File size: 54,440 Bytes
28f2970 c381ead c43a720 c381ead 28f2970 ef87883 c43a720 ef87883 c43a720 ef87883 18f492f ef87883 35b8c28 28f2970 c381ead 28f2970 c381ead 28f2970 c381ead 23f9fc2 28f2970 ef87883 7916437 28f2970 35b8c28 23f9fc2 28f2970 c381ead 28f2970 e6bcdb0 c381ead 35b8c28 28f2970 cb3c4bf b1fafe7 cb3c4bf c43a720 cb3c4bf c381ead cb3c4bf c381ead cb3c4bf c381ead cb3c4bf c381ead cb3c4bf c381ead b1fafe7 c381ead cb3c4bf c43a720 cb3c4bf c381ead cb3c4bf 28f2970 c381ead 18f492f ef87883 18f492f 068c039 18f492f b1fafe7 d655ec6 0772ae3 18f492f 0772ae3 7916437 b1fafe7 0772ae3 b1fafe7 ef87883 b1fafe7 18f492f ef87883 18f492f b1fafe7 18f492f 0772ae3 c381ead 0772ae3 18f492f d655ec6 18f492f c381ead 0772ae3 18f492f de99383 c43a720 de99383 ef87883 83d9107 068c039 0772ae3 068c039 18f492f 068c039 0772ae3 068c039 2c0487e 068c039 0772ae3 068c039 18f492f 0772ae3 c43a720 18f492f 7916437 18f492f c43a720 41f8d59 0772ae3 18f492f 008f8f3 0772ae3 18f492f c9f844d 18f492f ef87883 18f492f ef87883 0772ae3 18f492f c43a720 18f492f 57a0735 b5c73ce 18f492f ef87883 18f492f 008f8f3 18f492f ef87883 2c0487e c43a720 18f492f 0772ae3 18f492f c381ead 18f492f 068c039 18f492f 0772ae3 18f492f 41f8d59 8c55f6d c43a720 41f8d59 98665cb 0772ae3 18f492f 98665cb e6ac1c1 238a77b 18f492f c9f844d 18f492f b1fafe7 18f492f cb3c4bf c381ead c43a720 18f492f 8863ba4 cb3c4bf 8863ba4 cb3c4bf 8863ba4 cb3c4bf c43a720 18f492f c43a720 b1fafe7 068c039 18f492f 2c0487e 18f492f 068c039 18f492f 068c039 18f492f 83d9107 c43a720 833e280 c43a720 18f492f 0772ae3 18f492f d7d1b8f c381ead c43a720 23f9fc2 c381ead c43a720 c381ead c43a720 23f9fc2 c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead d7d1b8f c43a720 d7d1b8f 7e1dc71 c43a720 d7d1b8f 7e1dc71 d7d1b8f ad0a765 8fbd9ae ad0a765 c43a720 7e1dc71 ad0a765 8fbd9ae 7e1dc71 ad0a765 d7d1b8f 7e1dc71 c43a720 7e1dc71 1fa5f7c 7e1dc71 7916437 7e1dc71 cce66a2 c43a720 3198863 1fa5f7c c43a720 7e1dc71 3198863 7e1dc71 c43a720 7e1dc71 d7d1b8f 1fa5f7c 7e1dc71 cce66a2 c43a720 7e1dc71 7916437 7e1dc71 7916437 7e1dc71 c43a720 7e1dc71 d7d1b8f 7916437 7e1dc71 7916437 7e1dc71 7916437 7e1dc71 7916437 7e1dc71 d7d1b8f 7e1dc71 c43a720 7e1dc71 7916437 7e1dc71 7916437 7e1dc71 7916437 c381ead 7916437 c381ead 7916437 c43a720 7916437 c43a720 7916437 c43a720 7916437 c43a720 7916437 d7d1b8f 7916437 c43a720 7916437 d7d1b8f c43a720 d7d1b8f c43a720 d7d1b8f c43a720 d7d1b8f c381ead d7d1b8f c43a720 d7d1b8f 7916437 ad0a765 d7d1b8f c381ead d7d1b8f c43a720 d7d1b8f c381ead ad0a765 35b8c28 ad0a765 35b8c28 c381ead 12f6cb3 35b8c28 c43a720 7916437 c43a720 7916437 c43a720 951a5d5 c43a720 c381ead c43a720 12f6cb3 15378c4 c43a720 15378c4 c43a720 15378c4 7916437 c381ead 7916437 c43a720 15378c4 c43a720 c381ead 15378c4 c381ead 15378c4 c381ead 12f6cb3 15378c4 12f6cb3 c43a720 cb3c4bf c381ead 15378c4 12f6cb3 15378c4 c381ead 15378c4 c381ead 12f6cb3 15378c4 12f6cb3 15378c4 c381ead 12f6cb3 c43a720 cb3c4bf 15378c4 12f6cb3 8863ba4 cb3c4bf 15378c4 12f6cb3 15378c4 12f6cb3 c43a720 ef87883 c381ead c43a720 c381ead c43a720 c381ead c43a720 c381ead ef87883 c43a720 ef87883 c43a720 ef87883 c43a720 ef87883 c43a720 c381ead ef87883 d7d1b8f ef87883 c43a720 c381ead cb3c4bf ef87883 c381ead c43a720 ef87883 c43a720 ef87883 28f2970 7916437 c381ead 7916437 cc66f4c 7916437 c43a720 7916437 c43a720 c381ead 7916437 cc66f4c 7916437 c43a720 7916437 c43a720 c381ead 7916437 c43a720 c381ead 7916437 c43a720 7916437 cc66f4c c43a720 cc66f4c c43a720 cc66f4c c43a720 c381ead c43a720 cc66f4c c381ead cc66f4c c43a720 cc66f4c c381ead c43a720 c381ead cc66f4c c43a720 7916437 c43a720 c381ead 7916437 cc66f4c c43a720 cc66f4c c43a720 cc66f4c c43a720 cc66f4c c43a720 cc66f4c c43a720 c381ead c43a720 cc66f4c c43a720 cc66f4c c381ead cc66f4c c43a720 cc66f4c c381ead c43a720 cc66f4c c381ead cc66f4c c43a720 cc66f4c c43a720 cc66f4c c381ead cc66f4c c43a720 cc66f4c c43a720 c381ead cc66f4c c43a720 cc66f4c c43a720 cc66f4c c43a720 c381ead cc66f4c c43a720 cc66f4c 28f2970 c43a720 28f2970 c381ead bd3bb90 c381ead bd3bb90 c381ead bd3bb90 c381ead c43a720 bd3bb90 c43a720 bd3bb90 c43a720 c381ead c43a720 c381ead c43a720 bd3bb90 c43a720 c381ead c43a720 bd3bb90 c381ead c43a720 bd3bb90 c381ead c43a720 c381ead c43a720 bd3bb90 c43a720 c381ead c43a720 bd3bb90 c43a720 bd3bb90 c43a720 bd3bb90 c43a720 c381ead c43a720 bd3bb90 c43a720 bd3bb90 c43a720 bd3bb90 c43a720 bd3bb90 c43a720 bd3bb90 c381ead 76e2b69 c381ead bd3bb90 c43a720 c381ead bd3bb90 28f2970 c43a720 28f2970 23f9fc2 bd3bb90 23f9fc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 |
"""
π₯ PHOENIX Retention Research Platform v2.0 - MULTI-GPU OPTIMIZED
H100 x 8 GPU μ΅μ ν λ²μ
β
v2.0 NEW: Multi-GPU (8x H100) μ΅μ ν
β
v2.0 NEW: Accelerate ν΅ν©
β
v2.0 NEW: DeepSpeed ZeRO-3 μ§μ
β
v2.0 NEW: Gradient Checkpointing
β
Fine-tuning νμ΄νλΌμΈ (Brumby-style)
β
λͺ¨λ v1.4.3 μμ μ¬ν ν¬ν¨
VIDraft AI Research Lab - Multi-GPU Version v2.0
"""
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import sqlite3
import json
import time
import numpy as np
from datetime import datetime
from pathlib import Path
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
from typing import Dict, List, Any, Tuple, Optional
from transformers import (
AutoModel, AutoTokenizer, AutoConfig, AutoModelForCausalLM,
get_cosine_schedule_with_warmup, TrainingArguments, Trainer,
DataCollatorForLanguageModeling
)
from datasets import load_dataset, concatenate_datasets
from torch.utils.data import Dataset, DataLoader
from accelerate import Accelerator
from tqdm import tqdm
import copy
import shutil
import os
from huggingface_hub import HfApi, create_repo
# =====================================================
# μ μ μ€μ - MULTI-GPU
# =====================================================
# GPU μ€μ
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
NUM_GPUS = torch.cuda.device_count()
# β
μ°λΆν¬ νΈν: ν λλ ν 리 λλ νκ²½ λ³μ μ¬μ©
STORAGE_PATH = os.getenv("PHOENIX_STORAGE_PATH", str(Path.home() / "phoenix_data"))
DB_PATH = f"{STORAGE_PATH}/phoenix_experiments.db"
MODELS_PATH = f"{STORAGE_PATH}/phoenix_models"
DEFAULT_MODEL = "Qwen/Qwen3-0.6B"
# HuggingFace Token
HF_TOKEN = os.getenv("HF_TOKEN")
# λλ ν 리 μμ± (κΆν μ€λ₯ μ²λ¦¬)
try:
Path(STORAGE_PATH).mkdir(parents=True, exist_ok=True)
Path(MODELS_PATH).mkdir(parents=True, exist_ok=True)
print(f"β
Storage initialized: {STORAGE_PATH}")
except PermissionError:
print(f"β οΈ Permission denied for {STORAGE_PATH}")
print(f" Using current directory instead")
STORAGE_PATH = "./phoenix_data"
DB_PATH = f"{STORAGE_PATH}/phoenix_experiments.db"
MODELS_PATH = f"{STORAGE_PATH}/phoenix_models"
Path(STORAGE_PATH).mkdir(parents=True, exist_ok=True)
Path(MODELS_PATH).mkdir(parents=True, exist_ok=True)
print(f"π₯ PHOENIX Platform v2.0 - Multi-GPU Optimized")
print(f"πΎ Storage: {STORAGE_PATH}")
print(f"π― Default Base Model: {DEFAULT_MODEL}")
print(f"π GPUs Available: {NUM_GPUS}")
if NUM_GPUS > 0:
for i in range(NUM_GPUS):
print(f" GPU {i}: {torch.cuda.get_device_name(i)}")
if HF_TOKEN:
print(f"π HuggingFace Token: {'*' * 10}{HF_TOKEN[-4:]}")
# =====================================================
# λͺ¨λΈ ꡬ쑰 λΆμ ν¨μ
# =====================================================
def analyze_model_structure(model_url: str) -> Dict[str, Any]:
"""π λͺ¨λΈ ꡬ쑰 μ¬μ λΆμ"""
print("\n" + "="*80)
print("π MODEL STRUCTURE ANALYSIS")
print("="*80)
try:
print(f"\nπ₯ Loading model config: {model_url}")
config = AutoConfig.from_pretrained(model_url, trust_remote_code=True)
print(f"β
Config loaded")
# β
Multi-GPU: CPUλ‘λ§ λ‘λ (λΆμμ©)
print(f"\nπ¦ Loading model structure (CPU only)...")
model = AutoModelForCausalLM.from_pretrained(
model_url,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="cpu" # Analysisλ§ CPUμμ
)
analysis = {
'model_url': model_url,
'model_type': config.model_type if hasattr(config, 'model_type') else 'unknown',
'architectures': config.architectures[0] if hasattr(config, 'architectures') else 'unknown',
'hidden_size': config.hidden_size if hasattr(config, 'hidden_size') else 0,
'num_attention_heads': config.num_attention_heads if hasattr(config, 'num_attention_heads') else 0,
'num_hidden_layers': config.num_hidden_layers if hasattr(config, 'num_hidden_layers') else 0,
'num_key_value_heads': config.num_key_value_heads if hasattr(config, 'num_key_value_heads') else None,
'total_layers': 0,
'has_self_attn': False,
'layer_path': None,
}
# Layer λΆμ
layers = None
layer_path = None
possible_paths = [
('model.layers', lambda m: m.model.layers if hasattr(m, 'model') and hasattr(m.model, 'layers') else None),
('transformer.h', lambda m: m.transformer.h if hasattr(m, 'transformer') and hasattr(m.transformer, 'h') else None),
]
for path_name, path_fn in possible_paths:
result = path_fn(model)
if result is not None:
layers = result
layer_path = path_name
break
if layers:
analysis['total_layers'] = len(layers)
analysis['layer_path'] = layer_path
if len(layers) > 0:
first_layer = layers[0]
if hasattr(first_layer, 'self_attn'):
analysis['has_self_attn'] = True
attn = first_layer.self_attn
if hasattr(attn, 'q_proj'):
q_shape = attn.q_proj.weight.shape
k_shape = attn.k_proj.weight.shape
if hasattr(config, 'num_attention_heads') and config.num_attention_heads > 0:
head_dim = q_shape[0] // config.num_attention_heads
analysis['head_dim'] = head_dim
analysis['gqa_detected'] = (k_shape[0] != q_shape[0])
analysis['q_dim'] = q_shape[0]
analysis['k_dim'] = k_shape[0]
print(f"\n{'='*80}\n")
del model
torch.cuda.empty_cache()
return analysis
except Exception as e:
import traceback
print(f"\nβ Structure analysis failed: {e}")
return {
'model_url': model_url,
'error': str(e),
'total_layers': 0,
}
# =====================================================
# PHOENIX Retention (λμΌ)
# =====================================================
class MultiScaleRetention(nn.Module):
"""μ§μ§ Retention Attention with GQA Support"""
def __init__(self, config, layer_idx=0):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
if hasattr(config, 'head_dim'):
self.head_dim = config.head_dim
else:
self.head_dim = self.hidden_size // self.num_heads
if hasattr(config, 'num_key_value_heads'):
self.num_key_value_heads = config.num_key_value_heads
else:
self.num_key_value_heads = self.num_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.kv_head_dim = self.head_dim
self.q_dim = self.num_heads * self.head_dim
self.kv_dim = self.num_key_value_heads * self.kv_head_dim
self.q_proj = nn.Linear(self.hidden_size, self.q_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False)
self.o_proj = nn.Linear(self.q_dim, self.hidden_size, bias=False)
decay_values = torch.linspace(0.95, 0.99, self.num_heads)
self.decay = nn.Parameter(decay_values, requires_grad=True)
self.group_norm = nn.GroupNorm(
num_groups=self.num_heads,
num_channels=self.q_dim
)
def _repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""Repeat K/V heads (GQA)"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim
)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.Tensor]] = None,
**kwargs
):
"""O(n) Retention"""
batch_size, seq_len, _ = hidden_states.shape
target_device = hidden_states.device
target_dtype = hidden_states.dtype
if self.q_proj.weight.device != target_device or self.q_proj.weight.dtype != target_dtype:
self.to(device=target_device, dtype=target_dtype)
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(
batch_size, seq_len, self.num_heads, self.head_dim
).transpose(1, 2)
key_states = key_states.view(
batch_size, seq_len, self.num_key_value_heads, self.kv_head_dim
).transpose(1, 2)
value_states = value_states.view(
batch_size, seq_len, self.num_key_value_heads, self.kv_head_dim
).transpose(1, 2)
key_states = self._repeat_kv(key_states, self.num_key_value_groups)
value_states = self._repeat_kv(value_states, self.num_key_value_groups)
retention_states = self._compute_retention(
query_states, key_states, value_states
)
retention_states = retention_states.transpose(1, 2).contiguous()
retention_states = retention_states.reshape(
batch_size, seq_len, self.q_dim
)
if self.group_norm.weight.device != retention_states.device or self.group_norm.weight.dtype != retention_states.dtype:
self.group_norm = self.group_norm.to(device=retention_states.device, dtype=retention_states.dtype)
retention_states = self.group_norm(
retention_states.transpose(1, 2)
).transpose(1, 2)
retention_states = torch.clamp(retention_states, min=-10.0, max=10.0)
attn_output = self.o_proj(retention_states)
return (attn_output, None)
def _compute_retention(
self,
queries: torch.Tensor,
keys: torch.Tensor,
values: torch.Tensor,
):
"""O(n) Retention computation"""
batch_size, num_heads, seq_len, head_dim = queries.shape
state = torch.zeros(
batch_size, num_heads, head_dim, head_dim,
dtype=queries.dtype,
device=queries.device
) + 1e-6
outputs = []
decay = torch.sigmoid(self.decay).view(1, -1, 1, 1).to(
device=queries.device,
dtype=queries.dtype
)
for t in range(seq_len):
q_t = queries[:, :, t, :]
k_t = keys[:, :, t, :]
v_t = values[:, :, t, :]
state = decay * state
kv_update = torch.einsum('bhd,bhe->bhde', k_t, v_t)
kv_update = torch.clamp(kv_update, min=-5.0, max=5.0)
state = state + kv_update
state = torch.clamp(state, min=-10.0, max=10.0)
output_t = torch.einsum('bhd,bhde->bhe', q_t, state)
outputs.append(output_t)
output = torch.stack(outputs, dim=2)
return output
class HierarchicalRetention(nn.Module):
"""PHOENIX Hierarchical Retention"""
def __init__(self, config, layer_idx=0):
super().__init__()
self.base_retention = MultiScaleRetention(config, layer_idx)
hidden_size = config.hidden_size
self.d_state = hidden_size // 2
self.short_proj = nn.Linear(hidden_size, self.d_state)
self.medium_proj = nn.Linear(self.d_state, self.d_state)
self.long_proj = nn.Linear(self.d_state, self.d_state * 2)
self.fusion = nn.Linear(self.d_state * 4, hidden_size)
self.short_decay = 0.5
self.medium_decay = 0.8
self.long_decay = 0.95
self.norm = nn.LayerNorm(hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.Tensor]] = None,
**kwargs
):
"""Hierarchical forward pass"""
batch_size, seq_len, hidden_size = hidden_states.shape
target_device = hidden_states.device
target_dtype = hidden_states.dtype
if self.short_proj.weight.device != target_device or self.short_proj.weight.dtype != target_dtype:
self.to(device=target_device, dtype=target_dtype)
base_result = self.base_retention(
hidden_states, attention_mask, position_ids,
past_key_value, output_attentions, use_cache
)
retention_output = base_result[0]
short_state = torch.zeros(batch_size, self.d_state, dtype=target_dtype, device=target_device)
medium_state = torch.zeros(batch_size, self.d_state, dtype=target_dtype, device=target_device)
long_state = torch.zeros(batch_size, self.d_state * 2, dtype=target_dtype, device=target_device)
hierarchical_outputs = []
for t in range(seq_len):
x_t = retention_output[:, t, :]
short_input = self.short_proj(x_t)
short_state = self.short_decay * short_state + short_input
if t % 8 == 0:
medium_state = self.medium_decay * medium_state + \
self.medium_proj(short_state)
if t % 64 == 0:
long_state = self.long_decay * long_state + \
self.long_proj(medium_state)
combined = torch.cat([short_state, medium_state, long_state], dim=-1)
output_t = self.fusion(combined)
hierarchical_outputs.append(output_t)
output = torch.stack(hierarchical_outputs, dim=1)
output = self.norm(output)
return (output, None)
# =====================================================
# λͺ¨λΈ λ³ν ν¨μ
# =====================================================
def replace_attention_with_retention(model, use_hierarchical=True, structure_info=None):
"""Transformer Attention β PHOENIX Retention"""
print("π Starting Attention β Retention conversion...")
replaced_count = 0
total_layers = 0
layers = None
if structure_info and structure_info.get('layer_path'):
layer_path = structure_info['layer_path']
if layer_path == 'model.layers':
if hasattr(model, 'model') and hasattr(model.model, 'layers'):
layers = model.model.layers
elif layer_path == 'transformer.h':
if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
layers = model.transformer.h
if layers is None:
possible_paths = [
('model.layers', lambda m: m.model.layers if hasattr(m, 'model') and hasattr(m.model, 'layers') else None),
('transformer.h', lambda m: m.transformer.h if hasattr(m, 'transformer') and hasattr(m.transformer, 'h') else None),
]
for path_name, path_fn in possible_paths:
result = path_fn(model)
if result is not None:
layers = result
break
if layers is None:
print("β Cannot find layers")
return model, 0, 0
total_layers = len(layers)
print(f" Found {total_layers} layers")
if structure_info and structure_info.get('head_dim'):
model.config.head_dim = structure_info['head_dim']
for layer_idx, layer in enumerate(layers):
try:
if hasattr(layer, 'self_attn'):
old_attn = layer.self_attn
if use_hierarchical:
new_retention = HierarchicalRetention(model.config, layer_idx)
else:
new_retention = MultiScaleRetention(model.config, layer_idx)
if hasattr(old_attn, 'q_proj'):
try:
target = new_retention.base_retention if use_hierarchical else new_retention
target.q_proj.weight.data = old_attn.q_proj.weight.data.clone()
target.k_proj.weight.data = old_attn.k_proj.weight.data.clone()
target.v_proj.weight.data = old_attn.v_proj.weight.data.clone()
target.o_proj.weight.data = old_attn.o_proj.weight.data.clone()
except:
pass
layer.self_attn = new_retention
replaced_count += 1
except Exception as e:
continue
print(f"\nβ
Conversion complete: {replaced_count}/{total_layers} layers")
return model, replaced_count, total_layers
# =====================================================
# π MULTI-GPU Fine-tuning νμ΄νλΌμΈ
# =====================================================
def finetune_retention_model(
model,
tokenizer,
num_steps: int = 3000,
batch_size: int = 4,
learning_rate: float = 1e-5,
output_dir: str = None,
use_gradient_checkpointing: bool = True,
):
"""
π v2.0: Brumby-style Retraining with Multi-GPU Support
"""
# output_dir κΈ°λ³Έκ° μ€μ
if output_dir is None:
output_dir = f"{STORAGE_PATH}/finetuning_temp"
print("\n" + "="*80)
print("π₯ PHOENIX RETRAINING - Multi-GPU (v2.0)")
print("="*80)
print(f" GPUs: {NUM_GPUS}")
print(f" Target Steps: {num_steps}")
print(f" Batch Size per GPU: {batch_size}")
print(f" Global Batch Size: {batch_size * NUM_GPUS}")
print(f" Learning Rate: {learning_rate}")
print(f" Gradient Checkpointing: {use_gradient_checkpointing}")
start_time = time.time()
# β
Gradient Checkpointing (λ©λͺ¨λ¦¬ μ μ½)
if use_gradient_checkpointing:
if hasattr(model, 'gradient_checkpointing_enable'):
model.gradient_checkpointing_enable()
print(f" β
Gradient Checkpointing enabled")
# Dataset μ€λΉ
train_dataset = prepare_simple_dataset(
tokenizer=tokenizer,
num_steps=num_steps,
batch_size=batch_size * NUM_GPUS # Multi-GPU κ³ λ €
)
# β
Multi-GPU Training Arguments
training_args = TrainingArguments(
output_dir=output_dir,
# π Multi-GPU μ€μ
per_device_train_batch_size=batch_size, # GPUλΉ batch
gradient_accumulation_steps=max(1, 8 // NUM_GPUS), # GPU μμ λ°λΌ μ‘°μ
# Training μ€μ
num_train_epochs=1,
max_steps=num_steps,
learning_rate=learning_rate,
warmup_steps=100,
# Optimization
fp16=True, # Mixed precision
optim="adamw_torch_fused", # H100 μ΅μ ν
# Logging
logging_steps=50,
logging_first_step=True,
save_steps=1000,
save_total_limit=2,
# Performance
dataloader_num_workers=4 * NUM_GPUS, # GPUλΉ 4 workers
dataloader_pin_memory=True,
# Multi-GPU κ΄λ ¨
ddp_find_unused_parameters=False,
ddp_backend="nccl", # H100 μ΅μ ν
# Misc
remove_unused_columns=False,
report_to="none",
# β
DeepSpeed (μ νμ¬ν)
# deepspeed="ds_config.json", # DeepSpeed μ¬μ©μ
)
# Data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# β
Trainer (μλ Multi-GPU)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer,
data_collator=data_collator,
)
# Train!
print(f"\nπ Starting Multi-GPU Fine-tuning...")
print(f" Using {NUM_GPUS} GPUs")
trainer.train()
elapsed = time.time() - start_time
print(f"\nβ
Fine-tuning Complete!")
print(f" Time: {elapsed/60:.1f} minutes")
print(f" Effective samples/sec: {(num_steps * batch_size * NUM_GPUS) / elapsed:.2f}")
print(f"="*80 + "\n")
return model
def prepare_simple_dataset(
tokenizer,
num_steps: int,
batch_size: int,
max_length: int = 2048,
):
"""Dataset μ€λΉ"""
print(f"\nπ Preparing Dataset...")
num_samples = num_steps * batch_size
print(f" Target samples: {num_samples}")
try:
dataset = load_dataset(
"wikitext",
"wikitext-2-raw-v1",
split=f"train[:{num_samples}]"
)
print(f" β
Loaded: {len(dataset)} samples")
except Exception as e:
print(f" β Failed: {e}")
raise
def tokenize_function(examples):
return tokenizer(
examples['text'],
truncation=True,
max_length=max_length,
padding="max_length",
)
tokenized = dataset.map(
tokenize_function,
batched=True,
remove_columns=dataset.column_names,
num_proc=4 # Parallel processing
)
print(f" β
Tokenized: {len(tokenized)} samples")
return tokenized
def estimate_finetuning_cost(
model_size: str,
num_steps: int,
batch_size: int,
num_gpus: int = NUM_GPUS,
gpu_type: str = "H100",
) -> Dict:
"""λΉμ© κ³μ°κΈ° - Multi-GPU"""
gpu_costs = {
"H100": 3.0,
"A100": 2.0,
"A10G": 1.0,
}
model_step_times = {
"0.6B": 0.5,
"1.5B": 1.0,
"3B": 2.0,
"7B": 3.5,
"14B": 6.0,
}
# Multi-GPUλ‘ μΈν μκ° λ¨μΆ (linear scaling κ°μ )
step_time = model_step_times.get(model_size, 1.0) * (batch_size / 4)
step_time_per_gpu = step_time / num_gpus # GPU λ³λ ¬ν
total_seconds = num_steps * step_time_per_gpu
total_hours = total_seconds / 3600
# λΉμ©μ GPU μλ§νΌ κ³±ν¨
total_cost_usd = total_hours * gpu_costs.get(gpu_type, 2.0) * num_gpus
return {
'hours': round(total_hours, 2),
'cost_usd': round(total_cost_usd, 2),
'cost_krw': round(total_cost_usd * 1300, 0),
'num_gpus': num_gpus,
'gpu_type': gpu_type,
}
# =====================================================
# Custom Modeling Code (λμΌ)
# =====================================================
def generate_modeling_phoenix_code():
"""PHOENIX Custom Modeling Code v2.0"""
return '''"""
PHOENIX Retention Model v2.0
β
v2.0: Brumby-style Retraining support
β
v1.4.3: forward() μκ·Έλμ² Transformers νΈν
β
v1.4.3: dtype λΆμΌμΉ μμ
"""
import torch
import torch.nn as nn
from typing import Optional, Tuple
from transformers.modeling_utils import PreTrainedModel
from transformers.configuration_utils import PretrainedConfig
from transformers import AutoConfig, AutoModelForCausalLM
import os
class PhoenixConfig(PretrainedConfig):
model_type = "phoenix"
def __init__(self, use_phoenix_retention=True, phoenix_version="2.0",
original_model=None, use_hierarchical=True, **kwargs):
super().__init__(**kwargs)
self.use_phoenix_retention = use_phoenix_retention
self.phoenix_version = phoenix_version
self.original_model = original_model
self.use_hierarchical = use_hierarchical
class MultiScaleRetention(nn.Module):
def __init__(self, config, layer_idx=0):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads)
self.num_key_value_heads = getattr(config, 'num_key_value_heads', self.num_heads)
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.q_dim = self.num_heads * self.head_dim
self.kv_dim = self.num_key_value_heads * self.head_dim
self.q_proj = nn.Linear(self.hidden_size, self.q_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False)
self.o_proj = nn.Linear(self.q_dim, self.hidden_size, bias=False)
self.decay = nn.Parameter(torch.linspace(0.95, 0.99, self.num_heads))
self.group_norm = nn.GroupNorm(self.num_heads, self.q_dim)
def _repeat_kv(self, x, n):
b, h, s, d = x.shape
if n == 1: return x
return x[:, :, None, :, :].expand(b, h, n, s, d).reshape(b, h*n, s, d)
def forward(self, hidden_states, **kwargs):
b, s, _ = hidden_states.shape
device, dtype = hidden_states.device, hidden_states.dtype
if self.q_proj.weight.device != device or self.q_proj.weight.dtype != dtype:
self.to(device=device, dtype=dtype)
q = self.q_proj(hidden_states).view(b, s, self.num_heads, self.head_dim).transpose(1, 2)
k = self.k_proj(hidden_states).view(b, s, self.num_key_value_heads, self.head_dim).transpose(1, 2)
v = self.v_proj(hidden_states).view(b, s, self.num_key_value_heads, self.head_dim).transpose(1, 2)
k = self._repeat_kv(k, self.num_key_value_groups)
v = self._repeat_kv(v, self.num_key_value_groups)
out = self._retention(q, k, v)
out = out.transpose(1, 2).reshape(b, s, self.q_dim)
out = self.group_norm(out.transpose(1, 2)).transpose(1, 2)
return (self.o_proj(torch.clamp(out, -10, 10)), None)
def _retention(self, q, k, v):
b, h, s, d = q.shape
state = torch.zeros(b, h, d, d, dtype=q.dtype, device=q.device) + 1e-6
decay = torch.sigmoid(self.decay).view(1, -1, 1, 1).to(q)
outs = []
for t in range(s):
state = decay * state + torch.clamp(torch.einsum('bhd,bhe->bhde', k[:,:,t], v[:,:,t]), -5, 5)
state = torch.clamp(state, -10, 10)
outs.append(torch.einsum('bhd,bhde->bhe', q[:,:,t], state))
return torch.stack(outs, dim=2)
class HierarchicalRetention(nn.Module):
def __init__(self, config, layer_idx=0):
super().__init__()
self.base_retention = MultiScaleRetention(config, layer_idx)
h = config.hidden_size
self.d_state = h // 2
self.short_proj = nn.Linear(h, self.d_state)
self.medium_proj = nn.Linear(self.d_state, self.d_state)
self.long_proj = nn.Linear(self.d_state, self.d_state*2)
self.fusion = nn.Linear(self.d_state*4, h)
self.norm = nn.LayerNorm(h)
self.decays = [0.5, 0.8, 0.95]
def forward(self, hidden_states, **kwargs):
b, s, h = hidden_states.shape
device, dtype = hidden_states.device, hidden_states.dtype
if self.short_proj.weight.device != device or self.short_proj.weight.dtype != dtype:
self.to(device=device, dtype=dtype)
ret_out = self.base_retention(hidden_states)[0]
short = torch.zeros(b, self.d_state, dtype=dtype, device=device)
med = torch.zeros(b, self.d_state, dtype=dtype, device=device)
long = torch.zeros(b, self.d_state*2, dtype=dtype, device=device)
outs = []
for t in range(s):
short = self.decays[0]*short + self.short_proj(ret_out[:,t])
if t % 8 == 0: med = self.decays[1]*med + self.medium_proj(short)
if t % 64 == 0: long = self.decays[2]*long + self.long_proj(med)
outs.append(self.fusion(torch.cat([short, med, long], -1)))
return (self.norm(torch.stack(outs, 1)), None)
def replace_attention_with_retention_for_loading(model, use_hierarchical=True):
layers = getattr(model, 'model', model)
layers = getattr(layers, 'layers', getattr(layers, 'h', None))
if layers is None: return model, 0, 0
original_dtype = None
for param in model.parameters():
original_dtype = param.dtype
break
cnt = 0
for i, layer in enumerate(layers):
if hasattr(layer, 'self_attn'):
new_ret = HierarchicalRetention(model.config, i) if use_hierarchical else MultiScaleRetention(model.config, i)
if original_dtype: new_ret = new_ret.to(dtype=original_dtype)
layer.self_attn = new_ret
cnt += 1
return model, cnt, len(layers)
class PhoenixPreTrainedModel(PreTrainedModel):
config_class = PhoenixConfig
base_model_prefix = "phoenix"
class PhoenixModelForCausalLM(PhoenixPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self._model = None
self._ready = False
@classmethod
def from_pretrained(cls, path, *args, **kwargs):
print(f"π₯ PHOENIX v2.0 loading from {path}")
config = AutoConfig.from_pretrained(path, trust_remote_code=True)
orig = getattr(config, 'original_model', 'Qwen/Qwen3-0.6B')
hier = getattr(config, 'use_hierarchical', True)
try:
base_cfg = AutoConfig.from_pretrained(orig, trust_remote_code=True)
except:
base_cfg = config
model = AutoModelForCausalLM.from_config(base_cfg)
model, conv, tot = replace_attention_with_retention_for_loading(model, hier)
print(f" β
Converted {conv}/{tot} layers")
sd = None
if os.path.exists(path):
for fname in ["model.safetensors", "pytorch_model.bin"]:
fpath = os.path.join(path, fname)
if os.path.exists(fpath):
if fname.endswith('.safetensors'):
from safetensors.torch import load_file
sd = load_file(fpath)
else:
sd = torch.load(fpath, map_location='cpu')
break
else:
from huggingface_hub import hf_hub_download
for fname in ["model.safetensors", "pytorch_model.bin"]:
try:
fpath = hf_hub_download(path, fname)
if fname.endswith('.safetensors'):
from safetensors.torch import load_file
sd = load_file(fpath)
else:
sd = torch.load(fpath, map_location='cpu')
break
except: pass
if sd:
miss, unex = model.load_state_dict(sd, strict=False)
print(f" π¦ Weights: {len(miss)} missing, {len(unex)} unexpected")
if 'lm_head.weight' in miss and getattr(config, 'tie_word_embeddings', False):
if hasattr(model, 'lm_head') and hasattr(model.model, 'embed_tokens'):
model.lm_head.weight = model.model.embed_tokens.weight
print(f" π Tied embeddings")
inst = cls(config)
inst._model = model
inst._ready = True
print(f"β
PHOENIX v2.0 ready!")
return inst
def forward(self, *a, **k):
if not self._ready: raise ValueError("Not initialized")
return self._model(*a, **k)
def generate(self, *a, **k):
if not self._ready: raise ValueError("Not initialized")
return self._model.generate(*a, **k)
AutoConfig.register("phoenix", PhoenixConfig)
'''
# =====================================================
# μ μ₯/μ
λ‘λ/νκ° (λμΌ)
# =====================================================
def save_phoenix_model_with_code(model, tokenizer, output_path, original_model_url, metadata):
"""PHOENIX λͺ¨λΈ μ μ₯"""
output_path = Path(output_path)
output_path.mkdir(parents=True, exist_ok=True)
print(f"\nπΎ Saving PHOENIX model...")
if hasattr(model.config, 'tie_word_embeddings') and model.config.tie_word_embeddings:
if hasattr(model, 'lm_head') and hasattr(model, 'model') and hasattr(model.model, 'embed_tokens'):
model.lm_head.weight = model.model.embed_tokens.weight
model.save_pretrained(output_path)
tokenizer.save_pretrained(output_path)
modeling_code = generate_modeling_phoenix_code()
with open(output_path / "modeling_phoenix.py", "w") as f:
f.write(modeling_code)
config_path = output_path / "config.json"
if config_path.exists():
with open(config_path, "r") as f:
config_dict = json.load(f)
config_dict["use_phoenix_retention"] = True
config_dict["phoenix_version"] = "2.0"
config_dict["original_model"] = original_model_url
config_dict["auto_map"] = {
"AutoModelForCausalLM": "modeling_phoenix.PhoenixModelForCausalLM",
}
with open(config_path, "w") as f:
json.dump(config_dict, f, indent=2)
with open(output_path / 'phoenix_metadata.json', 'w') as f:
json.dump(metadata, f, indent=2)
readme = f"""# π₯ PHOENIX v2.0 - {original_model_url}
**Multi-GPU Trained** with {metadata.get('num_gpus', 1)} GPUs
## Features
- β
Brumby-style Retraining
- β
O(n) Complexity
- β
GQA Support
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"{output_path.name}",
trust_remote_code=True,
torch_dtype="auto",
device_map="auto"
)
```
**VIDraft AI Research Lab** | PHOENIX v2.0 Multi-GPU
"""
with open(output_path / "README.md", "w") as f:
f.write(readme)
print(f" β
Model saved")
def upload_to_huggingface_hub(
model_path: str,
original_model_url: str,
repo_name: str = None,
private: bool = True,
token: str = None,
) -> Tuple[bool, str, str]:
"""Upload to Hub"""
if token is None:
token = HF_TOKEN
if not token:
return False, "", "β No HF_TOKEN"
try:
api = HfApi(token=token)
user_info = api.whoami(token=token)
username = user_info['name']
if not repo_name:
base_name = original_model_url.split('/')[-1]
repo_name = f"phoenix-{base_name}"
repo_id = f"{username}/{repo_name}"
create_repo(
repo_id=repo_id,
token=token,
private=private,
repo_type="model",
exist_ok=True
)
api.upload_folder(
folder_path=str(model_path),
repo_id=repo_id,
repo_type="model",
token=token,
)
hub_url = f"https://huggingface.co/{repo_id}"
return True, hub_url, f"β
Uploaded to {hub_url}"
except Exception as e:
return False, "", f"β Upload failed: {e}"
def evaluate_model_quality(model, tokenizer):
"""Quality νκ°"""
test_prompts = [
"The capital of France is",
"In machine learning,",
"2 + 2 =",
]
model.eval()
scores = []
with torch.no_grad():
for prompt in test_prompts:
try:
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=20,
do_sample=False,
pad_token_id=tokenizer.eos_token_id,
)
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
score = 0.0
if len(generated) > len(prompt):
score += 0.3
if not any(c in generated[len(prompt):] for c in ['οΏ½', '[UNK]']):
score += 0.3
if len(generated.split()) > len(prompt.split()) + 2:
score += 0.4
scores.append(score)
except:
scores.append(0.0)
return sum(scores) / len(scores) if scores else 0.0
# =====================================================
# π Multi-GPU Burning ν¨μ
# =====================================================
def burn_model_with_finetuning(
model_url: str,
output_dir: str,
use_hierarchical: bool = True,
enable_finetuning: bool = False,
num_steps: int = 3000,
batch_size: int = 4,
learning_rate: float = 1e-5,
use_gradient_checkpointing: bool = True,
):
"""π v2.0: Multi-GPU Optimized Burning"""
print("="*80)
print(f"π₯ PHOENIX Model Burning v2.0 - Multi-GPU ({NUM_GPUS} GPUs)")
print("="*80)
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
try:
# STEP 1: Structure Analysis
print(f"\nπ STEP 1: Structure Analysis...")
structure_info = analyze_model_structure(model_url)
# STEP 2: Load Model with device_map="auto"
print(f"\nπ₯ STEP 2: Loading model (Multi-GPU)...")
start_time = time.time()
config = AutoConfig.from_pretrained(model_url, trust_remote_code=True)
# β
Multi-GPU: device_map="auto"λ‘ μλ λΆμ°
model = AutoModelForCausalLM.from_pretrained(
model_url,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto" # μλμΌλ‘ 8κ° GPUμ λΆμ°!
)
tokenizer = AutoTokenizer.from_pretrained(model_url, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
load_time = time.time() - start_time
print(f"β
Loaded across {NUM_GPUS} GPUs in {load_time:.1f}s")
# STEP 3: Convert
print(f"\nπ STEP 3: Converting Attention β Retention...")
convert_start = time.time()
model, converted, total = replace_attention_with_retention(
model,
use_hierarchical=use_hierarchical,
structure_info=structure_info
)
convert_time = time.time() - convert_start
conversion_rate = converted / total if total > 0 else 0
print(f"β
Converted {converted}/{total} layers in {convert_time:.1f}s")
# STEP 4: Fine-tuning (Multi-GPU)
if enable_finetuning:
print(f"\nπ STEP 4: Multi-GPU Fine-tuning...")
ft_start = time.time()
model = finetune_retention_model(
model=model,
tokenizer=tokenizer,
num_steps=num_steps,
batch_size=batch_size,
learning_rate=learning_rate,
use_gradient_checkpointing=use_gradient_checkpointing,
)
ft_time = time.time() - ft_start
print(f"β
Fine-tuning completed in {ft_time/60:.1f} minutes")
else:
ft_time = 0
print(f"\nβοΈ STEP 4: Fine-tuning skipped")
# STEP 5: Evaluate
print(f"\nπ STEP 5: Evaluating...")
quality_score = evaluate_model_quality(model, tokenizer)
print(f"β
Quality: {quality_score:.2f}/1.00")
# STEP 6: Save
print(f"\nπΎ STEP 6: Saving...")
metadata = {
'phoenix_version': '2.0',
'original_model': model_url,
'use_hierarchical': use_hierarchical,
'conversion_rate': conversion_rate,
'quality_score': quality_score,
'finetuned': enable_finetuning,
'finetuning_steps': num_steps if enable_finetuning else 0,
'num_gpus': NUM_GPUS,
'gradient_checkpointing': use_gradient_checkpointing,
'timestamp': datetime.now().isoformat(),
}
save_phoenix_model_with_code(model, tokenizer, output_path, model_url, metadata)
total_time = time.time() - start_time
result = {
'status': 'success',
'model_path': str(output_path),
'conversion_rate': conversion_rate,
'quality_score': quality_score,
'total_time': total_time,
'finetuned': enable_finetuning,
'num_gpus': NUM_GPUS,
'structure_info': structure_info,
}
print(f"\n{'='*80}")
print(f"β
Multi-GPU Burning Complete!")
print(f" GPUs Used: {NUM_GPUS}")
print(f" Model: {output_path}")
print(f" Quality: {quality_score:.2f}/1.00")
print(f"{'='*80}\n")
return result
except Exception as e:
import traceback
return {
'status': 'failed',
'error': str(e),
'traceback': traceback.format_exc()
}
# =====================================================
# Database (λμΌ)
# =====================================================
class ExperimentDatabase:
def __init__(self, db_path: str):
self.db_path = db_path
self.init_database()
def init_database(self):
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS burning_history (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_url TEXT,
output_path TEXT,
hub_url TEXT,
conversion_rate REAL,
quality_score REAL,
finetuned BOOLEAN,
num_gpus INTEGER,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
""")
conn.commit()
def save_burning(self, info: Dict) -> int:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("""
INSERT INTO burning_history
(model_url, output_path, hub_url, conversion_rate, quality_score, finetuned, num_gpus)
VALUES (?, ?, ?, ?, ?, ?, ?)
""", (
info.get('model_url'),
info.get('output_path'),
info.get('hub_url'),
info.get('conversion_rate'),
info.get('quality_score'),
info.get('finetuned'),
info.get('num_gpus', 1),
))
conn.commit()
return cursor.lastrowid
def get_history(self, limit: int = 20) -> List[Dict]:
with sqlite3.connect(self.db_path) as conn:
conn.row_factory = sqlite3.Row
cursor = conn.cursor()
cursor.execute("SELECT * FROM burning_history ORDER BY timestamp DESC LIMIT ?", (limit,))
return [dict(row) for row in cursor.fetchall()]
db = ExperimentDatabase(DB_PATH)
# =====================================================
# Gradio UI
# =====================================================
def burn_phoenix_model_ui(
model_url,
use_hierarchical,
output_name,
enable_finetuning,
ft_steps,
ft_batch,
ft_lr,
use_grad_ckpt,
upload_hub,
hub_repo,
hub_private,
):
"""Gradio UI"""
try:
if not model_url.strip():
return "β οΈ Model URL required", None
if not output_name.strip():
output_name = f"phoenix_{model_url.split('/')[-1]}_{int(time.time())}"
output_dir = f"{MODELS_PATH}/{output_name}"
# λΉμ© μΆμ
if enable_finetuning:
model_size = "0.6B" if "0.6B" in model_url else "1.5B"
cost = estimate_finetuning_cost(model_size, ft_steps, ft_batch, NUM_GPUS)
print(f"\nπ° Estimated Cost: ${cost['cost_usd']} ({cost['hours']}h with {NUM_GPUS} GPUs)")
# Burn
result = burn_model_with_finetuning(
model_url=model_url,
output_dir=output_dir,
use_hierarchical=use_hierarchical,
enable_finetuning=enable_finetuning,
num_steps=ft_steps,
batch_size=ft_batch,
learning_rate=ft_lr,
use_gradient_checkpointing=use_grad_ckpt,
)
if result['status'] != 'success':
return f"β Failed\n```\n{result.get('error')}\n```", None
# Upload
hub_url = None
if upload_hub and HF_TOKEN:
success, hub_url, msg = upload_to_huggingface_hub(
model_path=result['model_path'],
original_model_url=model_url,
repo_name=hub_repo if hub_repo.strip() else None,
private=hub_private,
)
# DB
db.save_burning({
'model_url': model_url,
'output_path': result['model_path'],
'hub_url': hub_url,
'conversion_rate': result['conversion_rate'],
'quality_score': result['quality_score'],
'finetuned': enable_finetuning,
'num_gpus': NUM_GPUS,
})
# Output
output_md = f"""
# π₯ PHOENIX v2.0 Multi-GPU Complete!
## Hardware
- **GPUs Used**: {NUM_GPUS} x {torch.cuda.get_device_name(0) if NUM_GPUS > 0 else 'N/A'}
## Model Info
- **Original**: {model_url}
- **Output**: `{result['model_path']}`
- **Conversion**: {result['conversion_rate']*100:.1f}%
- **Quality**: {result['quality_score']:.2f}/1.00
- **Fine-tuned**: {'β
YES' if enable_finetuning else 'β NO'}
"""
if hub_url:
output_md += f"""
## Hub Status
β
**Uploaded**: [{hub_url}]({hub_url})
```python
model = AutoModelForCausalLM.from_pretrained(
"{hub_url.replace('https://huggingface.co/', '')}",
trust_remote_code=True,
device_map="auto" # Multi-GPU
)
```
"""
# Plot
fig = go.Figure()
fig.add_trace(go.Bar(
x=['Conversion', 'Quality'],
y=[result['conversion_rate'], result['quality_score']],
marker_color=['#3b82f6', '#10b981']
))
fig.update_layout(title=f"Metrics ({NUM_GPUS} GPUs)", yaxis_range=[0, 1])
return output_md, fig
except Exception as e:
import traceback
return f"β Error:\n```\n{traceback.format_exc()}\n```", None
def view_history():
"""History"""
try:
history = db.get_history(20)
if not history:
return "π No history", None
df = pd.DataFrame(history)
fig = px.scatter(
df,
x='timestamp',
y='quality_score',
color='finetuned',
size='num_gpus',
title='Burning History (Multi-GPU)'
)
return f"## History\n\n{df.to_markdown(index=False)}", fig
except Exception as e:
return f"β Error: {e}", None
# =====================================================
# Gradio App
# =====================================================
with gr.Blocks(title="π₯ PHOENIX v2.0 Multi-GPU", theme=gr.themes.Soft()) as demo:
gr.Markdown(f"""
# π₯ PHOENIX v2.0 - Multi-GPU Optimized
**H100 x {NUM_GPUS} GPUs Ready**
π **v2.0 Multi-GPU**: Accelerate ν΅ν©, DDP μ§μ
π **v2.0**: Fine-tuning νμ΄νλΌμΈ (Brumby-style)
β
v1.4.3: All fixes included
β
GQA Support | O(n) Complexity
---
""")
with gr.Tabs():
with gr.Tab("π₯ Model Burning"):
with gr.Row():
with gr.Column(scale=1):
burn_url = gr.Textbox(
label="π Model URL",
value=DEFAULT_MODEL,
placeholder="Qwen/Qwen3-0.6B"
)
burn_hier = gr.Checkbox(value=True, label="Hierarchical Retention")
burn_name = gr.Textbox(label="πΎ Output Name", placeholder="my_model")
gr.Markdown("---")
gr.Markdown(f"### π Fine-tuning ({NUM_GPUS} GPUs)")
burn_ft_enable = gr.Checkbox(
value=False,
label="π Enable Fine-tuning (Brumby-style)",
info=f"Multi-GPU acceleration with {NUM_GPUS} GPUs!"
)
burn_ft_steps = gr.Slider(
1000, 10000, 3000,
step=100,
label="Steps",
visible=False
)
burn_ft_batch = gr.Slider(
1, 16, 4,
step=1,
label=f"Batch Size per GPU ({NUM_GPUS} GPUs)",
visible=False
)
burn_ft_lr = gr.Number(value=1e-5, label="Learning Rate", visible=False)
burn_grad_ckpt = gr.Checkbox(
value=True,
label="β
Gradient Checkpointing (saves memory)",
visible=False
)
def toggle_ft(enabled):
return [
gr.update(visible=enabled),
gr.update(visible=enabled),
gr.update(visible=enabled),
gr.update(visible=enabled),
]
burn_ft_enable.change(
toggle_ft,
[burn_ft_enable],
[burn_ft_steps, burn_ft_batch, burn_ft_lr, burn_grad_ckpt]
)
gr.Markdown("---")
gr.Markdown("### π Hub Upload")
burn_upload = gr.Checkbox(value=True, label="π€ Upload to Hub")
burn_repo = gr.Textbox(label="π¦ Repo Name (optional)")
burn_private = gr.Checkbox(value=True, label="π Private")
burn_btn = gr.Button("π₯ Burn Model", variant="primary", size="lg")
with gr.Column(scale=2):
burn_output = gr.Markdown()
burn_plot = gr.Plot()
burn_btn.click(
burn_phoenix_model_ui,
[
burn_url, burn_hier, burn_name,
burn_ft_enable, burn_ft_steps, burn_ft_batch, burn_ft_lr, burn_grad_ckpt,
burn_upload, burn_repo, burn_private
],
[burn_output, burn_plot]
)
with gr.Tab("π History"):
with gr.Row():
with gr.Column(scale=1):
hist_btn = gr.Button("π Load", variant="primary")
with gr.Column(scale=2):
hist_out = gr.Markdown()
hist_plot = gr.Plot()
hist_btn.click(view_history, outputs=[hist_out, hist_plot])
gr.Markdown(f"""
---
## π₯ PHOENIX v2.0 Multi-GPU
**Hardware**: {NUM_GPUS} x {torch.cuda.get_device_name(0) if NUM_GPUS > 0 else 'N/A'}
**Features**:
- π Multi-GPU Training (DDP)
- π Gradient Checkpointing
- π H100 Optimized (fused optimizer)
- π Brumby-style Fine-tuning
- β
All v1.4.3 Fixes
**Token**: {'β
' if HF_TOKEN else 'β Not Found'}
**VIDraft AI Research Lab** | PHOENIX v2.0 Multi-GPU
""")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='PHOENIX v2.0 Multi-GPU')
parser.add_argument('--port', type=int, default=None, help='Server port (default: auto find 7860-7960)')
parser.add_argument('--share', action='store_true', help='Create public Gradio link')
parser.add_argument('--host', type=str, default="0.0.0.0", help='Server host')
args = parser.parse_args()
demo.queue(max_size=20)
# ν¬νΈ μλ μ°ΎκΈ°
if args.port is None:
# 7860λΆν° 7960κΉμ§ μλ
for port in range(7860, 7960):
try:
demo.launch(
server_name=args.host,
server_port=port,
share=args.share,
show_error=True
)
break
except OSError:
continue
else:
demo.launch(
server_name=args.host,
server_port=args.port,
share=args.share,
show_error=True
) |