 6. 그래프
fig = go.Figure()
fig.add_trace(go.Bar(
x=[f"Test {i+1}" for i in range(len(results))],
y=[r['tokens_per_sec'] for r in results],
marker_color='#10b981'
))
fig.update_layout(
title="Generation Speed (tokens/s)",
template='plotly_white'
)
return output_md, fig
except Exception as e:
import traceback
return f"❌ Validation failed:\n```\n{traceback.format_exc()}\n```", None
# 전역 초기화
db = ExperimentDatabase(DB_PATH)
# =====================================================
# Gradio UI
# =====================================================
with gr.Blocks(
title="🔮 PHOENIX v1.4.1 - State Dict Direct Loading",
theme=gr.themes.Soft(),
) as demo:
gr.Markdown("""
# 🔮 PHOENIX Retention Platform v1.4.1
**State Dict Direct Loading + Structure-Aware Burning**
✅ **NEW!** State Dict 직접 로드로 Retention 보존
✅ Model Structure Pre-Analysis
✅ Qwen3 Model Support
✅ Zero-shot Conversion (No Dataset Required)
✅ Optional Fine-tuning
✅ GQA Support
✅ O(n) Complexity
✅ Auto Upload to HuggingFace Hub
---
""")
with gr.Tabs():
with gr.Tab("🔥 Model Burning"):
gr.Markdown("""
### 🔥 PHOENIX Model Burning v1.4.1
**모델 구조를 먼저 분석한 후 변환합니다!**
**Hub 로드 시 State Dict 직접 로드로 Retention 보존!**
""")
with gr.Row():
with gr.Column(scale=1):
burn_model_url = gr.Textbox(
label="🔗 Model URL",
value=DEFAULT_MODEL,
placeholder="Qwen/Qwen3-0.6B"
)
burn_hierarchical = gr.Checkbox(value=True, label="Hierarchical Retention")
burn_output_name = gr.Textbox(
label="💾 Output Name",
placeholder="phoenix_my_model"
)
gr.Markdown("---")
gr.Markdown("### 🌐 HuggingFace Hub Upload")
burn_upload_hub = gr.Checkbox(value=True, label="📤 Upload to Hub")
burn_hub_repo = gr.Textbox(label="📦 Repo Name (optional)")
burn_hub_private = gr.Checkbox(value=True, label="🔒 Private")
gr.Markdown("---")
gr.Markdown("### 📊 Dataset (Optional)")
burn_dataset = gr.Textbox(label="📁 Dataset Path")
burn_use_finetuning = gr.Checkbox(value=False, label="🚀 Enable Fine-tuning")
with gr.Accordion("⚙️ Fine-tuning Config", open=False):
burn_epochs = gr.Slider(1, 5, 1, step=1, label="Epochs")
burn_batch = gr.Slider(1, 16, 4, step=1, label="Batch Size")
burn_lr = gr.Number(value=5e-5, label="Learning Rate")
burn_max_steps = gr.Slider(10, 500, 100, step=10, label="Max Steps")
burn_btn = gr.Button("🔥 Burn Model", variant="primary", size="lg")
with gr.Column(scale=2):
burn_output = gr.Markdown()
burn_plot = gr.Plot()
burn_btn.click(
burn_phoenix_model_ui,
[
burn_model_url, burn_hierarchical, burn_dataset, burn_output_name,
burn_use_finetuning, burn_epochs, burn_batch, burn_lr, burn_max_steps,
burn_upload_hub, burn_hub_repo, burn_hub_private,
],
[burn_output, burn_plot]
)
with gr.Tab("📊 Burning History"):
gr.Markdown("### 📊 Model Burning History")
with gr.Row():
with gr.Column(scale=1):
hist_btn = gr.Button("📊 Load History", variant="primary")
with gr.Column(scale=2):
hist_output = gr.Markdown()
hist_plot = gr.Plot()
hist_btn.click(view_burning_history, outputs=[hist_output, hist_plot])
with gr.Tab("🧪 Model Validation"):
gr.Markdown("### 🧪 PHOENIX 모델 검증")
with gr.Row():
with gr.Column(scale=1):
val_source = gr.Radio(
choices=["hub", "local"],
value="hub",
label="📍 Model Source"
)
val_path = gr.Textbox(
label="🔗 Model Path/URL",
value="seawolf2357/phoenix-Qwen3-0.6B",
placeholder="seawolf2357/phoenix-model"
)
val_prompts = gr.Textbox(
label="📝 Test Prompts (one per line)",
lines=5,
value="The future of AI is\nOnce upon a time\nIn machine learning,",
)
with gr.Row():
val_max_tokens = gr.Slider(16, 256, 64, step=16, label="Max Tokens")
val_temp = gr.Slider(0.1, 2.0, 0.7, step=0.1, label="Temperature")
val_verify_retention = gr.Checkbox(value=True, label="🔍 Verify Retention")
val_btn = gr.Button("🧪 Validate Model", variant="primary", size="lg")
with gr.Column(scale=2):
val_output = gr.Markdown()
val_plot = gr.Plot()
val_btn.click(
validate_phoenix_model,
[val_source, val_path, val_prompts, val_max_tokens,
val_temp, val_verify_retention],
[val_output, val_plot]
)
gr.Markdown(f"""
---
## 🔥 PHOENIX Model Burning Platform v1.4.1
### What's New in v1.4.1
- ✅ **FIX: head_dim calculation** - Config 우선 사용
- ✅ **State Dict Direct Loading** - Hub 로드 시 Retention 가중치 보존
- ✅ **Model Structure Pre-Analysis** - 변환 전 구조 파악
- ✅ **Qwen3 Support** - Qwen3 모델 완벽 지원
**HuggingFace Token**: {'✅ Connected' if HF_TOKEN else '❌ Not Found'}
**Default Model**: {DEFAULT_MODEL}
**VIDraft AI Research Lab** | PHOENIX v1.4.1
""")
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch(server_name="0.0.0.0", server_port=7860, share=False) |