|
|
""" |
|
|
π₯ PHOENIX Retention Research Platform v2.0 - MULTI-GPU OPTIMIZED |
|
|
H100 x 8 GPU μ΅μ ν λ²μ |
|
|
|
|
|
β
v2.0 NEW: Multi-GPU (8x H100) μ΅μ ν |
|
|
β
v2.0 NEW: Accelerate ν΅ν© |
|
|
β
v2.0 NEW: DeepSpeed ZeRO-3 μ§μ |
|
|
β
v2.0 NEW: Gradient Checkpointing |
|
|
β
Fine-tuning νμ΄νλΌμΈ (Brumby-style) |
|
|
β
λͺ¨λ v1.4.3 μμ μ¬ν ν¬ν¨ |
|
|
|
|
|
VIDraft AI Research Lab - Multi-GPU Version v2.0 |
|
|
""" |
|
|
|
|
|
import gradio as gr |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import sqlite3 |
|
|
import json |
|
|
import time |
|
|
import numpy as np |
|
|
from datetime import datetime |
|
|
from pathlib import Path |
|
|
import plotly.graph_objects as go |
|
|
import plotly.express as px |
|
|
import pandas as pd |
|
|
from typing import Dict, List, Any, Tuple, Optional |
|
|
from transformers import ( |
|
|
AutoModel, AutoTokenizer, AutoConfig, AutoModelForCausalLM, |
|
|
get_cosine_schedule_with_warmup, TrainingArguments, Trainer, |
|
|
DataCollatorForLanguageModeling |
|
|
) |
|
|
from datasets import load_dataset, concatenate_datasets |
|
|
from torch.utils.data import Dataset, DataLoader |
|
|
from accelerate import Accelerator |
|
|
from tqdm import tqdm |
|
|
import copy |
|
|
import shutil |
|
|
import os |
|
|
from huggingface_hub import HfApi, create_repo |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
NUM_GPUS = torch.cuda.device_count() |
|
|
|
|
|
|
|
|
STORAGE_PATH = os.getenv("PHOENIX_STORAGE_PATH", str(Path.home() / "phoenix_data")) |
|
|
DB_PATH = f"{STORAGE_PATH}/phoenix_experiments.db" |
|
|
MODELS_PATH = f"{STORAGE_PATH}/phoenix_models" |
|
|
DEFAULT_MODEL = "Qwen/Qwen3-0.6B" |
|
|
|
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
|
|
|
|
|
try: |
|
|
Path(STORAGE_PATH).mkdir(parents=True, exist_ok=True) |
|
|
Path(MODELS_PATH).mkdir(parents=True, exist_ok=True) |
|
|
print(f"β
Storage initialized: {STORAGE_PATH}") |
|
|
except PermissionError: |
|
|
print(f"β οΈ Permission denied for {STORAGE_PATH}") |
|
|
print(f" Using current directory instead") |
|
|
STORAGE_PATH = "./phoenix_data" |
|
|
DB_PATH = f"{STORAGE_PATH}/phoenix_experiments.db" |
|
|
MODELS_PATH = f"{STORAGE_PATH}/phoenix_models" |
|
|
Path(STORAGE_PATH).mkdir(parents=True, exist_ok=True) |
|
|
Path(MODELS_PATH).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
print(f"π₯ PHOENIX Platform v2.0 - Multi-GPU Optimized") |
|
|
print(f"πΎ Storage: {STORAGE_PATH}") |
|
|
print(f"π― Default Base Model: {DEFAULT_MODEL}") |
|
|
print(f"π GPUs Available: {NUM_GPUS}") |
|
|
if NUM_GPUS > 0: |
|
|
for i in range(NUM_GPUS): |
|
|
print(f" GPU {i}: {torch.cuda.get_device_name(i)}") |
|
|
if HF_TOKEN: |
|
|
print(f"π HuggingFace Token: {'*' * 10}{HF_TOKEN[-4:]}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def analyze_model_structure(model_url: str) -> Dict[str, Any]: |
|
|
"""π λͺ¨λΈ ꡬ쑰 μ¬μ λΆμ""" |
|
|
print("\n" + "="*80) |
|
|
print("π MODEL STRUCTURE ANALYSIS") |
|
|
print("="*80) |
|
|
|
|
|
try: |
|
|
print(f"\nπ₯ Loading model config: {model_url}") |
|
|
config = AutoConfig.from_pretrained(model_url, trust_remote_code=True) |
|
|
|
|
|
print(f"β
Config loaded") |
|
|
|
|
|
|
|
|
print(f"\nπ¦ Loading model structure (CPU only)...") |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_url, |
|
|
trust_remote_code=True, |
|
|
torch_dtype=torch.float16, |
|
|
device_map="cpu" |
|
|
) |
|
|
|
|
|
analysis = { |
|
|
'model_url': model_url, |
|
|
'model_type': config.model_type if hasattr(config, 'model_type') else 'unknown', |
|
|
'architectures': config.architectures[0] if hasattr(config, 'architectures') else 'unknown', |
|
|
'hidden_size': config.hidden_size if hasattr(config, 'hidden_size') else 0, |
|
|
'num_attention_heads': config.num_attention_heads if hasattr(config, 'num_attention_heads') else 0, |
|
|
'num_hidden_layers': config.num_hidden_layers if hasattr(config, 'num_hidden_layers') else 0, |
|
|
'num_key_value_heads': config.num_key_value_heads if hasattr(config, 'num_key_value_heads') else None, |
|
|
'total_layers': 0, |
|
|
'has_self_attn': False, |
|
|
'layer_path': None, |
|
|
} |
|
|
|
|
|
|
|
|
layers = None |
|
|
layer_path = None |
|
|
|
|
|
possible_paths = [ |
|
|
('model.layers', lambda m: m.model.layers if hasattr(m, 'model') and hasattr(m.model, 'layers') else None), |
|
|
('transformer.h', lambda m: m.transformer.h if hasattr(m, 'transformer') and hasattr(m.transformer, 'h') else None), |
|
|
] |
|
|
|
|
|
for path_name, path_fn in possible_paths: |
|
|
result = path_fn(model) |
|
|
if result is not None: |
|
|
layers = result |
|
|
layer_path = path_name |
|
|
break |
|
|
|
|
|
if layers: |
|
|
analysis['total_layers'] = len(layers) |
|
|
analysis['layer_path'] = layer_path |
|
|
|
|
|
if len(layers) > 0: |
|
|
first_layer = layers[0] |
|
|
if hasattr(first_layer, 'self_attn'): |
|
|
analysis['has_self_attn'] = True |
|
|
attn = first_layer.self_attn |
|
|
|
|
|
if hasattr(attn, 'q_proj'): |
|
|
q_shape = attn.q_proj.weight.shape |
|
|
k_shape = attn.k_proj.weight.shape |
|
|
|
|
|
if hasattr(config, 'num_attention_heads') and config.num_attention_heads > 0: |
|
|
head_dim = q_shape[0] // config.num_attention_heads |
|
|
analysis['head_dim'] = head_dim |
|
|
|
|
|
analysis['gqa_detected'] = (k_shape[0] != q_shape[0]) |
|
|
analysis['q_dim'] = q_shape[0] |
|
|
analysis['k_dim'] = k_shape[0] |
|
|
|
|
|
print(f"\n{'='*80}\n") |
|
|
|
|
|
del model |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
return analysis |
|
|
|
|
|
except Exception as e: |
|
|
import traceback |
|
|
print(f"\nβ Structure analysis failed: {e}") |
|
|
return { |
|
|
'model_url': model_url, |
|
|
'error': str(e), |
|
|
'total_layers': 0, |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MultiScaleRetention(nn.Module): |
|
|
"""μ§μ§ Retention Attention with GQA Support""" |
|
|
|
|
|
def __init__(self, config, layer_idx=0): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
|
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
|
|
|
if hasattr(config, 'head_dim'): |
|
|
self.head_dim = config.head_dim |
|
|
else: |
|
|
self.head_dim = self.hidden_size // self.num_heads |
|
|
|
|
|
if hasattr(config, 'num_key_value_heads'): |
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
else: |
|
|
self.num_key_value_heads = self.num_heads |
|
|
|
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
self.kv_head_dim = self.head_dim |
|
|
|
|
|
self.q_dim = self.num_heads * self.head_dim |
|
|
self.kv_dim = self.num_key_value_heads * self.kv_head_dim |
|
|
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.q_dim, bias=False) |
|
|
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False) |
|
|
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False) |
|
|
self.o_proj = nn.Linear(self.q_dim, self.hidden_size, bias=False) |
|
|
|
|
|
decay_values = torch.linspace(0.95, 0.99, self.num_heads) |
|
|
self.decay = nn.Parameter(decay_values, requires_grad=True) |
|
|
|
|
|
self.group_norm = nn.GroupNorm( |
|
|
num_groups=self.num_heads, |
|
|
num_channels=self.q_dim |
|
|
) |
|
|
|
|
|
def _repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
"""Repeat K/V heads (GQA)""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
|
|
|
hidden_states = hidden_states[:, :, None, :, :].expand( |
|
|
batch, num_key_value_heads, n_rep, slen, head_dim |
|
|
) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.Tensor] = None, |
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
cache_position: Optional[torch.Tensor] = None, |
|
|
past_key_values: Optional[Tuple[torch.Tensor]] = None, |
|
|
**kwargs |
|
|
): |
|
|
"""O(n) Retention""" |
|
|
batch_size, seq_len, _ = hidden_states.shape |
|
|
|
|
|
target_device = hidden_states.device |
|
|
target_dtype = hidden_states.dtype |
|
|
|
|
|
if self.q_proj.weight.device != target_device or self.q_proj.weight.dtype != target_dtype: |
|
|
self.to(device=target_device, dtype=target_dtype) |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
query_states = query_states.view( |
|
|
batch_size, seq_len, self.num_heads, self.head_dim |
|
|
).transpose(1, 2) |
|
|
|
|
|
key_states = key_states.view( |
|
|
batch_size, seq_len, self.num_key_value_heads, self.kv_head_dim |
|
|
).transpose(1, 2) |
|
|
|
|
|
value_states = value_states.view( |
|
|
batch_size, seq_len, self.num_key_value_heads, self.kv_head_dim |
|
|
).transpose(1, 2) |
|
|
|
|
|
key_states = self._repeat_kv(key_states, self.num_key_value_groups) |
|
|
value_states = self._repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
|
retention_states = self._compute_retention( |
|
|
query_states, key_states, value_states |
|
|
) |
|
|
|
|
|
retention_states = retention_states.transpose(1, 2).contiguous() |
|
|
retention_states = retention_states.reshape( |
|
|
batch_size, seq_len, self.q_dim |
|
|
) |
|
|
|
|
|
if self.group_norm.weight.device != retention_states.device or self.group_norm.weight.dtype != retention_states.dtype: |
|
|
self.group_norm = self.group_norm.to(device=retention_states.device, dtype=retention_states.dtype) |
|
|
|
|
|
retention_states = self.group_norm( |
|
|
retention_states.transpose(1, 2) |
|
|
).transpose(1, 2) |
|
|
|
|
|
retention_states = torch.clamp(retention_states, min=-10.0, max=10.0) |
|
|
|
|
|
attn_output = self.o_proj(retention_states) |
|
|
|
|
|
return (attn_output, None) |
|
|
|
|
|
def _compute_retention( |
|
|
self, |
|
|
queries: torch.Tensor, |
|
|
keys: torch.Tensor, |
|
|
values: torch.Tensor, |
|
|
): |
|
|
"""O(n) Retention computation""" |
|
|
batch_size, num_heads, seq_len, head_dim = queries.shape |
|
|
|
|
|
state = torch.zeros( |
|
|
batch_size, num_heads, head_dim, head_dim, |
|
|
dtype=queries.dtype, |
|
|
device=queries.device |
|
|
) + 1e-6 |
|
|
|
|
|
outputs = [] |
|
|
|
|
|
decay = torch.sigmoid(self.decay).view(1, -1, 1, 1).to( |
|
|
device=queries.device, |
|
|
dtype=queries.dtype |
|
|
) |
|
|
|
|
|
for t in range(seq_len): |
|
|
q_t = queries[:, :, t, :] |
|
|
k_t = keys[:, :, t, :] |
|
|
v_t = values[:, :, t, :] |
|
|
|
|
|
state = decay * state |
|
|
kv_update = torch.einsum('bhd,bhe->bhde', k_t, v_t) |
|
|
kv_update = torch.clamp(kv_update, min=-5.0, max=5.0) |
|
|
state = state + kv_update |
|
|
state = torch.clamp(state, min=-10.0, max=10.0) |
|
|
|
|
|
output_t = torch.einsum('bhd,bhde->bhe', q_t, state) |
|
|
outputs.append(output_t) |
|
|
|
|
|
output = torch.stack(outputs, dim=2) |
|
|
|
|
|
return output |
|
|
|
|
|
|
|
|
class HierarchicalRetention(nn.Module): |
|
|
"""PHOENIX Hierarchical Retention""" |
|
|
|
|
|
def __init__(self, config, layer_idx=0): |
|
|
super().__init__() |
|
|
self.base_retention = MultiScaleRetention(config, layer_idx) |
|
|
|
|
|
hidden_size = config.hidden_size |
|
|
self.d_state = hidden_size // 2 |
|
|
|
|
|
self.short_proj = nn.Linear(hidden_size, self.d_state) |
|
|
self.medium_proj = nn.Linear(self.d_state, self.d_state) |
|
|
self.long_proj = nn.Linear(self.d_state, self.d_state * 2) |
|
|
self.fusion = nn.Linear(self.d_state * 4, hidden_size) |
|
|
|
|
|
self.short_decay = 0.5 |
|
|
self.medium_decay = 0.8 |
|
|
self.long_decay = 0.95 |
|
|
|
|
|
self.norm = nn.LayerNorm(hidden_size) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.Tensor] = None, |
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
cache_position: Optional[torch.Tensor] = None, |
|
|
past_key_values: Optional[Tuple[torch.Tensor]] = None, |
|
|
**kwargs |
|
|
): |
|
|
"""Hierarchical forward pass""" |
|
|
batch_size, seq_len, hidden_size = hidden_states.shape |
|
|
|
|
|
target_device = hidden_states.device |
|
|
target_dtype = hidden_states.dtype |
|
|
|
|
|
if self.short_proj.weight.device != target_device or self.short_proj.weight.dtype != target_dtype: |
|
|
self.to(device=target_device, dtype=target_dtype) |
|
|
|
|
|
base_result = self.base_retention( |
|
|
hidden_states, attention_mask, position_ids, |
|
|
past_key_value, output_attentions, use_cache |
|
|
) |
|
|
|
|
|
retention_output = base_result[0] |
|
|
|
|
|
short_state = torch.zeros(batch_size, self.d_state, dtype=target_dtype, device=target_device) |
|
|
medium_state = torch.zeros(batch_size, self.d_state, dtype=target_dtype, device=target_device) |
|
|
long_state = torch.zeros(batch_size, self.d_state * 2, dtype=target_dtype, device=target_device) |
|
|
|
|
|
hierarchical_outputs = [] |
|
|
|
|
|
for t in range(seq_len): |
|
|
x_t = retention_output[:, t, :] |
|
|
|
|
|
short_input = self.short_proj(x_t) |
|
|
short_state = self.short_decay * short_state + short_input |
|
|
|
|
|
if t % 8 == 0: |
|
|
medium_state = self.medium_decay * medium_state + \ |
|
|
self.medium_proj(short_state) |
|
|
|
|
|
if t % 64 == 0: |
|
|
long_state = self.long_decay * long_state + \ |
|
|
self.long_proj(medium_state) |
|
|
|
|
|
combined = torch.cat([short_state, medium_state, long_state], dim=-1) |
|
|
output_t = self.fusion(combined) |
|
|
hierarchical_outputs.append(output_t) |
|
|
|
|
|
output = torch.stack(hierarchical_outputs, dim=1) |
|
|
output = self.norm(output) |
|
|
|
|
|
return (output, None) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def replace_attention_with_retention(model, use_hierarchical=True, structure_info=None): |
|
|
"""Transformer Attention β PHOENIX Retention""" |
|
|
print("π Starting Attention β Retention conversion...") |
|
|
|
|
|
replaced_count = 0 |
|
|
total_layers = 0 |
|
|
|
|
|
layers = None |
|
|
|
|
|
if structure_info and structure_info.get('layer_path'): |
|
|
layer_path = structure_info['layer_path'] |
|
|
|
|
|
if layer_path == 'model.layers': |
|
|
if hasattr(model, 'model') and hasattr(model.model, 'layers'): |
|
|
layers = model.model.layers |
|
|
elif layer_path == 'transformer.h': |
|
|
if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'): |
|
|
layers = model.transformer.h |
|
|
|
|
|
if layers is None: |
|
|
possible_paths = [ |
|
|
('model.layers', lambda m: m.model.layers if hasattr(m, 'model') and hasattr(m.model, 'layers') else None), |
|
|
('transformer.h', lambda m: m.transformer.h if hasattr(m, 'transformer') and hasattr(m.transformer, 'h') else None), |
|
|
] |
|
|
|
|
|
for path_name, path_fn in possible_paths: |
|
|
result = path_fn(model) |
|
|
if result is not None: |
|
|
layers = result |
|
|
break |
|
|
|
|
|
if layers is None: |
|
|
print("β Cannot find layers") |
|
|
return model, 0, 0 |
|
|
|
|
|
total_layers = len(layers) |
|
|
print(f" Found {total_layers} layers") |
|
|
|
|
|
if structure_info and structure_info.get('head_dim'): |
|
|
model.config.head_dim = structure_info['head_dim'] |
|
|
|
|
|
for layer_idx, layer in enumerate(layers): |
|
|
try: |
|
|
if hasattr(layer, 'self_attn'): |
|
|
old_attn = layer.self_attn |
|
|
|
|
|
if use_hierarchical: |
|
|
new_retention = HierarchicalRetention(model.config, layer_idx) |
|
|
else: |
|
|
new_retention = MultiScaleRetention(model.config, layer_idx) |
|
|
|
|
|
if hasattr(old_attn, 'q_proj'): |
|
|
try: |
|
|
target = new_retention.base_retention if use_hierarchical else new_retention |
|
|
|
|
|
target.q_proj.weight.data = old_attn.q_proj.weight.data.clone() |
|
|
target.k_proj.weight.data = old_attn.k_proj.weight.data.clone() |
|
|
target.v_proj.weight.data = old_attn.v_proj.weight.data.clone() |
|
|
target.o_proj.weight.data = old_attn.o_proj.weight.data.clone() |
|
|
except: |
|
|
pass |
|
|
|
|
|
layer.self_attn = new_retention |
|
|
replaced_count += 1 |
|
|
|
|
|
except Exception as e: |
|
|
continue |
|
|
|
|
|
print(f"\nβ
Conversion complete: {replaced_count}/{total_layers} layers") |
|
|
|
|
|
return model, replaced_count, total_layers |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def finetune_retention_model( |
|
|
model, |
|
|
tokenizer, |
|
|
num_steps: int = 3000, |
|
|
batch_size: int = 4, |
|
|
learning_rate: float = 1e-5, |
|
|
output_dir: str = None, |
|
|
use_gradient_checkpointing: bool = True, |
|
|
): |
|
|
""" |
|
|
π v2.0: Brumby-style Retraining with Multi-GPU Support |
|
|
""" |
|
|
|
|
|
if output_dir is None: |
|
|
output_dir = f"{STORAGE_PATH}/finetuning_temp" |
|
|
|
|
|
print("\n" + "="*80) |
|
|
print("π₯ PHOENIX RETRAINING - Multi-GPU (v2.0)") |
|
|
print("="*80) |
|
|
print(f" GPUs: {NUM_GPUS}") |
|
|
print(f" Target Steps: {num_steps}") |
|
|
print(f" Batch Size per GPU: {batch_size}") |
|
|
print(f" Global Batch Size: {batch_size * NUM_GPUS}") |
|
|
print(f" Learning Rate: {learning_rate}") |
|
|
print(f" Gradient Checkpointing: {use_gradient_checkpointing}") |
|
|
|
|
|
start_time = time.time() |
|
|
|
|
|
|
|
|
if use_gradient_checkpointing: |
|
|
if hasattr(model, 'gradient_checkpointing_enable'): |
|
|
model.gradient_checkpointing_enable() |
|
|
print(f" β
Gradient Checkpointing enabled") |
|
|
|
|
|
|
|
|
train_dataset = prepare_simple_dataset( |
|
|
tokenizer=tokenizer, |
|
|
num_steps=num_steps, |
|
|
batch_size=batch_size * NUM_GPUS |
|
|
) |
|
|
|
|
|
|
|
|
training_args = TrainingArguments( |
|
|
output_dir=output_dir, |
|
|
|
|
|
|
|
|
per_device_train_batch_size=batch_size, |
|
|
gradient_accumulation_steps=max(1, 8 // NUM_GPUS), |
|
|
|
|
|
|
|
|
num_train_epochs=1, |
|
|
max_steps=num_steps, |
|
|
learning_rate=learning_rate, |
|
|
warmup_steps=100, |
|
|
|
|
|
|
|
|
fp16=True, |
|
|
optim="adamw_torch_fused", |
|
|
|
|
|
|
|
|
logging_steps=50, |
|
|
logging_first_step=True, |
|
|
save_steps=1000, |
|
|
save_total_limit=2, |
|
|
|
|
|
|
|
|
dataloader_num_workers=4 * NUM_GPUS, |
|
|
dataloader_pin_memory=True, |
|
|
|
|
|
|
|
|
ddp_find_unused_parameters=False, |
|
|
ddp_backend="nccl", |
|
|
|
|
|
|
|
|
remove_unused_columns=False, |
|
|
report_to="none", |
|
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
data_collator = DataCollatorForLanguageModeling( |
|
|
tokenizer=tokenizer, |
|
|
mlm=False |
|
|
) |
|
|
|
|
|
|
|
|
trainer = Trainer( |
|
|
model=model, |
|
|
args=training_args, |
|
|
train_dataset=train_dataset, |
|
|
tokenizer=tokenizer, |
|
|
data_collator=data_collator, |
|
|
) |
|
|
|
|
|
|
|
|
print(f"\nπ Starting Multi-GPU Fine-tuning...") |
|
|
print(f" Using {NUM_GPUS} GPUs") |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
elapsed = time.time() - start_time |
|
|
|
|
|
print(f"\nβ
Fine-tuning Complete!") |
|
|
print(f" Time: {elapsed/60:.1f} minutes") |
|
|
print(f" Effective samples/sec: {(num_steps * batch_size * NUM_GPUS) / elapsed:.2f}") |
|
|
print(f"="*80 + "\n") |
|
|
|
|
|
return model |
|
|
|
|
|
|
|
|
def prepare_simple_dataset( |
|
|
tokenizer, |
|
|
num_steps: int, |
|
|
batch_size: int, |
|
|
max_length: int = 2048, |
|
|
): |
|
|
"""Dataset μ€λΉ""" |
|
|
print(f"\nπ Preparing Dataset...") |
|
|
|
|
|
num_samples = num_steps * batch_size |
|
|
|
|
|
print(f" Target samples: {num_samples}") |
|
|
|
|
|
try: |
|
|
dataset = load_dataset( |
|
|
"wikitext", |
|
|
"wikitext-2-raw-v1", |
|
|
split=f"train[:{num_samples}]" |
|
|
) |
|
|
print(f" β
Loaded: {len(dataset)} samples") |
|
|
except Exception as e: |
|
|
print(f" β Failed: {e}") |
|
|
raise |
|
|
|
|
|
def tokenize_function(examples): |
|
|
return tokenizer( |
|
|
examples['text'], |
|
|
truncation=True, |
|
|
max_length=max_length, |
|
|
padding="max_length", |
|
|
) |
|
|
|
|
|
tokenized = dataset.map( |
|
|
tokenize_function, |
|
|
batched=True, |
|
|
remove_columns=dataset.column_names, |
|
|
num_proc=4 |
|
|
) |
|
|
|
|
|
print(f" β
Tokenized: {len(tokenized)} samples") |
|
|
|
|
|
return tokenized |
|
|
|
|
|
|
|
|
def estimate_finetuning_cost( |
|
|
model_size: str, |
|
|
num_steps: int, |
|
|
batch_size: int, |
|
|
num_gpus: int = NUM_GPUS, |
|
|
gpu_type: str = "H100", |
|
|
) -> Dict: |
|
|
"""λΉμ© κ³μ°κΈ° - Multi-GPU""" |
|
|
gpu_costs = { |
|
|
"H100": 3.0, |
|
|
"A100": 2.0, |
|
|
"A10G": 1.0, |
|
|
} |
|
|
|
|
|
model_step_times = { |
|
|
"0.6B": 0.5, |
|
|
"1.5B": 1.0, |
|
|
"3B": 2.0, |
|
|
"7B": 3.5, |
|
|
"14B": 6.0, |
|
|
} |
|
|
|
|
|
|
|
|
step_time = model_step_times.get(model_size, 1.0) * (batch_size / 4) |
|
|
step_time_per_gpu = step_time / num_gpus |
|
|
|
|
|
total_seconds = num_steps * step_time_per_gpu |
|
|
total_hours = total_seconds / 3600 |
|
|
|
|
|
|
|
|
total_cost_usd = total_hours * gpu_costs.get(gpu_type, 2.0) * num_gpus |
|
|
|
|
|
return { |
|
|
'hours': round(total_hours, 2), |
|
|
'cost_usd': round(total_cost_usd, 2), |
|
|
'cost_krw': round(total_cost_usd * 1300, 0), |
|
|
'num_gpus': num_gpus, |
|
|
'gpu_type': gpu_type, |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_modeling_phoenix_code(): |
|
|
"""PHOENIX Custom Modeling Code v2.0""" |
|
|
|
|
|
return '''""" |
|
|
PHOENIX Retention Model v2.0 |
|
|
β
v2.0: Brumby-style Retraining support |
|
|
β
v1.4.3: forward() μκ·Έλμ² Transformers νΈν |
|
|
β
v1.4.3: dtype λΆμΌμΉ μμ |
|
|
""" |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from typing import Optional, Tuple |
|
|
from transformers.modeling_utils import PreTrainedModel |
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers import AutoConfig, AutoModelForCausalLM |
|
|
import os |
|
|
|
|
|
|
|
|
class PhoenixConfig(PretrainedConfig): |
|
|
model_type = "phoenix" |
|
|
def __init__(self, use_phoenix_retention=True, phoenix_version="2.0", |
|
|
original_model=None, use_hierarchical=True, **kwargs): |
|
|
super().__init__(**kwargs) |
|
|
self.use_phoenix_retention = use_phoenix_retention |
|
|
self.phoenix_version = phoenix_version |
|
|
self.original_model = original_model |
|
|
self.use_hierarchical = use_hierarchical |
|
|
|
|
|
|
|
|
class MultiScaleRetention(nn.Module): |
|
|
def __init__(self, config, layer_idx=0): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads) |
|
|
self.num_key_value_heads = getattr(config, 'num_key_value_heads', self.num_heads) |
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
self.q_dim = self.num_heads * self.head_dim |
|
|
self.kv_dim = self.num_key_value_heads * self.head_dim |
|
|
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.q_dim, bias=False) |
|
|
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False) |
|
|
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False) |
|
|
self.o_proj = nn.Linear(self.q_dim, self.hidden_size, bias=False) |
|
|
self.decay = nn.Parameter(torch.linspace(0.95, 0.99, self.num_heads)) |
|
|
self.group_norm = nn.GroupNorm(self.num_heads, self.q_dim) |
|
|
|
|
|
def _repeat_kv(self, x, n): |
|
|
b, h, s, d = x.shape |
|
|
if n == 1: return x |
|
|
return x[:, :, None, :, :].expand(b, h, n, s, d).reshape(b, h*n, s, d) |
|
|
|
|
|
def forward(self, hidden_states, **kwargs): |
|
|
b, s, _ = hidden_states.shape |
|
|
device, dtype = hidden_states.device, hidden_states.dtype |
|
|
|
|
|
if self.q_proj.weight.device != device or self.q_proj.weight.dtype != dtype: |
|
|
self.to(device=device, dtype=dtype) |
|
|
|
|
|
q = self.q_proj(hidden_states).view(b, s, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
k = self.k_proj(hidden_states).view(b, s, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
v = self.v_proj(hidden_states).view(b, s, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
k = self._repeat_kv(k, self.num_key_value_groups) |
|
|
v = self._repeat_kv(v, self.num_key_value_groups) |
|
|
|
|
|
out = self._retention(q, k, v) |
|
|
out = out.transpose(1, 2).reshape(b, s, self.q_dim) |
|
|
out = self.group_norm(out.transpose(1, 2)).transpose(1, 2) |
|
|
return (self.o_proj(torch.clamp(out, -10, 10)), None) |
|
|
|
|
|
def _retention(self, q, k, v): |
|
|
b, h, s, d = q.shape |
|
|
state = torch.zeros(b, h, d, d, dtype=q.dtype, device=q.device) + 1e-6 |
|
|
decay = torch.sigmoid(self.decay).view(1, -1, 1, 1).to(q) |
|
|
outs = [] |
|
|
for t in range(s): |
|
|
state = decay * state + torch.clamp(torch.einsum('bhd,bhe->bhde', k[:,:,t], v[:,:,t]), -5, 5) |
|
|
state = torch.clamp(state, -10, 10) |
|
|
outs.append(torch.einsum('bhd,bhde->bhe', q[:,:,t], state)) |
|
|
return torch.stack(outs, dim=2) |
|
|
|
|
|
|
|
|
class HierarchicalRetention(nn.Module): |
|
|
def __init__(self, config, layer_idx=0): |
|
|
super().__init__() |
|
|
self.base_retention = MultiScaleRetention(config, layer_idx) |
|
|
h = config.hidden_size |
|
|
self.d_state = h // 2 |
|
|
self.short_proj = nn.Linear(h, self.d_state) |
|
|
self.medium_proj = nn.Linear(self.d_state, self.d_state) |
|
|
self.long_proj = nn.Linear(self.d_state, self.d_state*2) |
|
|
self.fusion = nn.Linear(self.d_state*4, h) |
|
|
self.norm = nn.LayerNorm(h) |
|
|
self.decays = [0.5, 0.8, 0.95] |
|
|
|
|
|
def forward(self, hidden_states, **kwargs): |
|
|
b, s, h = hidden_states.shape |
|
|
device, dtype = hidden_states.device, hidden_states.dtype |
|
|
|
|
|
if self.short_proj.weight.device != device or self.short_proj.weight.dtype != dtype: |
|
|
self.to(device=device, dtype=dtype) |
|
|
|
|
|
ret_out = self.base_retention(hidden_states)[0] |
|
|
short = torch.zeros(b, self.d_state, dtype=dtype, device=device) |
|
|
med = torch.zeros(b, self.d_state, dtype=dtype, device=device) |
|
|
long = torch.zeros(b, self.d_state*2, dtype=dtype, device=device) |
|
|
outs = [] |
|
|
|
|
|
for t in range(s): |
|
|
short = self.decays[0]*short + self.short_proj(ret_out[:,t]) |
|
|
if t % 8 == 0: med = self.decays[1]*med + self.medium_proj(short) |
|
|
if t % 64 == 0: long = self.decays[2]*long + self.long_proj(med) |
|
|
outs.append(self.fusion(torch.cat([short, med, long], -1))) |
|
|
|
|
|
return (self.norm(torch.stack(outs, 1)), None) |
|
|
|
|
|
|
|
|
def replace_attention_with_retention_for_loading(model, use_hierarchical=True): |
|
|
layers = getattr(model, 'model', model) |
|
|
layers = getattr(layers, 'layers', getattr(layers, 'h', None)) |
|
|
if layers is None: return model, 0, 0 |
|
|
|
|
|
original_dtype = None |
|
|
for param in model.parameters(): |
|
|
original_dtype = param.dtype |
|
|
break |
|
|
|
|
|
cnt = 0 |
|
|
for i, layer in enumerate(layers): |
|
|
if hasattr(layer, 'self_attn'): |
|
|
new_ret = HierarchicalRetention(model.config, i) if use_hierarchical else MultiScaleRetention(model.config, i) |
|
|
if original_dtype: new_ret = new_ret.to(dtype=original_dtype) |
|
|
layer.self_attn = new_ret |
|
|
cnt += 1 |
|
|
return model, cnt, len(layers) |
|
|
|
|
|
|
|
|
class PhoenixPreTrainedModel(PreTrainedModel): |
|
|
config_class = PhoenixConfig |
|
|
base_model_prefix = "phoenix" |
|
|
|
|
|
|
|
|
class PhoenixModelForCausalLM(PhoenixPreTrainedModel): |
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self._model = None |
|
|
self._ready = False |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained(cls, path, *args, **kwargs): |
|
|
print(f"π₯ PHOENIX v2.0 loading from {path}") |
|
|
config = AutoConfig.from_pretrained(path, trust_remote_code=True) |
|
|
orig = getattr(config, 'original_model', 'Qwen/Qwen3-0.6B') |
|
|
hier = getattr(config, 'use_hierarchical', True) |
|
|
|
|
|
try: |
|
|
base_cfg = AutoConfig.from_pretrained(orig, trust_remote_code=True) |
|
|
except: |
|
|
base_cfg = config |
|
|
|
|
|
model = AutoModelForCausalLM.from_config(base_cfg) |
|
|
model, conv, tot = replace_attention_with_retention_for_loading(model, hier) |
|
|
print(f" β
Converted {conv}/{tot} layers") |
|
|
|
|
|
sd = None |
|
|
if os.path.exists(path): |
|
|
for fname in ["model.safetensors", "pytorch_model.bin"]: |
|
|
fpath = os.path.join(path, fname) |
|
|
if os.path.exists(fpath): |
|
|
if fname.endswith('.safetensors'): |
|
|
from safetensors.torch import load_file |
|
|
sd = load_file(fpath) |
|
|
else: |
|
|
sd = torch.load(fpath, map_location='cpu') |
|
|
break |
|
|
else: |
|
|
from huggingface_hub import hf_hub_download |
|
|
for fname in ["model.safetensors", "pytorch_model.bin"]: |
|
|
try: |
|
|
fpath = hf_hub_download(path, fname) |
|
|
if fname.endswith('.safetensors'): |
|
|
from safetensors.torch import load_file |
|
|
sd = load_file(fpath) |
|
|
else: |
|
|
sd = torch.load(fpath, map_location='cpu') |
|
|
break |
|
|
except: pass |
|
|
|
|
|
if sd: |
|
|
miss, unex = model.load_state_dict(sd, strict=False) |
|
|
print(f" π¦ Weights: {len(miss)} missing, {len(unex)} unexpected") |
|
|
|
|
|
if 'lm_head.weight' in miss and getattr(config, 'tie_word_embeddings', False): |
|
|
if hasattr(model, 'lm_head') and hasattr(model.model, 'embed_tokens'): |
|
|
model.lm_head.weight = model.model.embed_tokens.weight |
|
|
print(f" π Tied embeddings") |
|
|
|
|
|
inst = cls(config) |
|
|
inst._model = model |
|
|
inst._ready = True |
|
|
print(f"β
PHOENIX v2.0 ready!") |
|
|
return inst |
|
|
|
|
|
def forward(self, *a, **k): |
|
|
if not self._ready: raise ValueError("Not initialized") |
|
|
return self._model(*a, **k) |
|
|
|
|
|
def generate(self, *a, **k): |
|
|
if not self._ready: raise ValueError("Not initialized") |
|
|
return self._model.generate(*a, **k) |
|
|
|
|
|
|
|
|
AutoConfig.register("phoenix", PhoenixConfig) |
|
|
''' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def save_phoenix_model_with_code(model, tokenizer, output_path, original_model_url, metadata): |
|
|
"""PHOENIX λͺ¨λΈ μ μ₯""" |
|
|
output_path = Path(output_path) |
|
|
output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
print(f"\nπΎ Saving PHOENIX model...") |
|
|
|
|
|
if hasattr(model.config, 'tie_word_embeddings') and model.config.tie_word_embeddings: |
|
|
if hasattr(model, 'lm_head') and hasattr(model, 'model') and hasattr(model.model, 'embed_tokens'): |
|
|
model.lm_head.weight = model.model.embed_tokens.weight |
|
|
|
|
|
model.save_pretrained(output_path) |
|
|
tokenizer.save_pretrained(output_path) |
|
|
|
|
|
modeling_code = generate_modeling_phoenix_code() |
|
|
with open(output_path / "modeling_phoenix.py", "w") as f: |
|
|
f.write(modeling_code) |
|
|
|
|
|
config_path = output_path / "config.json" |
|
|
if config_path.exists(): |
|
|
with open(config_path, "r") as f: |
|
|
config_dict = json.load(f) |
|
|
|
|
|
config_dict["use_phoenix_retention"] = True |
|
|
config_dict["phoenix_version"] = "2.0" |
|
|
config_dict["original_model"] = original_model_url |
|
|
config_dict["auto_map"] = { |
|
|
"AutoModelForCausalLM": "modeling_phoenix.PhoenixModelForCausalLM", |
|
|
} |
|
|
|
|
|
with open(config_path, "w") as f: |
|
|
json.dump(config_dict, f, indent=2) |
|
|
|
|
|
with open(output_path / 'phoenix_metadata.json', 'w') as f: |
|
|
json.dump(metadata, f, indent=2) |
|
|
|
|
|
readme = f"""# π₯ PHOENIX v2.0 - {original_model_url} |
|
|
|
|
|
**Multi-GPU Trained** with {metadata.get('num_gpus', 1)} GPUs |
|
|
|
|
|
## Features |
|
|
- β
Brumby-style Retraining |
|
|
- β
O(n) Complexity |
|
|
- β
GQA Support |
|
|
|
|
|
## Usage |
|
|
```python |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
"{output_path.name}", |
|
|
trust_remote_code=True, |
|
|
torch_dtype="auto", |
|
|
device_map="auto" |
|
|
) |
|
|
``` |
|
|
|
|
|
**VIDraft AI Research Lab** | PHOENIX v2.0 Multi-GPU |
|
|
""" |
|
|
|
|
|
with open(output_path / "README.md", "w") as f: |
|
|
f.write(readme) |
|
|
|
|
|
print(f" β
Model saved") |
|
|
|
|
|
|
|
|
def upload_to_huggingface_hub( |
|
|
model_path: str, |
|
|
original_model_url: str, |
|
|
repo_name: str = None, |
|
|
private: bool = True, |
|
|
token: str = None, |
|
|
) -> Tuple[bool, str, str]: |
|
|
"""Upload to Hub""" |
|
|
|
|
|
if token is None: |
|
|
token = HF_TOKEN |
|
|
|
|
|
if not token: |
|
|
return False, "", "β No HF_TOKEN" |
|
|
|
|
|
try: |
|
|
api = HfApi(token=token) |
|
|
user_info = api.whoami(token=token) |
|
|
username = user_info['name'] |
|
|
|
|
|
if not repo_name: |
|
|
base_name = original_model_url.split('/')[-1] |
|
|
repo_name = f"phoenix-{base_name}" |
|
|
|
|
|
repo_id = f"{username}/{repo_name}" |
|
|
|
|
|
create_repo( |
|
|
repo_id=repo_id, |
|
|
token=token, |
|
|
private=private, |
|
|
repo_type="model", |
|
|
exist_ok=True |
|
|
) |
|
|
|
|
|
api.upload_folder( |
|
|
folder_path=str(model_path), |
|
|
repo_id=repo_id, |
|
|
repo_type="model", |
|
|
token=token, |
|
|
) |
|
|
|
|
|
hub_url = f"https://huggingface.co/{repo_id}" |
|
|
|
|
|
return True, hub_url, f"β
Uploaded to {hub_url}" |
|
|
|
|
|
except Exception as e: |
|
|
return False, "", f"β Upload failed: {e}" |
|
|
|
|
|
|
|
|
def evaluate_model_quality(model, tokenizer): |
|
|
"""Quality νκ°""" |
|
|
test_prompts = [ |
|
|
"The capital of France is", |
|
|
"In machine learning,", |
|
|
"2 + 2 =", |
|
|
] |
|
|
|
|
|
model.eval() |
|
|
scores = [] |
|
|
|
|
|
with torch.no_grad(): |
|
|
for prompt in test_prompts: |
|
|
try: |
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=20, |
|
|
do_sample=False, |
|
|
pad_token_id=tokenizer.eos_token_id, |
|
|
) |
|
|
generated = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
score = 0.0 |
|
|
if len(generated) > len(prompt): |
|
|
score += 0.3 |
|
|
if not any(c in generated[len(prompt):] for c in ['οΏ½', '[UNK]']): |
|
|
score += 0.3 |
|
|
if len(generated.split()) > len(prompt.split()) + 2: |
|
|
score += 0.4 |
|
|
|
|
|
scores.append(score) |
|
|
except: |
|
|
scores.append(0.0) |
|
|
|
|
|
return sum(scores) / len(scores) if scores else 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def burn_model_with_finetuning( |
|
|
model_url: str, |
|
|
output_dir: str, |
|
|
use_hierarchical: bool = True, |
|
|
enable_finetuning: bool = False, |
|
|
num_steps: int = 3000, |
|
|
batch_size: int = 4, |
|
|
learning_rate: float = 1e-5, |
|
|
use_gradient_checkpointing: bool = True, |
|
|
): |
|
|
"""π v2.0: Multi-GPU Optimized Burning""" |
|
|
print("="*80) |
|
|
print(f"π₯ PHOENIX Model Burning v2.0 - Multi-GPU ({NUM_GPUS} GPUs)") |
|
|
print("="*80) |
|
|
|
|
|
output_path = Path(output_dir) |
|
|
output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
try: |
|
|
|
|
|
print(f"\nπ STEP 1: Structure Analysis...") |
|
|
structure_info = analyze_model_structure(model_url) |
|
|
|
|
|
|
|
|
print(f"\nπ₯ STEP 2: Loading model (Multi-GPU)...") |
|
|
start_time = time.time() |
|
|
|
|
|
config = AutoConfig.from_pretrained(model_url, trust_remote_code=True) |
|
|
|
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_url, |
|
|
trust_remote_code=True, |
|
|
torch_dtype=torch.float16, |
|
|
device_map="auto" |
|
|
) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_url, trust_remote_code=True) |
|
|
if tokenizer.pad_token is None: |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
load_time = time.time() - start_time |
|
|
print(f"β
Loaded across {NUM_GPUS} GPUs in {load_time:.1f}s") |
|
|
|
|
|
|
|
|
print(f"\nπ STEP 3: Converting Attention β Retention...") |
|
|
convert_start = time.time() |
|
|
|
|
|
model, converted, total = replace_attention_with_retention( |
|
|
model, |
|
|
use_hierarchical=use_hierarchical, |
|
|
structure_info=structure_info |
|
|
) |
|
|
|
|
|
convert_time = time.time() - convert_start |
|
|
conversion_rate = converted / total if total > 0 else 0 |
|
|
|
|
|
print(f"β
Converted {converted}/{total} layers in {convert_time:.1f}s") |
|
|
|
|
|
|
|
|
if enable_finetuning: |
|
|
print(f"\nπ STEP 4: Multi-GPU Fine-tuning...") |
|
|
ft_start = time.time() |
|
|
|
|
|
model = finetune_retention_model( |
|
|
model=model, |
|
|
tokenizer=tokenizer, |
|
|
num_steps=num_steps, |
|
|
batch_size=batch_size, |
|
|
learning_rate=learning_rate, |
|
|
use_gradient_checkpointing=use_gradient_checkpointing, |
|
|
) |
|
|
|
|
|
ft_time = time.time() - ft_start |
|
|
print(f"β
Fine-tuning completed in {ft_time/60:.1f} minutes") |
|
|
else: |
|
|
ft_time = 0 |
|
|
print(f"\nβοΈ STEP 4: Fine-tuning skipped") |
|
|
|
|
|
|
|
|
print(f"\nπ STEP 5: Evaluating...") |
|
|
quality_score = evaluate_model_quality(model, tokenizer) |
|
|
print(f"β
Quality: {quality_score:.2f}/1.00") |
|
|
|
|
|
|
|
|
print(f"\nπΎ STEP 6: Saving...") |
|
|
|
|
|
metadata = { |
|
|
'phoenix_version': '2.0', |
|
|
'original_model': model_url, |
|
|
'use_hierarchical': use_hierarchical, |
|
|
'conversion_rate': conversion_rate, |
|
|
'quality_score': quality_score, |
|
|
'finetuned': enable_finetuning, |
|
|
'finetuning_steps': num_steps if enable_finetuning else 0, |
|
|
'num_gpus': NUM_GPUS, |
|
|
'gradient_checkpointing': use_gradient_checkpointing, |
|
|
'timestamp': datetime.now().isoformat(), |
|
|
} |
|
|
|
|
|
save_phoenix_model_with_code(model, tokenizer, output_path, model_url, metadata) |
|
|
|
|
|
total_time = time.time() - start_time |
|
|
|
|
|
result = { |
|
|
'status': 'success', |
|
|
'model_path': str(output_path), |
|
|
'conversion_rate': conversion_rate, |
|
|
'quality_score': quality_score, |
|
|
'total_time': total_time, |
|
|
'finetuned': enable_finetuning, |
|
|
'num_gpus': NUM_GPUS, |
|
|
'structure_info': structure_info, |
|
|
} |
|
|
|
|
|
print(f"\n{'='*80}") |
|
|
print(f"β
Multi-GPU Burning Complete!") |
|
|
print(f" GPUs Used: {NUM_GPUS}") |
|
|
print(f" Model: {output_path}") |
|
|
print(f" Quality: {quality_score:.2f}/1.00") |
|
|
print(f"{'='*80}\n") |
|
|
|
|
|
return result |
|
|
|
|
|
except Exception as e: |
|
|
import traceback |
|
|
return { |
|
|
'status': 'failed', |
|
|
'error': str(e), |
|
|
'traceback': traceback.format_exc() |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ExperimentDatabase: |
|
|
def __init__(self, db_path: str): |
|
|
self.db_path = db_path |
|
|
self.init_database() |
|
|
|
|
|
def init_database(self): |
|
|
with sqlite3.connect(self.db_path) as conn: |
|
|
cursor = conn.cursor() |
|
|
cursor.execute(""" |
|
|
CREATE TABLE IF NOT EXISTS burning_history ( |
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
|
|
model_url TEXT, |
|
|
output_path TEXT, |
|
|
hub_url TEXT, |
|
|
conversion_rate REAL, |
|
|
quality_score REAL, |
|
|
finetuned BOOLEAN, |
|
|
num_gpus INTEGER, |
|
|
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP |
|
|
) |
|
|
""") |
|
|
conn.commit() |
|
|
|
|
|
def save_burning(self, info: Dict) -> int: |
|
|
with sqlite3.connect(self.db_path) as conn: |
|
|
cursor = conn.cursor() |
|
|
cursor.execute(""" |
|
|
INSERT INTO burning_history |
|
|
(model_url, output_path, hub_url, conversion_rate, quality_score, finetuned, num_gpus) |
|
|
VALUES (?, ?, ?, ?, ?, ?, ?) |
|
|
""", ( |
|
|
info.get('model_url'), |
|
|
info.get('output_path'), |
|
|
info.get('hub_url'), |
|
|
info.get('conversion_rate'), |
|
|
info.get('quality_score'), |
|
|
info.get('finetuned'), |
|
|
info.get('num_gpus', 1), |
|
|
)) |
|
|
conn.commit() |
|
|
return cursor.lastrowid |
|
|
|
|
|
def get_history(self, limit: int = 20) -> List[Dict]: |
|
|
with sqlite3.connect(self.db_path) as conn: |
|
|
conn.row_factory = sqlite3.Row |
|
|
cursor = conn.cursor() |
|
|
cursor.execute("SELECT * FROM burning_history ORDER BY timestamp DESC LIMIT ?", (limit,)) |
|
|
return [dict(row) for row in cursor.fetchall()] |
|
|
|
|
|
|
|
|
db = ExperimentDatabase(DB_PATH) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def burn_phoenix_model_ui( |
|
|
model_url, |
|
|
use_hierarchical, |
|
|
output_name, |
|
|
enable_finetuning, |
|
|
ft_steps, |
|
|
ft_batch, |
|
|
ft_lr, |
|
|
use_grad_ckpt, |
|
|
upload_hub, |
|
|
hub_repo, |
|
|
hub_private, |
|
|
): |
|
|
"""Gradio UI""" |
|
|
|
|
|
try: |
|
|
if not model_url.strip(): |
|
|
return "β οΈ Model URL required", None |
|
|
|
|
|
if not output_name.strip(): |
|
|
output_name = f"phoenix_{model_url.split('/')[-1]}_{int(time.time())}" |
|
|
|
|
|
output_dir = f"{MODELS_PATH}/{output_name}" |
|
|
|
|
|
|
|
|
if enable_finetuning: |
|
|
model_size = "0.6B" if "0.6B" in model_url else "1.5B" |
|
|
cost = estimate_finetuning_cost(model_size, ft_steps, ft_batch, NUM_GPUS) |
|
|
print(f"\nπ° Estimated Cost: ${cost['cost_usd']} ({cost['hours']}h with {NUM_GPUS} GPUs)") |
|
|
|
|
|
|
|
|
result = burn_model_with_finetuning( |
|
|
model_url=model_url, |
|
|
output_dir=output_dir, |
|
|
use_hierarchical=use_hierarchical, |
|
|
enable_finetuning=enable_finetuning, |
|
|
num_steps=ft_steps, |
|
|
batch_size=ft_batch, |
|
|
learning_rate=ft_lr, |
|
|
use_gradient_checkpointing=use_grad_ckpt, |
|
|
) |
|
|
|
|
|
if result['status'] != 'success': |
|
|
return f"β Failed\n```\n{result.get('error')}\n```", None |
|
|
|
|
|
|
|
|
hub_url = None |
|
|
if upload_hub and HF_TOKEN: |
|
|
success, hub_url, msg = upload_to_huggingface_hub( |
|
|
model_path=result['model_path'], |
|
|
original_model_url=model_url, |
|
|
repo_name=hub_repo if hub_repo.strip() else None, |
|
|
private=hub_private, |
|
|
) |
|
|
|
|
|
|
|
|
db.save_burning({ |
|
|
'model_url': model_url, |
|
|
'output_path': result['model_path'], |
|
|
'hub_url': hub_url, |
|
|
'conversion_rate': result['conversion_rate'], |
|
|
'quality_score': result['quality_score'], |
|
|
'finetuned': enable_finetuning, |
|
|
'num_gpus': NUM_GPUS, |
|
|
}) |
|
|
|
|
|
|
|
|
output_md = f""" |
|
|
# π₯ PHOENIX v2.0 Multi-GPU Complete! |
|
|
|
|
|
## Hardware |
|
|
- **GPUs Used**: {NUM_GPUS} x {torch.cuda.get_device_name(0) if NUM_GPUS > 0 else 'N/A'} |
|
|
|
|
|
## Model Info |
|
|
- **Original**: {model_url} |
|
|
- **Output**: `{result['model_path']}` |
|
|
- **Conversion**: {result['conversion_rate']*100:.1f}% |
|
|
- **Quality**: {result['quality_score']:.2f}/1.00 |
|
|
- **Fine-tuned**: {'β
YES' if enable_finetuning else 'β NO'} |
|
|
""" |
|
|
|
|
|
if hub_url: |
|
|
output_md += f""" |
|
|
|
|
|
## Hub Status |
|
|
β
**Uploaded**: [{hub_url}]({hub_url}) |
|
|
|
|
|
```python |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
"{hub_url.replace('https://huggingface.co/', '')}", |
|
|
trust_remote_code=True, |
|
|
device_map="auto" # Multi-GPU |
|
|
) |
|
|
``` |
|
|
""" |
|
|
|
|
|
|
|
|
fig = go.Figure() |
|
|
fig.add_trace(go.Bar( |
|
|
x=['Conversion', 'Quality'], |
|
|
y=[result['conversion_rate'], result['quality_score']], |
|
|
marker_color=['#3b82f6', '#10b981'] |
|
|
)) |
|
|
fig.update_layout(title=f"Metrics ({NUM_GPUS} GPUs)", yaxis_range=[0, 1]) |
|
|
|
|
|
return output_md, fig |
|
|
|
|
|
except Exception as e: |
|
|
import traceback |
|
|
return f"β Error:\n```\n{traceback.format_exc()}\n```", None |
|
|
|
|
|
|
|
|
def view_history(): |
|
|
"""History""" |
|
|
try: |
|
|
history = db.get_history(20) |
|
|
if not history: |
|
|
return "π No history", None |
|
|
|
|
|
df = pd.DataFrame(history) |
|
|
|
|
|
fig = px.scatter( |
|
|
df, |
|
|
x='timestamp', |
|
|
y='quality_score', |
|
|
color='finetuned', |
|
|
size='num_gpus', |
|
|
title='Burning History (Multi-GPU)' |
|
|
) |
|
|
|
|
|
return f"## History\n\n{df.to_markdown(index=False)}", fig |
|
|
except Exception as e: |
|
|
return f"β Error: {e}", None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks(title="π₯ PHOENIX v2.0 Multi-GPU", theme=gr.themes.Soft()) as demo: |
|
|
|
|
|
gr.Markdown(f""" |
|
|
# π₯ PHOENIX v2.0 - Multi-GPU Optimized |
|
|
|
|
|
**H100 x {NUM_GPUS} GPUs Ready** |
|
|
|
|
|
π **v2.0 Multi-GPU**: Accelerate ν΅ν©, DDP μ§μ |
|
|
π **v2.0**: Fine-tuning νμ΄νλΌμΈ (Brumby-style) |
|
|
β
v1.4.3: All fixes included |
|
|
β
GQA Support | O(n) Complexity |
|
|
|
|
|
--- |
|
|
""") |
|
|
|
|
|
with gr.Tabs(): |
|
|
with gr.Tab("π₯ Model Burning"): |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
burn_url = gr.Textbox( |
|
|
label="π Model URL", |
|
|
value=DEFAULT_MODEL, |
|
|
placeholder="Qwen/Qwen3-0.6B" |
|
|
) |
|
|
burn_hier = gr.Checkbox(value=True, label="Hierarchical Retention") |
|
|
burn_name = gr.Textbox(label="πΎ Output Name", placeholder="my_model") |
|
|
|
|
|
gr.Markdown("---") |
|
|
gr.Markdown(f"### π Fine-tuning ({NUM_GPUS} GPUs)") |
|
|
|
|
|
burn_ft_enable = gr.Checkbox( |
|
|
value=False, |
|
|
label="π Enable Fine-tuning (Brumby-style)", |
|
|
info=f"Multi-GPU acceleration with {NUM_GPUS} GPUs!" |
|
|
) |
|
|
|
|
|
burn_ft_steps = gr.Slider( |
|
|
1000, 10000, 3000, |
|
|
step=100, |
|
|
label="Steps", |
|
|
visible=False |
|
|
) |
|
|
|
|
|
burn_ft_batch = gr.Slider( |
|
|
1, 16, 4, |
|
|
step=1, |
|
|
label=f"Batch Size per GPU ({NUM_GPUS} GPUs)", |
|
|
visible=False |
|
|
) |
|
|
burn_ft_lr = gr.Number(value=1e-5, label="Learning Rate", visible=False) |
|
|
|
|
|
burn_grad_ckpt = gr.Checkbox( |
|
|
value=True, |
|
|
label="β
Gradient Checkpointing (saves memory)", |
|
|
visible=False |
|
|
) |
|
|
|
|
|
def toggle_ft(enabled): |
|
|
return [ |
|
|
gr.update(visible=enabled), |
|
|
gr.update(visible=enabled), |
|
|
gr.update(visible=enabled), |
|
|
gr.update(visible=enabled), |
|
|
] |
|
|
|
|
|
burn_ft_enable.change( |
|
|
toggle_ft, |
|
|
[burn_ft_enable], |
|
|
[burn_ft_steps, burn_ft_batch, burn_ft_lr, burn_grad_ckpt] |
|
|
) |
|
|
|
|
|
gr.Markdown("---") |
|
|
gr.Markdown("### π Hub Upload") |
|
|
|
|
|
burn_upload = gr.Checkbox(value=True, label="π€ Upload to Hub") |
|
|
burn_repo = gr.Textbox(label="π¦ Repo Name (optional)") |
|
|
burn_private = gr.Checkbox(value=True, label="π Private") |
|
|
|
|
|
burn_btn = gr.Button("π₯ Burn Model", variant="primary", size="lg") |
|
|
|
|
|
with gr.Column(scale=2): |
|
|
burn_output = gr.Markdown() |
|
|
burn_plot = gr.Plot() |
|
|
|
|
|
burn_btn.click( |
|
|
burn_phoenix_model_ui, |
|
|
[ |
|
|
burn_url, burn_hier, burn_name, |
|
|
burn_ft_enable, burn_ft_steps, burn_ft_batch, burn_ft_lr, burn_grad_ckpt, |
|
|
burn_upload, burn_repo, burn_private |
|
|
], |
|
|
[burn_output, burn_plot] |
|
|
) |
|
|
|
|
|
with gr.Tab("π History"): |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
hist_btn = gr.Button("π Load", variant="primary") |
|
|
with gr.Column(scale=2): |
|
|
hist_out = gr.Markdown() |
|
|
hist_plot = gr.Plot() |
|
|
|
|
|
hist_btn.click(view_history, outputs=[hist_out, hist_plot]) |
|
|
|
|
|
gr.Markdown(f""" |
|
|
--- |
|
|
|
|
|
## π₯ PHOENIX v2.0 Multi-GPU |
|
|
|
|
|
**Hardware**: {NUM_GPUS} x {torch.cuda.get_device_name(0) if NUM_GPUS > 0 else 'N/A'} |
|
|
|
|
|
**Features**: |
|
|
- π Multi-GPU Training (DDP) |
|
|
- π Gradient Checkpointing |
|
|
- π H100 Optimized (fused optimizer) |
|
|
- π Brumby-style Fine-tuning |
|
|
- β
All v1.4.3 Fixes |
|
|
|
|
|
**Token**: {'β
' if HF_TOKEN else 'β Not Found'} |
|
|
**VIDraft AI Research Lab** | PHOENIX v2.0 Multi-GPU |
|
|
""") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
import argparse |
|
|
|
|
|
parser = argparse.ArgumentParser(description='PHOENIX v2.0 Multi-GPU') |
|
|
parser.add_argument('--port', type=int, default=None, help='Server port (default: auto find 7860-7960)') |
|
|
parser.add_argument('--share', action='store_true', help='Create public Gradio link') |
|
|
parser.add_argument('--host', type=str, default="0.0.0.0", help='Server host') |
|
|
args = parser.parse_args() |
|
|
|
|
|
demo.queue(max_size=20) |
|
|
|
|
|
|
|
|
if args.port is None: |
|
|
|
|
|
for port in range(7860, 7960): |
|
|
try: |
|
|
demo.launch( |
|
|
server_name=args.host, |
|
|
server_port=port, |
|
|
share=args.share, |
|
|
show_error=True |
|
|
) |
|
|
break |
|
|
except OSError: |
|
|
continue |
|
|
else: |
|
|
demo.launch( |
|
|
server_name=args.host, |
|
|
server_port=args.port, |
|
|
share=args.share, |
|
|
show_error=True |
|
|
) |