Spaces:
				
			
			
	
			
			
		Configuration error
		
	
	
	
			
			
	
	
	
	
		
		
		Configuration error
		
	revitalize repo
Browse files- app.py +39 -9
 - module/attention.py +0 -397
 - module/transformers/transformer_2d_ExtractKV.py +0 -595
 - module/unet/unet_2d_expandKV.py +0 -164
 - module/unet/unet_2d_extractKV.py +0 -1347
 - module/unet/unet_2d_extractKV_blocks.py +0 -1417
 - module/unet/unet_2d_extractKV_res.py +0 -1589
 - pipelines/sdxl_instantir.py +1 -0
 - requirements.txt +2 -1
 
    	
        app.py
    CHANGED
    
    | 
         @@ -1,7 +1,9 @@ 
     | 
|
| 1 | 
         
             
            import os
         
     | 
| 2 | 
         
             
            import torch
         
     | 
| 
         | 
|
| 
         | 
|
| 3 | 
         
             
            import numpy as np
         
     | 
| 4 | 
         
            -
            import  
     | 
| 5 | 
         
             
            from PIL import Image
         
     | 
| 6 | 
         | 
| 7 | 
         
             
            from diffusers import DDPMScheduler
         
     | 
| 
         @@ -12,6 +14,31 @@ from pipelines.sdxl_instantir import InstantIRPipeline 
     | 
|
| 12 | 
         | 
| 13 | 
         
             
            from huggingface_hub import hf_hub_download
         
     | 
| 14 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 15 | 
         
             
            if not os.path.exists("models/adapter.pt"):
         
     | 
| 16 | 
         
             
                hf_hub_download(repo_id="InstantX/InstantIR", filename="models/adapter.pt", local_dir=".")
         
     | 
| 17 | 
         
             
            if not os.path.exists("models/aggregator.pt"):
         
     | 
| 
         @@ -22,6 +49,7 @@ if not os.path.exists("models/previewer_lora_weights.bin"): 
     | 
|
| 22 | 
         
             
            device = "cuda" if torch.cuda.is_available() else "cpu"
         
     | 
| 23 | 
         
             
            sdxl_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
         
     | 
| 24 | 
         
             
            dinov2_repo_id = "facebook/dinov2-large"
         
     | 
| 
         | 
|
| 25 | 
         | 
| 26 | 
         
             
            if torch.cuda.is_available():
         
     | 
| 27 | 
         
             
                torch_dtype = torch.float16
         
     | 
| 
         @@ -29,7 +57,7 @@ else: 
     | 
|
| 29 | 
         
             
                torch_dtype = torch.float32
         
     | 
| 30 | 
         | 
| 31 | 
         
             
            # Load pretrained models.
         
     | 
| 32 | 
         
            -
            print(" 
     | 
| 33 | 
         
             
            pipe = InstantIRPipeline.from_pretrained(
         
     | 
| 34 | 
         
             
                sdxl_repo_id,
         
     | 
| 35 | 
         
             
                torch_dtype=torch_dtype,
         
     | 
| 
         @@ -46,7 +74,7 @@ load_adapter_to_pipe( 
     | 
|
| 46 | 
         
             
            # Prepare previewer
         
     | 
| 47 | 
         
             
            lora_alpha = pipe.prepare_previewers("models")
         
     | 
| 48 | 
         
             
            print(f"use lora alpha {lora_alpha}")
         
     | 
| 49 | 
         
            -
            lora_alpha = pipe.prepare_previewers( 
     | 
| 50 | 
         
             
            print(f"use lora alpha {lora_alpha}")
         
     | 
| 51 | 
         
             
            pipe.to(device=device, dtype=torch_dtype)
         
     | 
| 52 | 
         
             
            pipe.scheduler = DDPMScheduler.from_pretrained(sdxl_repo_id, subfolder="scheduler")
         
     | 
| 
         @@ -63,7 +91,7 @@ aggregator_state_dict = torch.load( 
     | 
|
| 63 | 
         
             
                "models/aggregator.pt",
         
     | 
| 64 | 
         
             
                map_location="cpu"
         
     | 
| 65 | 
         
             
            )
         
     | 
| 66 | 
         
            -
            pipe.aggregator.load_state_dict(aggregator_state_dict 
     | 
| 67 | 
         
             
            pipe.aggregator.to(device=device, dtype=torch_dtype)
         
     | 
| 68 | 
         | 
| 69 | 
         
             
            MAX_SEED = np.iinfo(np.int32).max
         
     | 
| 
         @@ -92,8 +120,7 @@ def dynamic_guidance_slider(sampling_steps): 
     | 
|
| 92 | 
         
             
            def show_final_preview(preview_row):
         
     | 
| 93 | 
         
             
                return preview_row[-1][0]
         
     | 
| 94 | 
         | 
| 95 | 
         
            -
             
     | 
| 96 | 
         
            -
            @torch.no_grad()
         
     | 
| 97 | 
         
             
            def instantir_restore(
         
     | 
| 98 | 
         
             
                lq, prompt="", steps=30, cfg_scale=7.0, guidance_end=1.0,
         
     | 
| 99 | 
         
             
                creative_restoration=False, seed=3407, height=1024, width=1024, preview_start=0.0):
         
     | 
| 
         @@ -101,20 +128,23 @@ def instantir_restore( 
     | 
|
| 101 | 
         
             
                    if "lcm" not in pipe.unet.active_adapters():
         
     | 
| 102 | 
         
             
                        pipe.unet.set_adapter('lcm')
         
     | 
| 103 | 
         
             
                else:
         
     | 
| 104 | 
         
            -
                    if " 
     | 
| 105 | 
         
            -
                        pipe.unet.set_adapter(' 
     | 
| 106 | 
         | 
| 107 | 
         
             
                if isinstance(guidance_end, int):
         
     | 
| 108 | 
         
             
                    guidance_end = guidance_end / steps
         
     | 
| 
         | 
|
| 
         | 
|
| 109 | 
         
             
                if isinstance(preview_start, int):
         
     | 
| 110 | 
         
             
                    preview_start = preview_start / steps
         
     | 
| 
         | 
|
| 
         | 
|
| 111 | 
         
             
                lq = [resize_img(lq.convert("RGB"), size=(width, height))]
         
     | 
| 112 | 
         
             
                generator = torch.Generator(device=device).manual_seed(seed)
         
     | 
| 113 | 
         
             
                timesteps = [
         
     | 
| 114 | 
         
             
                    i * (1000//steps) + pipe.scheduler.config.steps_offset for i in range(0, steps)
         
     | 
| 115 | 
         
             
                ]
         
     | 
| 116 | 
         
             
                timesteps = timesteps[::-1]
         
     | 
| 117 | 
         
            -
                start_timestep = timesteps[0]
         
     | 
| 118 | 
         | 
| 119 | 
         
             
                prompt = PROMPT if len(prompt)==0 else prompt
         
     | 
| 120 | 
         
             
                neg_prompt = NEG_PROMPT
         
     | 
| 
         | 
|
| 1 | 
         
             
            import os
         
     | 
| 2 | 
         
             
            import torch
         
     | 
| 3 | 
         
            +
            import spaces
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
             
            import numpy as np
         
     | 
| 6 | 
         
            +
            import gradio as gr
         
     | 
| 7 | 
         
             
            from PIL import Image
         
     | 
| 8 | 
         | 
| 9 | 
         
             
            from diffusers import DDPMScheduler
         
     | 
| 
         | 
|
| 14 | 
         | 
| 15 | 
         
             
            from huggingface_hub import hf_hub_download
         
     | 
| 16 | 
         | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            def resize_img(input_image, max_side=1280, min_side=1024, size=None, 
         
     | 
| 19 | 
         
            +
                           pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                w, h = input_image.size
         
     | 
| 22 | 
         
            +
                if size is not None:
         
     | 
| 23 | 
         
            +
                    w_resize_new, h_resize_new = size
         
     | 
| 24 | 
         
            +
                else:
         
     | 
| 25 | 
         
            +
                    # ratio = min_side / min(h, w)
         
     | 
| 26 | 
         
            +
                    # w, h = round(ratio*w), round(ratio*h)
         
     | 
| 27 | 
         
            +
                    ratio = max_side / max(h, w)
         
     | 
| 28 | 
         
            +
                    input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
         
     | 
| 29 | 
         
            +
                    w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
         
     | 
| 30 | 
         
            +
                    h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
         
     | 
| 31 | 
         
            +
                input_image = input_image.resize([w_resize_new, h_resize_new], mode)
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                if pad_to_max_side:
         
     | 
| 34 | 
         
            +
                    res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
         
     | 
| 35 | 
         
            +
                    offset_x = (max_side - w_resize_new) // 2
         
     | 
| 36 | 
         
            +
                    offset_y = (max_side - h_resize_new) // 2
         
     | 
| 37 | 
         
            +
                    res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
         
     | 
| 38 | 
         
            +
                    input_image = Image.fromarray(res)
         
     | 
| 39 | 
         
            +
                return input_image
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
             
            if not os.path.exists("models/adapter.pt"):
         
     | 
| 43 | 
         
             
                hf_hub_download(repo_id="InstantX/InstantIR", filename="models/adapter.pt", local_dir=".")
         
     | 
| 44 | 
         
             
            if not os.path.exists("models/aggregator.pt"):
         
     | 
| 
         | 
|
| 49 | 
         
             
            device = "cuda" if torch.cuda.is_available() else "cpu"
         
     | 
| 50 | 
         
             
            sdxl_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
         
     | 
| 51 | 
         
             
            dinov2_repo_id = "facebook/dinov2-large"
         
     | 
| 52 | 
         
            +
            lcm_repo_id = "latent-consistency/lcm-lora-sdxl"
         
     | 
| 53 | 
         | 
| 54 | 
         
             
            if torch.cuda.is_available():
         
     | 
| 55 | 
         
             
                torch_dtype = torch.float16
         
     | 
| 
         | 
|
| 57 | 
         
             
                torch_dtype = torch.float32
         
     | 
| 58 | 
         | 
| 59 | 
         
             
            # Load pretrained models.
         
     | 
| 60 | 
         
            +
            print("Initializing pipeline...")
         
     | 
| 61 | 
         
             
            pipe = InstantIRPipeline.from_pretrained(
         
     | 
| 62 | 
         
             
                sdxl_repo_id,
         
     | 
| 63 | 
         
             
                torch_dtype=torch_dtype,
         
     | 
| 
         | 
|
| 74 | 
         
             
            # Prepare previewer
         
     | 
| 75 | 
         
             
            lora_alpha = pipe.prepare_previewers("models")
         
     | 
| 76 | 
         
             
            print(f"use lora alpha {lora_alpha}")
         
     | 
| 77 | 
         
            +
            lora_alpha = pipe.prepare_previewers(lcm_repo_id, use_lcm=True)
         
     | 
| 78 | 
         
             
            print(f"use lora alpha {lora_alpha}")
         
     | 
| 79 | 
         
             
            pipe.to(device=device, dtype=torch_dtype)
         
     | 
| 80 | 
         
             
            pipe.scheduler = DDPMScheduler.from_pretrained(sdxl_repo_id, subfolder="scheduler")
         
     | 
| 
         | 
|
| 91 | 
         
             
                "models/aggregator.pt",
         
     | 
| 92 | 
         
             
                map_location="cpu"
         
     | 
| 93 | 
         
             
            )
         
     | 
| 94 | 
         
            +
            pipe.aggregator.load_state_dict(aggregator_state_dict)
         
     | 
| 95 | 
         
             
            pipe.aggregator.to(device=device, dtype=torch_dtype)
         
     | 
| 96 | 
         | 
| 97 | 
         
             
            MAX_SEED = np.iinfo(np.int32).max
         
     | 
| 
         | 
|
| 120 | 
         
             
            def show_final_preview(preview_row):
         
     | 
| 121 | 
         
             
                return preview_row[-1][0]
         
     | 
| 122 | 
         | 
| 123 | 
         
            +
            @spaces.GPU
         
     | 
| 
         | 
|
| 124 | 
         
             
            def instantir_restore(
         
     | 
| 125 | 
         
             
                lq, prompt="", steps=30, cfg_scale=7.0, guidance_end=1.0,
         
     | 
| 126 | 
         
             
                creative_restoration=False, seed=3407, height=1024, width=1024, preview_start=0.0):
         
     | 
| 
         | 
|
| 128 | 
         
             
                    if "lcm" not in pipe.unet.active_adapters():
         
     | 
| 129 | 
         
             
                        pipe.unet.set_adapter('lcm')
         
     | 
| 130 | 
         
             
                else:
         
     | 
| 131 | 
         
            +
                    if "previewer" not in pipe.unet.active_adapters():
         
     | 
| 132 | 
         
            +
                        pipe.unet.set_adapter('previewer')
         
     | 
| 133 | 
         | 
| 134 | 
         
             
                if isinstance(guidance_end, int):
         
     | 
| 135 | 
         
             
                    guidance_end = guidance_end / steps
         
     | 
| 136 | 
         
            +
                elif guidance_end > 1.0:
         
     | 
| 137 | 
         
            +
                    guidance_end = guidance_end / steps
         
     | 
| 138 | 
         
             
                if isinstance(preview_start, int):
         
     | 
| 139 | 
         
             
                    preview_start = preview_start / steps
         
     | 
| 140 | 
         
            +
                elif preview_start > 1.0:
         
     | 
| 141 | 
         
            +
                    preview_start = preview_start / steps
         
     | 
| 142 | 
         
             
                lq = [resize_img(lq.convert("RGB"), size=(width, height))]
         
     | 
| 143 | 
         
             
                generator = torch.Generator(device=device).manual_seed(seed)
         
     | 
| 144 | 
         
             
                timesteps = [
         
     | 
| 145 | 
         
             
                    i * (1000//steps) + pipe.scheduler.config.steps_offset for i in range(0, steps)
         
     | 
| 146 | 
         
             
                ]
         
     | 
| 147 | 
         
             
                timesteps = timesteps[::-1]
         
     | 
| 
         | 
|
| 148 | 
         | 
| 149 | 
         
             
                prompt = PROMPT if len(prompt)==0 else prompt
         
     | 
| 150 | 
         
             
                neg_prompt = NEG_PROMPT
         
     | 
    	
        module/attention.py
    CHANGED
    
    | 
         @@ -37,52 +37,6 @@ def create_custom_forward(module): 
     | 
|
| 37 | 
         | 
| 38 | 
         
             
                return custom_forward
         
     | 
| 39 | 
         | 
| 40 | 
         
            -
            def get_encoder_trainable_params(encoder):
         
     | 
| 41 | 
         
            -
                trainable_params = []
         
     | 
| 42 | 
         
            -
             
     | 
| 43 | 
         
            -
                for module in encoder.modules():
         
     | 
| 44 | 
         
            -
                    if isinstance(module, ExtractKVTransformerBlock):
         
     | 
| 45 | 
         
            -
                        # If LORA exists in attn1, train them. Otherwise, attn1 is frozen
         
     | 
| 46 | 
         
            -
                        # NOTE: not sure if we want it under a different subset
         
     | 
| 47 | 
         
            -
                        if module.attn1.to_k.lora_layer is not None:
         
     | 
| 48 | 
         
            -
                            trainable_params.extend(module.attn1.to_k.lora_layer.parameters())
         
     | 
| 49 | 
         
            -
                            trainable_params.extend(module.attn1.to_v.lora_layer.parameters())
         
     | 
| 50 | 
         
            -
                            trainable_params.extend(module.attn1.to_q.lora_layer.parameters())
         
     | 
| 51 | 
         
            -
                            trainable_params.extend(module.attn1.to_out[0].lora_layer.parameters())
         
     | 
| 52 | 
         
            -
             
     | 
| 53 | 
         
            -
                        if module.attn2.to_k.lora_layer is not None:
         
     | 
| 54 | 
         
            -
                            trainable_params.extend(module.attn2.to_k.lora_layer.parameters())
         
     | 
| 55 | 
         
            -
                            trainable_params.extend(module.attn2.to_v.lora_layer.parameters())
         
     | 
| 56 | 
         
            -
                            trainable_params.extend(module.attn2.to_q.lora_layer.parameters())
         
     | 
| 57 | 
         
            -
                            trainable_params.extend(module.attn2.to_out[0].lora_layer.parameters())
         
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
                        # If LORAs exist in kvcopy layers, train only them
         
     | 
| 60 | 
         
            -
                        if module.extract_kv1.to_k.lora_layer is not None:
         
     | 
| 61 | 
         
            -
                            trainable_params.extend(module.extract_kv1.to_k.lora_layer.parameters())
         
     | 
| 62 | 
         
            -
                            trainable_params.extend(module.extract_kv1.to_v.lora_layer.parameters())
         
     | 
| 63 | 
         
            -
                        else:
         
     | 
| 64 | 
         
            -
                            trainable_params.extend(module.extract_kv1.to_k.parameters())
         
     | 
| 65 | 
         
            -
                            trainable_params.extend(module.extract_kv1.to_v.parameters())
         
     | 
| 66 | 
         
            -
                    
         
     | 
| 67 | 
         
            -
                return trainable_params
         
     | 
| 68 | 
         
            -
             
     | 
| 69 | 
         
            -
            def get_adapter_layers(encoder):
         
     | 
| 70 | 
         
            -
                adapter_layers = []
         
     | 
| 71 | 
         
            -
                for module in encoder.modules():
         
     | 
| 72 | 
         
            -
                    if isinstance(module, ExtractKVTransformerBlock):
         
     | 
| 73 | 
         
            -
                        adapter_layers.append(module.extract_kv2)
         
     | 
| 74 | 
         
            -
             
     | 
| 75 | 
         
            -
                return adapter_layers
         
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
            -
            def get_adapter_trainable_params(encoder):
         
     | 
| 78 | 
         
            -
                adapter_layers = get_adapter_layers(encoder)
         
     | 
| 79 | 
         
            -
                trainable_params = []
         
     | 
| 80 | 
         
            -
                for layer in adapter_layers:
         
     | 
| 81 | 
         
            -
                    trainable_params.extend(layer.to_v.parameters())
         
     | 
| 82 | 
         
            -
                    trainable_params.extend(layer.to_k.parameters())
         
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
            -
                return trainable_params
         
     | 
| 85 | 
         
            -
             
     | 
| 86 | 
         
             
            def maybe_grad_checkpoint(resnet, attn, hidden_states, temb, encoder_hidden_states, adapter_hidden_states, do_ckpt=True):
         
     | 
| 87 | 
         | 
| 88 | 
         
             
                if do_ckpt:
         
     | 
| 
         @@ -303,354 +257,3 @@ class GatedSelfAttentionDense(nn.Module): 
     | 
|
| 303 | 
         
             
                    x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
         
     | 
| 304 | 
         | 
| 305 | 
         
             
                    return x
         
     | 
| 306 | 
         
            -
             
     | 
| 307 | 
         
            -
             
     | 
| 308 | 
         
            -
            @maybe_allow_in_graph
         
     | 
| 309 | 
         
            -
            class ExtractKVTransformerBlock(nn.Module):
         
     | 
| 310 | 
         
            -
                r"""
         
     | 
| 311 | 
         
            -
                A Transformer block that also outputs KV metrics.
         
     | 
| 312 | 
         
            -
             
     | 
| 313 | 
         
            -
                Parameters:
         
     | 
| 314 | 
         
            -
                    dim (`int`): The number of channels in the input and output.
         
     | 
| 315 | 
         
            -
                    num_attention_heads (`int`): The number of heads to use for multi-head attention.
         
     | 
| 316 | 
         
            -
                    attention_head_dim (`int`): The number of channels in each head.
         
     | 
| 317 | 
         
            -
                    dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
         
     | 
| 318 | 
         
            -
                    cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
         
     | 
| 319 | 
         
            -
                    activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
         
     | 
| 320 | 
         
            -
                    num_embeds_ada_norm (:
         
     | 
| 321 | 
         
            -
                        obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
         
     | 
| 322 | 
         
            -
                    attention_bias (:
         
     | 
| 323 | 
         
            -
                        obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
         
     | 
| 324 | 
         
            -
                    only_cross_attention (`bool`, *optional*):
         
     | 
| 325 | 
         
            -
                        Whether to use only cross-attention layers. In this case two cross attention layers are used.
         
     | 
| 326 | 
         
            -
                    double_self_attention (`bool`, *optional*):
         
     | 
| 327 | 
         
            -
                        Whether to use two self-attention layers. In this case no cross attention layers are used.
         
     | 
| 328 | 
         
            -
                    upcast_attention (`bool`, *optional*):
         
     | 
| 329 | 
         
            -
                        Whether to upcast the attention computation to float32. This is useful for mixed precision training.
         
     | 
| 330 | 
         
            -
                    norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
         
     | 
| 331 | 
         
            -
                        Whether to use learnable elementwise affine parameters for normalization.
         
     | 
| 332 | 
         
            -
                    norm_type (`str`, *optional*, defaults to `"layer_norm"`):
         
     | 
| 333 | 
         
            -
                        The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
         
     | 
| 334 | 
         
            -
                    final_dropout (`bool` *optional*, defaults to False):
         
     | 
| 335 | 
         
            -
                        Whether to apply a final dropout after the last feed-forward layer.
         
     | 
| 336 | 
         
            -
                    attention_type (`str`, *optional*, defaults to `"default"`):
         
     | 
| 337 | 
         
            -
                        The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
         
     | 
| 338 | 
         
            -
                    positional_embeddings (`str`, *optional*, defaults to `None`):
         
     | 
| 339 | 
         
            -
                        The type of positional embeddings to apply to.
         
     | 
| 340 | 
         
            -
                    num_positional_embeddings (`int`, *optional*, defaults to `None`):
         
     | 
| 341 | 
         
            -
                        The maximum number of positional embeddings to apply.
         
     | 
| 342 | 
         
            -
                """
         
     | 
| 343 | 
         
            -
             
     | 
| 344 | 
         
            -
                def __init__(
         
     | 
| 345 | 
         
            -
                    self,
         
     | 
| 346 | 
         
            -
                    dim: int,                   # Originally hidden_size
         
     | 
| 347 | 
         
            -
                    num_attention_heads: int,
         
     | 
| 348 | 
         
            -
                    attention_head_dim: int,
         
     | 
| 349 | 
         
            -
                    dropout=0.0,
         
     | 
| 350 | 
         
            -
                    cross_attention_dim: Optional[int] = None,
         
     | 
| 351 | 
         
            -
                    activation_fn: str = "geglu",
         
     | 
| 352 | 
         
            -
                    num_embeds_ada_norm: Optional[int] = None,
         
     | 
| 353 | 
         
            -
                    attention_bias: bool = False,
         
     | 
| 354 | 
         
            -
                    only_cross_attention: bool = False,
         
     | 
| 355 | 
         
            -
                    double_self_attention: bool = False,
         
     | 
| 356 | 
         
            -
                    upcast_attention: bool = False,
         
     | 
| 357 | 
         
            -
                    norm_elementwise_affine: bool = True,
         
     | 
| 358 | 
         
            -
                    norm_type: str = "layer_norm",  # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
         
     | 
| 359 | 
         
            -
                    norm_eps: float = 1e-5,
         
     | 
| 360 | 
         
            -
                    final_dropout: bool = False,
         
     | 
| 361 | 
         
            -
                    attention_type: str = "default",
         
     | 
| 362 | 
         
            -
                    positional_embeddings: Optional[str] = None,
         
     | 
| 363 | 
         
            -
                    num_positional_embeddings: Optional[int] = None,
         
     | 
| 364 | 
         
            -
                    ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
         
     | 
| 365 | 
         
            -
                    ada_norm_bias: Optional[int] = None,
         
     | 
| 366 | 
         
            -
                    ff_inner_dim: Optional[int] = None,
         
     | 
| 367 | 
         
            -
                    ff_bias: bool = True,
         
     | 
| 368 | 
         
            -
                    attention_out_bias: bool = True,
         
     | 
| 369 | 
         
            -
                    extract_self_attention_kv: bool = False,
         
     | 
| 370 | 
         
            -
                    extract_cross_attention_kv: bool = False,
         
     | 
| 371 | 
         
            -
                ):
         
     | 
| 372 | 
         
            -
                    super().__init__()
         
     | 
| 373 | 
         
            -
                    self.only_cross_attention = only_cross_attention
         
     | 
| 374 | 
         
            -
             
     | 
| 375 | 
         
            -
                    # We keep these boolean flags for backward-compatibility.
         
     | 
| 376 | 
         
            -
                    self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
         
     | 
| 377 | 
         
            -
                    self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
         
     | 
| 378 | 
         
            -
                    self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
         
     | 
| 379 | 
         
            -
                    self.use_layer_norm = norm_type == "layer_norm"
         
     | 
| 380 | 
         
            -
                    self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
         
     | 
| 381 | 
         
            -
             
     | 
| 382 | 
         
            -
                    if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
         
     | 
| 383 | 
         
            -
                        raise ValueError(
         
     | 
| 384 | 
         
            -
                            f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
         
     | 
| 385 | 
         
            -
                            f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
         
     | 
| 386 | 
         
            -
                        )
         
     | 
| 387 | 
         
            -
             
     | 
| 388 | 
         
            -
                    self.norm_type = norm_type
         
     | 
| 389 | 
         
            -
                    self.num_embeds_ada_norm = num_embeds_ada_norm
         
     | 
| 390 | 
         
            -
             
     | 
| 391 | 
         
            -
                    if positional_embeddings and (num_positional_embeddings is None):
         
     | 
| 392 | 
         
            -
                        raise ValueError(
         
     | 
| 393 | 
         
            -
                            "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
         
     | 
| 394 | 
         
            -
                        )
         
     | 
| 395 | 
         
            -
             
     | 
| 396 | 
         
            -
                    if positional_embeddings == "sinusoidal":
         
     | 
| 397 | 
         
            -
                        self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
         
     | 
| 398 | 
         
            -
                    else:
         
     | 
| 399 | 
         
            -
                        self.pos_embed = None
         
     | 
| 400 | 
         
            -
             
     | 
| 401 | 
         
            -
                    # Define 3 blocks. Each block has its own normalization layer.
         
     | 
| 402 | 
         
            -
                    # 1. Self-Attn
         
     | 
| 403 | 
         
            -
                    if norm_type == "ada_norm":
         
     | 
| 404 | 
         
            -
                        self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
         
     | 
| 405 | 
         
            -
                    elif norm_type == "ada_norm_zero":
         
     | 
| 406 | 
         
            -
                        self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
         
     | 
| 407 | 
         
            -
                    elif norm_type == "ada_norm_continuous":
         
     | 
| 408 | 
         
            -
                        self.norm1 = AdaLayerNormContinuous(
         
     | 
| 409 | 
         
            -
                            dim,
         
     | 
| 410 | 
         
            -
                            ada_norm_continous_conditioning_embedding_dim,
         
     | 
| 411 | 
         
            -
                            norm_elementwise_affine,
         
     | 
| 412 | 
         
            -
                            norm_eps,
         
     | 
| 413 | 
         
            -
                            ada_norm_bias,
         
     | 
| 414 | 
         
            -
                            "rms_norm",
         
     | 
| 415 | 
         
            -
                        )
         
     | 
| 416 | 
         
            -
                    else:
         
     | 
| 417 | 
         
            -
                        self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
         
     | 
| 418 | 
         
            -
             
     | 
| 419 | 
         
            -
                    self.attn1 = Attention(
         
     | 
| 420 | 
         
            -
                        query_dim=dim,
         
     | 
| 421 | 
         
            -
                        heads=num_attention_heads,
         
     | 
| 422 | 
         
            -
                        dim_head=attention_head_dim,
         
     | 
| 423 | 
         
            -
                        dropout=dropout,
         
     | 
| 424 | 
         
            -
                        bias=attention_bias,
         
     | 
| 425 | 
         
            -
                        cross_attention_dim=cross_attention_dim if only_cross_attention else None,
         
     | 
| 426 | 
         
            -
                        upcast_attention=upcast_attention,
         
     | 
| 427 | 
         
            -
                        out_bias=attention_out_bias,
         
     | 
| 428 | 
         
            -
                    )
         
     | 
| 429 | 
         
            -
                    if extract_self_attention_kv:
         
     | 
| 430 | 
         
            -
                        self.extract_kv1 = KVCopy(cross_attention_dim=cross_attention_dim if only_cross_attention else None, inner_dim=dim)
         
     | 
| 431 | 
         
            -
             
     | 
| 432 | 
         
            -
                    # 2. Cross-Attn
         
     | 
| 433 | 
         
            -
                    if cross_attention_dim is not None or double_self_attention:
         
     | 
| 434 | 
         
            -
                        # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
         
     | 
| 435 | 
         
            -
                        # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
         
     | 
| 436 | 
         
            -
                        # the second cross attention block.
         
     | 
| 437 | 
         
            -
                        if norm_type == "ada_norm":
         
     | 
| 438 | 
         
            -
                            self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
         
     | 
| 439 | 
         
            -
                        elif norm_type == "ada_norm_continuous":
         
     | 
| 440 | 
         
            -
                            self.norm2 = AdaLayerNormContinuous(
         
     | 
| 441 | 
         
            -
                                dim,
         
     | 
| 442 | 
         
            -
                                ada_norm_continous_conditioning_embedding_dim,
         
     | 
| 443 | 
         
            -
                                norm_elementwise_affine,
         
     | 
| 444 | 
         
            -
                                norm_eps,
         
     | 
| 445 | 
         
            -
                                ada_norm_bias,
         
     | 
| 446 | 
         
            -
                                "rms_norm",
         
     | 
| 447 | 
         
            -
                            )
         
     | 
| 448 | 
         
            -
                        else:
         
     | 
| 449 | 
         
            -
                            self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
         
     | 
| 450 | 
         
            -
             
     | 
| 451 | 
         
            -
                        self.attn2 = Attention(
         
     | 
| 452 | 
         
            -
                            query_dim=dim,
         
     | 
| 453 | 
         
            -
                            cross_attention_dim=cross_attention_dim if not double_self_attention else None,
         
     | 
| 454 | 
         
            -
                            heads=num_attention_heads,
         
     | 
| 455 | 
         
            -
                            dim_head=attention_head_dim,
         
     | 
| 456 | 
         
            -
                            dropout=dropout,
         
     | 
| 457 | 
         
            -
                            bias=attention_bias,
         
     | 
| 458 | 
         
            -
                            upcast_attention=upcast_attention,
         
     | 
| 459 | 
         
            -
                            out_bias=attention_out_bias,
         
     | 
| 460 | 
         
            -
                        )  # is self-attn if encoder_hidden_states is none
         
     | 
| 461 | 
         
            -
                        if extract_cross_attention_kv:
         
     | 
| 462 | 
         
            -
                            self.extract_kv2 = KVCopy(cross_attention_dim=None, inner_dim=dim)
         
     | 
| 463 | 
         
            -
                    else:
         
     | 
| 464 | 
         
            -
                        self.norm2 = None
         
     | 
| 465 | 
         
            -
                        self.attn2 = None
         
     | 
| 466 | 
         
            -
             
     | 
| 467 | 
         
            -
                    # 3. Feed-forward
         
     | 
| 468 | 
         
            -
                    if norm_type == "ada_norm_continuous":
         
     | 
| 469 | 
         
            -
                        self.norm3 = AdaLayerNormContinuous(
         
     | 
| 470 | 
         
            -
                            dim,
         
     | 
| 471 | 
         
            -
                            ada_norm_continous_conditioning_embedding_dim,
         
     | 
| 472 | 
         
            -
                            norm_elementwise_affine,
         
     | 
| 473 | 
         
            -
                            norm_eps,
         
     | 
| 474 | 
         
            -
                            ada_norm_bias,
         
     | 
| 475 | 
         
            -
                            "layer_norm",
         
     | 
| 476 | 
         
            -
                        )
         
     | 
| 477 | 
         
            -
             
     | 
| 478 | 
         
            -
                    elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm", "ada_norm_continuous"]:
         
     | 
| 479 | 
         
            -
                        self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
         
     | 
| 480 | 
         
            -
                    elif norm_type == "layer_norm_i2vgen":
         
     | 
| 481 | 
         
            -
                        self.norm3 = None
         
     | 
| 482 | 
         
            -
             
     | 
| 483 | 
         
            -
                    self.ff = FeedForward(
         
     | 
| 484 | 
         
            -
                        dim,
         
     | 
| 485 | 
         
            -
                        dropout=dropout,
         
     | 
| 486 | 
         
            -
                        activation_fn=activation_fn,
         
     | 
| 487 | 
         
            -
                        final_dropout=final_dropout,
         
     | 
| 488 | 
         
            -
                        inner_dim=ff_inner_dim,
         
     | 
| 489 | 
         
            -
                        bias=ff_bias,
         
     | 
| 490 | 
         
            -
                    )
         
     | 
| 491 | 
         
            -
             
     | 
| 492 | 
         
            -
                    # 4. Fuser
         
     | 
| 493 | 
         
            -
                    if attention_type == "gated" or attention_type == "gated-text-image":
         
     | 
| 494 | 
         
            -
                        self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
         
     | 
| 495 | 
         
            -
             
     | 
| 496 | 
         
            -
                    # 5. Scale-shift for PixArt-Alpha.
         
     | 
| 497 | 
         
            -
                    if norm_type == "ada_norm_single":
         
     | 
| 498 | 
         
            -
                        self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
         
     | 
| 499 | 
         
            -
             
     | 
| 500 | 
         
            -
                    # let chunk size default to None
         
     | 
| 501 | 
         
            -
                    self._chunk_size = None
         
     | 
| 502 | 
         
            -
                    self._chunk_dim = 0
         
     | 
| 503 | 
         
            -
             
     | 
| 504 | 
         
            -
                def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
         
     | 
| 505 | 
         
            -
                    # Sets chunk feed-forward
         
     | 
| 506 | 
         
            -
                    self._chunk_size = chunk_size
         
     | 
| 507 | 
         
            -
                    self._chunk_dim = dim
         
     | 
| 508 | 
         
            -
             
     | 
| 509 | 
         
            -
                def forward(
         
     | 
| 510 | 
         
            -
                    self,
         
     | 
| 511 | 
         
            -
                    hidden_states: torch.FloatTensor,
         
     | 
| 512 | 
         
            -
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 513 | 
         
            -
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         
     | 
| 514 | 
         
            -
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 515 | 
         
            -
                    timestep: Optional[torch.LongTensor] = None,
         
     | 
| 516 | 
         
            -
                    cross_attention_kwargs: Dict[str, Any] = None,
         
     | 
| 517 | 
         
            -
                    class_labels: Optional[torch.LongTensor] = None,
         
     | 
| 518 | 
         
            -
                    added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
         
     | 
| 519 | 
         
            -
                ) -> torch.FloatTensor:
         
     | 
| 520 | 
         
            -
                    if cross_attention_kwargs is not None:
         
     | 
| 521 | 
         
            -
                        if cross_attention_kwargs.get("scale", None) is not None:
         
     | 
| 522 | 
         
            -
                            logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
         
     | 
| 523 | 
         
            -
             
     | 
| 524 | 
         
            -
                    # Notice that normalization is always applied before the real computation in the following blocks.
         
     | 
| 525 | 
         
            -
                    # 0. Self-Attention
         
     | 
| 526 | 
         
            -
                    batch_size = hidden_states.shape[0]
         
     | 
| 527 | 
         
            -
             
     | 
| 528 | 
         
            -
                    if self.norm_type == "ada_norm":
         
     | 
| 529 | 
         
            -
                        norm_hidden_states = self.norm1(hidden_states, timestep)
         
     | 
| 530 | 
         
            -
                    elif self.norm_type == "ada_norm_zero":
         
     | 
| 531 | 
         
            -
                        norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
         
     | 
| 532 | 
         
            -
                            hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
         
     | 
| 533 | 
         
            -
                        )
         
     | 
| 534 | 
         
            -
                    elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
         
     | 
| 535 | 
         
            -
                        norm_hidden_states = self.norm1(hidden_states)
         
     | 
| 536 | 
         
            -
                    elif self.norm_type == "ada_norm_continuous":
         
     | 
| 537 | 
         
            -
                        norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
         
     | 
| 538 | 
         
            -
                    elif self.norm_type == "ada_norm_single":
         
     | 
| 539 | 
         
            -
                        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
         
     | 
| 540 | 
         
            -
                            self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
         
     | 
| 541 | 
         
            -
                        ).chunk(6, dim=1)
         
     | 
| 542 | 
         
            -
                        norm_hidden_states = self.norm1(hidden_states)
         
     | 
| 543 | 
         
            -
                        norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
         
     | 
| 544 | 
         
            -
                        norm_hidden_states = norm_hidden_states.squeeze(1)
         
     | 
| 545 | 
         
            -
                    else:
         
     | 
| 546 | 
         
            -
                        raise ValueError("Incorrect norm used")
         
     | 
| 547 | 
         
            -
             
     | 
| 548 | 
         
            -
                    if self.pos_embed is not None:
         
     | 
| 549 | 
         
            -
                        norm_hidden_states = self.pos_embed(norm_hidden_states)
         
     | 
| 550 | 
         
            -
             
     | 
| 551 | 
         
            -
                    # 1. Prepare GLIGEN inputs
         
     | 
| 552 | 
         
            -
                    cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
         
     | 
| 553 | 
         
            -
                    gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
         
     | 
| 554 | 
         
            -
                    kv_drop_idx = cross_attention_kwargs.pop("kv_drop_idx", None)
         
     | 
| 555 | 
         
            -
             
     | 
| 556 | 
         
            -
                    if hasattr(self, "extract_kv1"):
         
     | 
| 557 | 
         
            -
                        kv_out_self = self.extract_kv1(norm_hidden_states)
         
     | 
| 558 | 
         
            -
                        if kv_drop_idx is not None:
         
     | 
| 559 | 
         
            -
                            zero_kv_out_self_k = torch.zeros_like(kv_out_self.k)
         
     | 
| 560 | 
         
            -
                            kv_out_self.k[kv_drop_idx] = zero_kv_out_self_k[kv_drop_idx]
         
     | 
| 561 | 
         
            -
                            zero_kv_out_self_v = torch.zeros_like(kv_out_self.v)
         
     | 
| 562 | 
         
            -
                            kv_out_self.v[kv_drop_idx] = zero_kv_out_self_v[kv_drop_idx]
         
     | 
| 563 | 
         
            -
                    else:
         
     | 
| 564 | 
         
            -
                        kv_out_self = None
         
     | 
| 565 | 
         
            -
                    attn_output = self.attn1(
         
     | 
| 566 | 
         
            -
                        norm_hidden_states,
         
     | 
| 567 | 
         
            -
                        encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
         
     | 
| 568 | 
         
            -
                        attention_mask=attention_mask,
         
     | 
| 569 | 
         
            -
                        **cross_attention_kwargs,
         
     | 
| 570 | 
         
            -
                    )
         
     | 
| 571 | 
         
            -
                    if self.norm_type == "ada_norm_zero":
         
     | 
| 572 | 
         
            -
                        attn_output = gate_msa.unsqueeze(1) * attn_output
         
     | 
| 573 | 
         
            -
                    elif self.norm_type == "ada_norm_single":
         
     | 
| 574 | 
         
            -
                        attn_output = gate_msa * attn_output
         
     | 
| 575 | 
         
            -
             
     | 
| 576 | 
         
            -
                    hidden_states = attn_output + hidden_states
         
     | 
| 577 | 
         
            -
                    if hidden_states.ndim == 4:
         
     | 
| 578 | 
         
            -
                        hidden_states = hidden_states.squeeze(1)
         
     | 
| 579 | 
         
            -
             
     | 
| 580 | 
         
            -
                    # 1.2 GLIGEN Control
         
     | 
| 581 | 
         
            -
                    if gligen_kwargs is not None:
         
     | 
| 582 | 
         
            -
                        hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
         
     | 
| 583 | 
         
            -
             
     | 
| 584 | 
         
            -
                    # 3. Cross-Attention
         
     | 
| 585 | 
         
            -
                    if self.attn2 is not None:
         
     | 
| 586 | 
         
            -
                        if self.norm_type == "ada_norm":
         
     | 
| 587 | 
         
            -
                            norm_hidden_states = self.norm2(hidden_states, timestep)
         
     | 
| 588 | 
         
            -
                        elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
         
     | 
| 589 | 
         
            -
                            norm_hidden_states = self.norm2(hidden_states)
         
     | 
| 590 | 
         
            -
                        elif self.norm_type == "ada_norm_single":
         
     | 
| 591 | 
         
            -
                            # For PixArt norm2 isn't applied here:
         
     | 
| 592 | 
         
            -
                            # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
         
     | 
| 593 | 
         
            -
                            norm_hidden_states = hidden_states
         
     | 
| 594 | 
         
            -
                        elif self.norm_type == "ada_norm_continuous":
         
     | 
| 595 | 
         
            -
                            norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
         
     | 
| 596 | 
         
            -
                        else:
         
     | 
| 597 | 
         
            -
                            raise ValueError("Incorrect norm")
         
     | 
| 598 | 
         
            -
             
     | 
| 599 | 
         
            -
                        if self.pos_embed is not None and self.norm_type != "ada_norm_single":
         
     | 
| 600 | 
         
            -
                            norm_hidden_states = self.pos_embed(norm_hidden_states)
         
     | 
| 601 | 
         
            -
             
     | 
| 602 | 
         
            -
                        attn_output = self.attn2(
         
     | 
| 603 | 
         
            -
                            norm_hidden_states,
         
     | 
| 604 | 
         
            -
                            encoder_hidden_states=encoder_hidden_states,
         
     | 
| 605 | 
         
            -
                            attention_mask=encoder_attention_mask,
         
     | 
| 606 | 
         
            -
                            temb=timestep,
         
     | 
| 607 | 
         
            -
                            **cross_attention_kwargs,
         
     | 
| 608 | 
         
            -
                        )
         
     | 
| 609 | 
         
            -
                        hidden_states = attn_output + hidden_states
         
     | 
| 610 | 
         
            -
             
     | 
| 611 | 
         
            -
                        if hasattr(self, "extract_kv2"):
         
     | 
| 612 | 
         
            -
                            kv_out_cross = self.extract_kv2(hidden_states)
         
     | 
| 613 | 
         
            -
                            if kv_drop_idx is not None:
         
     | 
| 614 | 
         
            -
                                zero_kv_out_cross_k = torch.zeros_like(kv_out_cross.k)
         
     | 
| 615 | 
         
            -
                                kv_out_cross.k[kv_drop_idx] = zero_kv_out_cross_k[kv_drop_idx]
         
     | 
| 616 | 
         
            -
                                zero_kv_out_cross_v = torch.zeros_like(kv_out_cross.v)
         
     | 
| 617 | 
         
            -
                                kv_out_cross.v[kv_drop_idx] = zero_kv_out_cross_v[kv_drop_idx]
         
     | 
| 618 | 
         
            -
                        else:
         
     | 
| 619 | 
         
            -
                            kv_out_cross = None
         
     | 
| 620 | 
         
            -
             
     | 
| 621 | 
         
            -
                    # 4. Feed-forward
         
     | 
| 622 | 
         
            -
                    # i2vgen doesn't have this norm 🤷♂️
         
     | 
| 623 | 
         
            -
                    if self.norm_type == "ada_norm_continuous":
         
     | 
| 624 | 
         
            -
                        norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
         
     | 
| 625 | 
         
            -
                    elif not self.norm_type == "ada_norm_single":
         
     | 
| 626 | 
         
            -
                        norm_hidden_states = self.norm3(hidden_states)
         
     | 
| 627 | 
         
            -
             
     | 
| 628 | 
         
            -
                    if self.norm_type == "ada_norm_zero":
         
     | 
| 629 | 
         
            -
                        norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
         
     | 
| 630 | 
         
            -
             
     | 
| 631 | 
         
            -
                    if self.norm_type == "ada_norm_single":
         
     | 
| 632 | 
         
            -
                        norm_hidden_states = self.norm2(hidden_states)
         
     | 
| 633 | 
         
            -
                        norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
         
     | 
| 634 | 
         
            -
             
     | 
| 635 | 
         
            -
                    if self._chunk_size is not None:
         
     | 
| 636 | 
         
            -
                        # "feed_forward_chunk_size" can be used to save memory
         
     | 
| 637 | 
         
            -
                        ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
         
     | 
| 638 | 
         
            -
                    else:
         
     | 
| 639 | 
         
            -
                        ff_output = self.ff(norm_hidden_states)
         
     | 
| 640 | 
         
            -
             
     | 
| 641 | 
         
            -
                    if self.norm_type == "ada_norm_zero":
         
     | 
| 642 | 
         
            -
                        ff_output = gate_mlp.unsqueeze(1) * ff_output
         
     | 
| 643 | 
         
            -
                    elif self.norm_type == "ada_norm_single":
         
     | 
| 644 | 
         
            -
                        ff_output = gate_mlp * ff_output
         
     | 
| 645 | 
         
            -
             
     | 
| 646 | 
         
            -
                    hidden_states = ff_output + hidden_states
         
     | 
| 647 | 
         
            -
                    if hidden_states.ndim == 4:
         
     | 
| 648 | 
         
            -
                        hidden_states = hidden_states.squeeze(1)
         
     | 
| 649 | 
         
            -
             
     | 
| 650 | 
         
            -
                    return hidden_states, AttentionCache(self_attention=kv_out_self, cross_attention=kv_out_cross)
         
     | 
| 651 | 
         
            -
             
     | 
| 652 | 
         
            -
                def init_kv_extraction(self):
         
     | 
| 653 | 
         
            -
                    if hasattr(self, "extract_kv1"):
         
     | 
| 654 | 
         
            -
                        self.extract_kv1.init_kv_copy(self.attn1)
         
     | 
| 655 | 
         
            -
                    if hasattr(self, "extract_kv2"):
         
     | 
| 656 | 
         
            -
                        self.extract_kv2.init_kv_copy(self.attn1)
         
     | 
| 
         | 
|
| 37 | 
         | 
| 38 | 
         
             
                return custom_forward
         
     | 
| 39 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 40 | 
         
             
            def maybe_grad_checkpoint(resnet, attn, hidden_states, temb, encoder_hidden_states, adapter_hidden_states, do_ckpt=True):
         
     | 
| 41 | 
         | 
| 42 | 
         
             
                if do_ckpt:
         
     | 
| 
         | 
|
| 257 | 
         
             
                    x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
         
     | 
| 258 | 
         | 
| 259 | 
         
             
                    return x
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        module/transformers/transformer_2d_ExtractKV.py
    DELETED
    
    | 
         @@ -1,595 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # Copy from diffusers.models.transformers.transformer_2d.py
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            # Copyright 2024 The HuggingFace Team. All rights reserved.
         
     | 
| 4 | 
         
            -
            #
         
     | 
| 5 | 
         
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 6 | 
         
            -
            # you may not use this file except in compliance with the License.
         
     | 
| 7 | 
         
            -
            # You may obtain a copy of the License at
         
     | 
| 8 | 
         
            -
            #
         
     | 
| 9 | 
         
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 10 | 
         
            -
            #
         
     | 
| 11 | 
         
            -
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 12 | 
         
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 13 | 
         
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 14 | 
         
            -
            # See the License for the specific language governing permissions and
         
     | 
| 15 | 
         
            -
            # limitations under the License.
         
     | 
| 16 | 
         
            -
            from dataclasses import dataclass
         
     | 
| 17 | 
         
            -
            from typing import Any, Dict, Optional
         
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
            import torch
         
     | 
| 20 | 
         
            -
            import torch.nn.functional as F
         
     | 
| 21 | 
         
            -
            from torch import nn
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         
     | 
| 24 | 
         
            -
            from diffusers.utils import BaseOutput, deprecate, is_torch_version, logging
         
     | 
| 25 | 
         
            -
            from diffusers.models.attention import BasicTransformerBlock
         
     | 
| 26 | 
         
            -
            from diffusers.models.embeddings import ImagePositionalEmbeddings, PatchEmbed, PixArtAlphaTextProjection
         
     | 
| 27 | 
         
            -
            from diffusers.models.modeling_utils import ModelMixin
         
     | 
| 28 | 
         
            -
            from diffusers.models.normalization import AdaLayerNormSingle
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
            from module.attention import ExtractKVTransformerBlock
         
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
            @dataclass
         
     | 
| 37 | 
         
            -
            class ExtractKVTransformer2DModelOutput(BaseOutput):
         
     | 
| 38 | 
         
            -
                """
         
     | 
| 39 | 
         
            -
                The output of [`ExtractKVTransformer2DModel`].
         
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
                Args:
         
     | 
| 42 | 
         
            -
                    sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
         
     | 
| 43 | 
         
            -
                        The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
         
     | 
| 44 | 
         
            -
                        distributions for the unnoised latent pixels.
         
     | 
| 45 | 
         
            -
                """
         
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
                sample: torch.FloatTensor
         
     | 
| 48 | 
         
            -
                cached_kvs: Dict[str, Any] = None
         
     | 
| 49 | 
         
            -
             
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
            class ExtractKVTransformer2DModel(ModelMixin, ConfigMixin):
         
     | 
| 52 | 
         
            -
                """
         
     | 
| 53 | 
         
            -
                A 2D Transformer model for image-like data which also outputs CrossAttention KV metrics.
         
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
                Parameters:
         
     | 
| 56 | 
         
            -
                    num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
         
     | 
| 57 | 
         
            -
                    attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
         
     | 
| 58 | 
         
            -
                    in_channels (`int`, *optional*):
         
     | 
| 59 | 
         
            -
                        The number of channels in the input and output (specify if the input is **continuous**).
         
     | 
| 60 | 
         
            -
                    num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
         
     | 
| 61 | 
         
            -
                    dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
         
     | 
| 62 | 
         
            -
                    cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
         
     | 
| 63 | 
         
            -
                    sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
         
     | 
| 64 | 
         
            -
                        This is fixed during training since it is used to learn a number of position embeddings.
         
     | 
| 65 | 
         
            -
                    num_vector_embeds (`int`, *optional*):
         
     | 
| 66 | 
         
            -
                        The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
         
     | 
| 67 | 
         
            -
                        Includes the class for the masked latent pixel.
         
     | 
| 68 | 
         
            -
                    activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
         
     | 
| 69 | 
         
            -
                    num_embeds_ada_norm ( `int`, *optional*):
         
     | 
| 70 | 
         
            -
                        The number of diffusion steps used during training. Pass if at least one of the norm_layers is
         
     | 
| 71 | 
         
            -
                        `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
         
     | 
| 72 | 
         
            -
                        added to the hidden states.
         
     | 
| 73 | 
         
            -
             
     | 
| 74 | 
         
            -
                        During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
         
     | 
| 75 | 
         
            -
                    attention_bias (`bool`, *optional*):
         
     | 
| 76 | 
         
            -
                        Configure if the `TransformerBlocks` attention should contain a bias parameter.
         
     | 
| 77 | 
         
            -
                """
         
     | 
| 78 | 
         
            -
             
     | 
| 79 | 
         
            -
                _supports_gradient_checkpointing = True
         
     | 
| 80 | 
         
            -
                _no_split_modules = ["BasicTransformerBlock"]
         
     | 
| 81 | 
         
            -
             
     | 
| 82 | 
         
            -
                @register_to_config
         
     | 
| 83 | 
         
            -
                def __init__(
         
     | 
| 84 | 
         
            -
                    self,
         
     | 
| 85 | 
         
            -
                    num_attention_heads: int = 16,
         
     | 
| 86 | 
         
            -
                    attention_head_dim: int = 88,
         
     | 
| 87 | 
         
            -
                    in_channels: Optional[int] = None,
         
     | 
| 88 | 
         
            -
                    out_channels: Optional[int] = None,
         
     | 
| 89 | 
         
            -
                    num_layers: int = 1,
         
     | 
| 90 | 
         
            -
                    dropout: float = 0.0,
         
     | 
| 91 | 
         
            -
                    norm_num_groups: int = 32,
         
     | 
| 92 | 
         
            -
                    cross_attention_dim: Optional[int] = None,
         
     | 
| 93 | 
         
            -
                    attention_bias: bool = False,
         
     | 
| 94 | 
         
            -
                    sample_size: Optional[int] = None,
         
     | 
| 95 | 
         
            -
                    num_vector_embeds: Optional[int] = None,
         
     | 
| 96 | 
         
            -
                    patch_size: Optional[int] = None,
         
     | 
| 97 | 
         
            -
                    activation_fn: str = "geglu",
         
     | 
| 98 | 
         
            -
                    num_embeds_ada_norm: Optional[int] = None,
         
     | 
| 99 | 
         
            -
                    use_linear_projection: bool = False,
         
     | 
| 100 | 
         
            -
                    only_cross_attention: bool = False,
         
     | 
| 101 | 
         
            -
                    double_self_attention: bool = False,
         
     | 
| 102 | 
         
            -
                    upcast_attention: bool = False,
         
     | 
| 103 | 
         
            -
                    norm_type: str = "layer_norm",  # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
         
     | 
| 104 | 
         
            -
                    norm_elementwise_affine: bool = True,
         
     | 
| 105 | 
         
            -
                    norm_eps: float = 1e-5,
         
     | 
| 106 | 
         
            -
                    attention_type: str = "default",
         
     | 
| 107 | 
         
            -
                    caption_channels: int = None,
         
     | 
| 108 | 
         
            -
                    interpolation_scale: float = None,
         
     | 
| 109 | 
         
            -
                    use_additional_conditions: Optional[bool] = None,
         
     | 
| 110 | 
         
            -
                    extract_self_attention_kv: bool = False,
         
     | 
| 111 | 
         
            -
                    extract_cross_attention_kv: bool = False,
         
     | 
| 112 | 
         
            -
                ):
         
     | 
| 113 | 
         
            -
                    super().__init__()
         
     | 
| 114 | 
         
            -
             
     | 
| 115 | 
         
            -
                    # Validate inputs.
         
     | 
| 116 | 
         
            -
                    if patch_size is not None:
         
     | 
| 117 | 
         
            -
                        if norm_type not in ["ada_norm", "ada_norm_zero", "ada_norm_single"]:
         
     | 
| 118 | 
         
            -
                            raise NotImplementedError(
         
     | 
| 119 | 
         
            -
                                f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
         
     | 
| 120 | 
         
            -
                            )
         
     | 
| 121 | 
         
            -
                        elif norm_type in ["ada_norm", "ada_norm_zero"] and num_embeds_ada_norm is None:
         
     | 
| 122 | 
         
            -
                            raise ValueError(
         
     | 
| 123 | 
         
            -
                                f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
         
     | 
| 124 | 
         
            -
                            )
         
     | 
| 125 | 
         
            -
             
     | 
| 126 | 
         
            -
                    # Set some common variables used across the board.
         
     | 
| 127 | 
         
            -
                    self.use_linear_projection = use_linear_projection
         
     | 
| 128 | 
         
            -
                    self.interpolation_scale = interpolation_scale
         
     | 
| 129 | 
         
            -
                    self.caption_channels = caption_channels
         
     | 
| 130 | 
         
            -
                    self.num_attention_heads = num_attention_heads
         
     | 
| 131 | 
         
            -
                    self.attention_head_dim = attention_head_dim
         
     | 
| 132 | 
         
            -
                    self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
         
     | 
| 133 | 
         
            -
                    self.in_channels = in_channels
         
     | 
| 134 | 
         
            -
                    self.out_channels = in_channels if out_channels is None else out_channels
         
     | 
| 135 | 
         
            -
                    self.gradient_checkpointing = False
         
     | 
| 136 | 
         
            -
                    if use_additional_conditions is None:
         
     | 
| 137 | 
         
            -
                        if norm_type == "ada_norm_single" and sample_size == 128:
         
     | 
| 138 | 
         
            -
                            use_additional_conditions = True
         
     | 
| 139 | 
         
            -
                        else:
         
     | 
| 140 | 
         
            -
                            use_additional_conditions = False
         
     | 
| 141 | 
         
            -
                    self.use_additional_conditions = use_additional_conditions
         
     | 
| 142 | 
         
            -
                    self.extract_self_attention_kv = extract_self_attention_kv
         
     | 
| 143 | 
         
            -
                    self.extract_cross_attention_kv = extract_cross_attention_kv
         
     | 
| 144 | 
         
            -
             
     | 
| 145 | 
         
            -
                    # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
         
     | 
| 146 | 
         
            -
                    # Define whether input is continuous or discrete depending on configuration
         
     | 
| 147 | 
         
            -
                    self.is_input_continuous = (in_channels is not None) and (patch_size is None)
         
     | 
| 148 | 
         
            -
                    self.is_input_vectorized = num_vector_embeds is not None
         
     | 
| 149 | 
         
            -
                    self.is_input_patches = in_channels is not None and patch_size is not None
         
     | 
| 150 | 
         
            -
             
     | 
| 151 | 
         
            -
                    if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
         
     | 
| 152 | 
         
            -
                        deprecation_message = (
         
     | 
| 153 | 
         
            -
                            f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
         
     | 
| 154 | 
         
            -
                            " incorrectly set to `'layer_norm'`. Make sure to set `norm_type` to `'ada_norm'` in the config."
         
     | 
| 155 | 
         
            -
                            " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
         
     | 
| 156 | 
         
            -
                            " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
         
     | 
| 157 | 
         
            -
                            " would be very nice if you could open a Pull request for the `transformer/config.json` file"
         
     | 
| 158 | 
         
            -
                        )
         
     | 
| 159 | 
         
            -
                        deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
         
     | 
| 160 | 
         
            -
                        norm_type = "ada_norm"
         
     | 
| 161 | 
         
            -
             
     | 
| 162 | 
         
            -
                    if self.is_input_continuous and self.is_input_vectorized:
         
     | 
| 163 | 
         
            -
                        raise ValueError(
         
     | 
| 164 | 
         
            -
                            f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
         
     | 
| 165 | 
         
            -
                            " sure that either `in_channels` or `num_vector_embeds` is None."
         
     | 
| 166 | 
         
            -
                        )
         
     | 
| 167 | 
         
            -
                    elif self.is_input_vectorized and self.is_input_patches:
         
     | 
| 168 | 
         
            -
                        raise ValueError(
         
     | 
| 169 | 
         
            -
                            f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
         
     | 
| 170 | 
         
            -
                            " sure that either `num_vector_embeds` or `num_patches` is None."
         
     | 
| 171 | 
         
            -
                        )
         
     | 
| 172 | 
         
            -
                    elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
         
     | 
| 173 | 
         
            -
                        raise ValueError(
         
     | 
| 174 | 
         
            -
                            f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
         
     | 
| 175 | 
         
            -
                            f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
         
     | 
| 176 | 
         
            -
                        )
         
     | 
| 177 | 
         
            -
             
     | 
| 178 | 
         
            -
                    # 2. Initialize the right blocks.
         
     | 
| 179 | 
         
            -
                    # These functions follow a common structure:
         
     | 
| 180 | 
         
            -
                    # a. Initialize the input blocks. b. Initialize the transformer blocks.
         
     | 
| 181 | 
         
            -
                    # c. Initialize the output blocks and other projection blocks when necessary.
         
     | 
| 182 | 
         
            -
                    if self.is_input_continuous:
         
     | 
| 183 | 
         
            -
                        self._init_continuous_input(norm_type=norm_type)
         
     | 
| 184 | 
         
            -
                    elif self.is_input_vectorized:
         
     | 
| 185 | 
         
            -
                        self._init_vectorized_inputs(norm_type=norm_type)
         
     | 
| 186 | 
         
            -
                    elif self.is_input_patches:
         
     | 
| 187 | 
         
            -
                        self._init_patched_inputs(norm_type=norm_type)
         
     | 
| 188 | 
         
            -
             
     | 
| 189 | 
         
            -
                def _init_continuous_input(self, norm_type):
         
     | 
| 190 | 
         
            -
                    self.norm = torch.nn.GroupNorm(
         
     | 
| 191 | 
         
            -
                        num_groups=self.config.norm_num_groups, num_channels=self.in_channels, eps=1e-6, affine=True
         
     | 
| 192 | 
         
            -
                    )
         
     | 
| 193 | 
         
            -
                    if self.use_linear_projection:
         
     | 
| 194 | 
         
            -
                        self.proj_in = torch.nn.Linear(self.in_channels, self.inner_dim)
         
     | 
| 195 | 
         
            -
                    else:
         
     | 
| 196 | 
         
            -
                        self.proj_in = torch.nn.Conv2d(self.in_channels, self.inner_dim, kernel_size=1, stride=1, padding=0)
         
     | 
| 197 | 
         
            -
             
     | 
| 198 | 
         
            -
                    self.transformer_blocks = nn.ModuleList(
         
     | 
| 199 | 
         
            -
                        [
         
     | 
| 200 | 
         
            -
                            ExtractKVTransformerBlock(
         
     | 
| 201 | 
         
            -
                                self.inner_dim,
         
     | 
| 202 | 
         
            -
                                self.config.num_attention_heads,
         
     | 
| 203 | 
         
            -
                                self.config.attention_head_dim,
         
     | 
| 204 | 
         
            -
                                dropout=self.config.dropout,
         
     | 
| 205 | 
         
            -
                                cross_attention_dim=self.config.cross_attention_dim,
         
     | 
| 206 | 
         
            -
                                activation_fn=self.config.activation_fn,
         
     | 
| 207 | 
         
            -
                                num_embeds_ada_norm=self.config.num_embeds_ada_norm,
         
     | 
| 208 | 
         
            -
                                attention_bias=self.config.attention_bias,
         
     | 
| 209 | 
         
            -
                                only_cross_attention=self.config.only_cross_attention,
         
     | 
| 210 | 
         
            -
                                double_self_attention=self.config.double_self_attention,
         
     | 
| 211 | 
         
            -
                                upcast_attention=self.config.upcast_attention,
         
     | 
| 212 | 
         
            -
                                norm_type=norm_type,
         
     | 
| 213 | 
         
            -
                                norm_elementwise_affine=self.config.norm_elementwise_affine,
         
     | 
| 214 | 
         
            -
                                norm_eps=self.config.norm_eps,
         
     | 
| 215 | 
         
            -
                                attention_type=self.config.attention_type,
         
     | 
| 216 | 
         
            -
                                extract_self_attention_kv=self.config.extract_self_attention_kv,
         
     | 
| 217 | 
         
            -
                                extract_cross_attention_kv=self.config.extract_cross_attention_kv,
         
     | 
| 218 | 
         
            -
                            )
         
     | 
| 219 | 
         
            -
                            for _ in range(self.config.num_layers)
         
     | 
| 220 | 
         
            -
                        ]
         
     | 
| 221 | 
         
            -
                    )
         
     | 
| 222 | 
         
            -
             
     | 
| 223 | 
         
            -
                    if self.use_linear_projection:
         
     | 
| 224 | 
         
            -
                        self.proj_out = torch.nn.Linear(self.inner_dim, self.out_channels)
         
     | 
| 225 | 
         
            -
                    else:
         
     | 
| 226 | 
         
            -
                        self.proj_out = torch.nn.Conv2d(self.inner_dim, self.out_channels, kernel_size=1, stride=1, padding=0)
         
     | 
| 227 | 
         
            -
             
     | 
| 228 | 
         
            -
                def _init_vectorized_inputs(self, norm_type):
         
     | 
| 229 | 
         
            -
                    assert self.config.sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
         
     | 
| 230 | 
         
            -
                    assert (
         
     | 
| 231 | 
         
            -
                        self.config.num_vector_embeds is not None
         
     | 
| 232 | 
         
            -
                    ), "Transformer2DModel over discrete input must provide num_embed"
         
     | 
| 233 | 
         
            -
             
     | 
| 234 | 
         
            -
                    self.height = self.config.sample_size
         
     | 
| 235 | 
         
            -
                    self.width = self.config.sample_size
         
     | 
| 236 | 
         
            -
                    self.num_latent_pixels = self.height * self.width
         
     | 
| 237 | 
         
            -
             
     | 
| 238 | 
         
            -
                    self.latent_image_embedding = ImagePositionalEmbeddings(
         
     | 
| 239 | 
         
            -
                        num_embed=self.config.num_vector_embeds, embed_dim=self.inner_dim, height=self.height, width=self.width
         
     | 
| 240 | 
         
            -
                    )
         
     | 
| 241 | 
         
            -
             
     | 
| 242 | 
         
            -
                    self.transformer_blocks = nn.ModuleList(
         
     | 
| 243 | 
         
            -
                        [
         
     | 
| 244 | 
         
            -
                            ExtractKVTransformerBlock(
         
     | 
| 245 | 
         
            -
                                self.inner_dim,
         
     | 
| 246 | 
         
            -
                                self.config.num_attention_heads,
         
     | 
| 247 | 
         
            -
                                self.config.attention_head_dim,
         
     | 
| 248 | 
         
            -
                                dropout=self.config.dropout,
         
     | 
| 249 | 
         
            -
                                cross_attention_dim=self.config.cross_attention_dim,
         
     | 
| 250 | 
         
            -
                                activation_fn=self.config.activation_fn,
         
     | 
| 251 | 
         
            -
                                num_embeds_ada_norm=self.config.num_embeds_ada_norm,
         
     | 
| 252 | 
         
            -
                                attention_bias=self.config.attention_bias,
         
     | 
| 253 | 
         
            -
                                only_cross_attention=self.config.only_cross_attention,
         
     | 
| 254 | 
         
            -
                                double_self_attention=self.config.double_self_attention,
         
     | 
| 255 | 
         
            -
                                upcast_attention=self.config.upcast_attention,
         
     | 
| 256 | 
         
            -
                                norm_type=norm_type,
         
     | 
| 257 | 
         
            -
                                norm_elementwise_affine=self.config.norm_elementwise_affine,
         
     | 
| 258 | 
         
            -
                                norm_eps=self.config.norm_eps,
         
     | 
| 259 | 
         
            -
                                attention_type=self.config.attention_type,
         
     | 
| 260 | 
         
            -
                                extract_self_attention_kv=self.config.extract_self_attention_kv,
         
     | 
| 261 | 
         
            -
                                extract_cross_attention_kv=self.config.extract_cross_attention_kv,
         
     | 
| 262 | 
         
            -
                            )
         
     | 
| 263 | 
         
            -
                            for _ in range(self.config.num_layers)
         
     | 
| 264 | 
         
            -
                        ]
         
     | 
| 265 | 
         
            -
                    )
         
     | 
| 266 | 
         
            -
             
     | 
| 267 | 
         
            -
                    self.norm_out = nn.LayerNorm(self.inner_dim)
         
     | 
| 268 | 
         
            -
                    self.out = nn.Linear(self.inner_dim, self.config.num_vector_embeds - 1)
         
     | 
| 269 | 
         
            -
             
     | 
| 270 | 
         
            -
                def _init_patched_inputs(self, norm_type):
         
     | 
| 271 | 
         
            -
                    assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
         
     | 
| 272 | 
         
            -
             
     | 
| 273 | 
         
            -
                    self.height = self.config.sample_size
         
     | 
| 274 | 
         
            -
                    self.width = self.config.sample_size
         
     | 
| 275 | 
         
            -
             
     | 
| 276 | 
         
            -
                    self.patch_size = self.config.patch_size
         
     | 
| 277 | 
         
            -
                    interpolation_scale = (
         
     | 
| 278 | 
         
            -
                        self.config.interpolation_scale
         
     | 
| 279 | 
         
            -
                        if self.config.interpolation_scale is not None
         
     | 
| 280 | 
         
            -
                        else max(self.config.sample_size // 64, 1)
         
     | 
| 281 | 
         
            -
                    )
         
     | 
| 282 | 
         
            -
                    self.pos_embed = PatchEmbed(
         
     | 
| 283 | 
         
            -
                        height=self.config.sample_size,
         
     | 
| 284 | 
         
            -
                        width=self.config.sample_size,
         
     | 
| 285 | 
         
            -
                        patch_size=self.config.patch_size,
         
     | 
| 286 | 
         
            -
                        in_channels=self.in_channels,
         
     | 
| 287 | 
         
            -
                        embed_dim=self.inner_dim,
         
     | 
| 288 | 
         
            -
                        interpolation_scale=interpolation_scale,
         
     | 
| 289 | 
         
            -
                    )
         
     | 
| 290 | 
         
            -
             
     | 
| 291 | 
         
            -
                    self.transformer_blocks = nn.ModuleList(
         
     | 
| 292 | 
         
            -
                        [
         
     | 
| 293 | 
         
            -
                            ExtractKVTransformerBlock(
         
     | 
| 294 | 
         
            -
                                self.inner_dim,
         
     | 
| 295 | 
         
            -
                                self.config.num_attention_heads,
         
     | 
| 296 | 
         
            -
                                self.config.attention_head_dim,
         
     | 
| 297 | 
         
            -
                                dropout=self.config.dropout,
         
     | 
| 298 | 
         
            -
                                cross_attention_dim=self.config.cross_attention_dim,
         
     | 
| 299 | 
         
            -
                                activation_fn=self.config.activation_fn,
         
     | 
| 300 | 
         
            -
                                num_embeds_ada_norm=self.config.num_embeds_ada_norm,
         
     | 
| 301 | 
         
            -
                                attention_bias=self.config.attention_bias,
         
     | 
| 302 | 
         
            -
                                only_cross_attention=self.config.only_cross_attention,
         
     | 
| 303 | 
         
            -
                                double_self_attention=self.config.double_self_attention,
         
     | 
| 304 | 
         
            -
                                upcast_attention=self.config.upcast_attention,
         
     | 
| 305 | 
         
            -
                                norm_type=norm_type,
         
     | 
| 306 | 
         
            -
                                norm_elementwise_affine=self.config.norm_elementwise_affine,
         
     | 
| 307 | 
         
            -
                                norm_eps=self.config.norm_eps,
         
     | 
| 308 | 
         
            -
                                attention_type=self.config.attention_type,
         
     | 
| 309 | 
         
            -
                                extract_self_attention_kv=self.config.extract_self_attention_kv,
         
     | 
| 310 | 
         
            -
                                extract_cross_attention_kv=self.config.extract_cross_attention_kv,
         
     | 
| 311 | 
         
            -
                            )
         
     | 
| 312 | 
         
            -
                            for _ in range(self.config.num_layers)
         
     | 
| 313 | 
         
            -
                        ]
         
     | 
| 314 | 
         
            -
                    )
         
     | 
| 315 | 
         
            -
             
     | 
| 316 | 
         
            -
                    if self.config.norm_type != "ada_norm_single":
         
     | 
| 317 | 
         
            -
                        self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
         
     | 
| 318 | 
         
            -
                        self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
         
     | 
| 319 | 
         
            -
                        self.proj_out_2 = nn.Linear(
         
     | 
| 320 | 
         
            -
                            self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
         
     | 
| 321 | 
         
            -
                        )
         
     | 
| 322 | 
         
            -
                    elif self.config.norm_type == "ada_norm_single":
         
     | 
| 323 | 
         
            -
                        self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
         
     | 
| 324 | 
         
            -
                        self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
         
     | 
| 325 | 
         
            -
                        self.proj_out = nn.Linear(
         
     | 
| 326 | 
         
            -
                            self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
         
     | 
| 327 | 
         
            -
                        )
         
     | 
| 328 | 
         
            -
             
     | 
| 329 | 
         
            -
                    # PixArt-Alpha blocks.
         
     | 
| 330 | 
         
            -
                    self.adaln_single = None
         
     | 
| 331 | 
         
            -
                    if self.config.norm_type == "ada_norm_single":
         
     | 
| 332 | 
         
            -
                        # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
         
     | 
| 333 | 
         
            -
                        # additional conditions until we find better name
         
     | 
| 334 | 
         
            -
                        self.adaln_single = AdaLayerNormSingle(
         
     | 
| 335 | 
         
            -
                            self.inner_dim, use_additional_conditions=self.use_additional_conditions
         
     | 
| 336 | 
         
            -
                        )
         
     | 
| 337 | 
         
            -
             
     | 
| 338 | 
         
            -
                    self.caption_projection = None
         
     | 
| 339 | 
         
            -
                    if self.caption_channels is not None:
         
     | 
| 340 | 
         
            -
                        self.caption_projection = PixArtAlphaTextProjection(
         
     | 
| 341 | 
         
            -
                            in_features=self.caption_channels, hidden_size=self.inner_dim
         
     | 
| 342 | 
         
            -
                        )
         
     | 
| 343 | 
         
            -
             
     | 
| 344 | 
         
            -
                def _set_gradient_checkpointing(self, module, value=False):
         
     | 
| 345 | 
         
            -
                    if hasattr(module, "gradient_checkpointing"):
         
     | 
| 346 | 
         
            -
                        module.gradient_checkpointing = value
         
     | 
| 347 | 
         
            -
             
     | 
| 348 | 
         
            -
                def forward(
         
     | 
| 349 | 
         
            -
                    self,
         
     | 
| 350 | 
         
            -
                    hidden_states: torch.Tensor,
         
     | 
| 351 | 
         
            -
                    encoder_hidden_states: Optional[torch.Tensor] = None,
         
     | 
| 352 | 
         
            -
                    timestep: Optional[torch.LongTensor] = None,
         
     | 
| 353 | 
         
            -
                    added_cond_kwargs: Dict[str, torch.Tensor] = None,
         
     | 
| 354 | 
         
            -
                    class_labels: Optional[torch.LongTensor] = None,
         
     | 
| 355 | 
         
            -
                    cross_attention_kwargs: Dict[str, Any] = None,
         
     | 
| 356 | 
         
            -
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 357 | 
         
            -
                    encoder_attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 358 | 
         
            -
                    return_dict: bool = True,
         
     | 
| 359 | 
         
            -
                ):
         
     | 
| 360 | 
         
            -
                    """
         
     | 
| 361 | 
         
            -
                    The [`Transformer2DModel`] forward method.
         
     | 
| 362 | 
         
            -
             
     | 
| 363 | 
         
            -
                    Args:
         
     | 
| 364 | 
         
            -
                        hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
         
     | 
| 365 | 
         
            -
                            Input `hidden_states`.
         
     | 
| 366 | 
         
            -
                        encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
         
     | 
| 367 | 
         
            -
                            Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
         
     | 
| 368 | 
         
            -
                            self-attention.
         
     | 
| 369 | 
         
            -
                        timestep ( `torch.LongTensor`, *optional*):
         
     | 
| 370 | 
         
            -
                            Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
         
     | 
| 371 | 
         
            -
                        class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
         
     | 
| 372 | 
         
            -
                            Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
         
     | 
| 373 | 
         
            -
                            `AdaLayerZeroNorm`.
         
     | 
| 374 | 
         
            -
                        cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
         
     | 
| 375 | 
         
            -
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         
     | 
| 376 | 
         
            -
                            `self.processor` in
         
     | 
| 377 | 
         
            -
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         
     | 
| 378 | 
         
            -
                        attention_mask ( `torch.Tensor`, *optional*):
         
     | 
| 379 | 
         
            -
                            An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
         
     | 
| 380 | 
         
            -
                            is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
         
     | 
| 381 | 
         
            -
                            negative values to the attention scores corresponding to "discard" tokens.
         
     | 
| 382 | 
         
            -
                        encoder_attention_mask ( `torch.Tensor`, *optional*):
         
     | 
| 383 | 
         
            -
                            Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
         
     | 
| 384 | 
         
            -
             
     | 
| 385 | 
         
            -
                                * Mask `(batch, sequence_length)` True = keep, False = discard.
         
     | 
| 386 | 
         
            -
                                * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
         
     | 
| 387 | 
         
            -
             
     | 
| 388 | 
         
            -
                            If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
         
     | 
| 389 | 
         
            -
                            above. This bias will be added to the cross-attention scores.
         
     | 
| 390 | 
         
            -
                        return_dict (`bool`, *optional*, defaults to `True`):
         
     | 
| 391 | 
         
            -
                            Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
         
     | 
| 392 | 
         
            -
                            tuple.
         
     | 
| 393 | 
         
            -
             
     | 
| 394 | 
         
            -
                    Returns:
         
     | 
| 395 | 
         
            -
                        If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
         
     | 
| 396 | 
         
            -
                        `tuple` where the first element is the sample tensor.
         
     | 
| 397 | 
         
            -
                    """
         
     | 
| 398 | 
         
            -
                    if cross_attention_kwargs is not None:
         
     | 
| 399 | 
         
            -
                        if cross_attention_kwargs.get("scale", None) is not None:
         
     | 
| 400 | 
         
            -
                            logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
         
     | 
| 401 | 
         
            -
                    # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
         
     | 
| 402 | 
         
            -
                    #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
         
     | 
| 403 | 
         
            -
                    #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
         
     | 
| 404 | 
         
            -
                    # expects mask of shape:
         
     | 
| 405 | 
         
            -
                    #   [batch, key_tokens]
         
     | 
| 406 | 
         
            -
                    # adds singleton query_tokens dimension:
         
     | 
| 407 | 
         
            -
                    #   [batch,                    1, key_tokens]
         
     | 
| 408 | 
         
            -
                    # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
         
     | 
| 409 | 
         
            -
                    #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
         
     | 
| 410 | 
         
            -
                    #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
         
     | 
| 411 | 
         
            -
                    if attention_mask is not None and attention_mask.ndim == 2:
         
     | 
| 412 | 
         
            -
                        # assume that mask is expressed as:
         
     | 
| 413 | 
         
            -
                        #   (1 = keep,      0 = discard)
         
     | 
| 414 | 
         
            -
                        # convert mask into a bias that can be added to attention scores:
         
     | 
| 415 | 
         
            -
                        #       (keep = +0,     discard = -10000.0)
         
     | 
| 416 | 
         
            -
                        attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
         
     | 
| 417 | 
         
            -
                        attention_mask = attention_mask.unsqueeze(1)
         
     | 
| 418 | 
         
            -
             
     | 
| 419 | 
         
            -
                    # convert encoder_attention_mask to a bias the same way we do for attention_mask
         
     | 
| 420 | 
         
            -
                    if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
         
     | 
| 421 | 
         
            -
                        encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
         
     | 
| 422 | 
         
            -
                        encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
         
     | 
| 423 | 
         
            -
             
     | 
| 424 | 
         
            -
                    # 1. Input
         
     | 
| 425 | 
         
            -
                    if self.is_input_continuous:
         
     | 
| 426 | 
         
            -
                        batch_size, _, height, width = hidden_states.shape
         
     | 
| 427 | 
         
            -
                        residual = hidden_states
         
     | 
| 428 | 
         
            -
                        hidden_states, inner_dim = self._operate_on_continuous_inputs(hidden_states)
         
     | 
| 429 | 
         
            -
                    elif self.is_input_vectorized:
         
     | 
| 430 | 
         
            -
                        hidden_states = self.latent_image_embedding(hidden_states)
         
     | 
| 431 | 
         
            -
                    elif self.is_input_patches:
         
     | 
| 432 | 
         
            -
                        height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
         
     | 
| 433 | 
         
            -
                        hidden_states, encoder_hidden_states, timestep, embedded_timestep = self._operate_on_patched_inputs(
         
     | 
| 434 | 
         
            -
                            hidden_states, encoder_hidden_states, timestep, added_cond_kwargs
         
     | 
| 435 | 
         
            -
                        )
         
     | 
| 436 | 
         
            -
             
     | 
| 437 | 
         
            -
                    # 2. Blocks
         
     | 
| 438 | 
         
            -
                    extracted_kvs = {}
         
     | 
| 439 | 
         
            -
                    for block in self.transformer_blocks:
         
     | 
| 440 | 
         
            -
                        if self.training and self.gradient_checkpointing:
         
     | 
| 441 | 
         
            -
             
     | 
| 442 | 
         
            -
                            def create_custom_forward(module, return_dict=None):
         
     | 
| 443 | 
         
            -
                                def custom_forward(*inputs):
         
     | 
| 444 | 
         
            -
                                    if return_dict is not None:
         
     | 
| 445 | 
         
            -
                                        return module(*inputs, return_dict=return_dict)
         
     | 
| 446 | 
         
            -
                                    else:
         
     | 
| 447 | 
         
            -
                                        return module(*inputs)
         
     | 
| 448 | 
         
            -
             
     | 
| 449 | 
         
            -
                                return custom_forward
         
     | 
| 450 | 
         
            -
             
     | 
| 451 | 
         
            -
                            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
         
     | 
| 452 | 
         
            -
                            hidden_states, extracted_kv = torch.utils.checkpoint.checkpoint(
         
     | 
| 453 | 
         
            -
                                create_custom_forward(block),
         
     | 
| 454 | 
         
            -
                                hidden_states,
         
     | 
| 455 | 
         
            -
                                attention_mask,
         
     | 
| 456 | 
         
            -
                                encoder_hidden_states,
         
     | 
| 457 | 
         
            -
                                encoder_attention_mask,
         
     | 
| 458 | 
         
            -
                                timestep,
         
     | 
| 459 | 
         
            -
                                cross_attention_kwargs,
         
     | 
| 460 | 
         
            -
                                class_labels,
         
     | 
| 461 | 
         
            -
                                **ckpt_kwargs,
         
     | 
| 462 | 
         
            -
                            )
         
     | 
| 463 | 
         
            -
                        else:
         
     | 
| 464 | 
         
            -
                            hidden_states, extracted_kv = block(
         
     | 
| 465 | 
         
            -
                                hidden_states,
         
     | 
| 466 | 
         
            -
                                attention_mask=attention_mask,
         
     | 
| 467 | 
         
            -
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 468 | 
         
            -
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 469 | 
         
            -
                                timestep=timestep,
         
     | 
| 470 | 
         
            -
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 471 | 
         
            -
                                class_labels=class_labels,
         
     | 
| 472 | 
         
            -
                            )
         
     | 
| 473 | 
         
            -
             
     | 
| 474 | 
         
            -
                        if extracted_kv:
         
     | 
| 475 | 
         
            -
                            extracted_kvs[block.full_name] = extracted_kv
         
     | 
| 476 | 
         
            -
             
     | 
| 477 | 
         
            -
                    # 3. Output
         
     | 
| 478 | 
         
            -
                    if self.is_input_continuous:
         
     | 
| 479 | 
         
            -
                        output = self._get_output_for_continuous_inputs(
         
     | 
| 480 | 
         
            -
                            hidden_states=hidden_states,
         
     | 
| 481 | 
         
            -
                            residual=residual,
         
     | 
| 482 | 
         
            -
                            batch_size=batch_size,
         
     | 
| 483 | 
         
            -
                            height=height,
         
     | 
| 484 | 
         
            -
                            width=width,
         
     | 
| 485 | 
         
            -
                            inner_dim=inner_dim,
         
     | 
| 486 | 
         
            -
                        )
         
     | 
| 487 | 
         
            -
                    elif self.is_input_vectorized:
         
     | 
| 488 | 
         
            -
                        output = self._get_output_for_vectorized_inputs(hidden_states)
         
     | 
| 489 | 
         
            -
                    elif self.is_input_patches:
         
     | 
| 490 | 
         
            -
                        output = self._get_output_for_patched_inputs(
         
     | 
| 491 | 
         
            -
                            hidden_states=hidden_states,
         
     | 
| 492 | 
         
            -
                            timestep=timestep,
         
     | 
| 493 | 
         
            -
                            class_labels=class_labels,
         
     | 
| 494 | 
         
            -
                            embedded_timestep=embedded_timestep,
         
     | 
| 495 | 
         
            -
                            height=height,
         
     | 
| 496 | 
         
            -
                            width=width,
         
     | 
| 497 | 
         
            -
                        )
         
     | 
| 498 | 
         
            -
             
     | 
| 499 | 
         
            -
                    if not return_dict:
         
     | 
| 500 | 
         
            -
                        return (output, extracted_kvs)
         
     | 
| 501 | 
         
            -
             
     | 
| 502 | 
         
            -
                    return ExtractKVTransformer2DModelOutput(sample=output, cached_kvs=extracted_kvs)
         
     | 
| 503 | 
         
            -
             
     | 
| 504 | 
         
            -
                def init_kv_extraction(self):
         
     | 
| 505 | 
         
            -
                    for block in self.transformer_blocks:
         
     | 
| 506 | 
         
            -
                        block.init_kv_extraction()
         
     | 
| 507 | 
         
            -
             
     | 
| 508 | 
         
            -
                def _operate_on_continuous_inputs(self, hidden_states):
         
     | 
| 509 | 
         
            -
                    batch, _, height, width = hidden_states.shape
         
     | 
| 510 | 
         
            -
                    hidden_states = self.norm(hidden_states)
         
     | 
| 511 | 
         
            -
             
     | 
| 512 | 
         
            -
                    if not self.use_linear_projection:
         
     | 
| 513 | 
         
            -
                        hidden_states = self.proj_in(hidden_states)
         
     | 
| 514 | 
         
            -
                        inner_dim = hidden_states.shape[1]
         
     | 
| 515 | 
         
            -
                        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
         
     | 
| 516 | 
         
            -
                    else:
         
     | 
| 517 | 
         
            -
                        inner_dim = hidden_states.shape[1]
         
     | 
| 518 | 
         
            -
                        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
         
     | 
| 519 | 
         
            -
                        hidden_states = self.proj_in(hidden_states)
         
     | 
| 520 | 
         
            -
             
     | 
| 521 | 
         
            -
                    return hidden_states, inner_dim
         
     | 
| 522 | 
         
            -
             
     | 
| 523 | 
         
            -
                def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs):
         
     | 
| 524 | 
         
            -
                    batch_size = hidden_states.shape[0]
         
     | 
| 525 | 
         
            -
                    hidden_states = self.pos_embed(hidden_states)
         
     | 
| 526 | 
         
            -
                    embedded_timestep = None
         
     | 
| 527 | 
         
            -
             
     | 
| 528 | 
         
            -
                    if self.adaln_single is not None:
         
     | 
| 529 | 
         
            -
                        if self.use_additional_conditions and added_cond_kwargs is None:
         
     | 
| 530 | 
         
            -
                            raise ValueError(
         
     | 
| 531 | 
         
            -
                                "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
         
     | 
| 532 | 
         
            -
                            )
         
     | 
| 533 | 
         
            -
                        timestep, embedded_timestep = self.adaln_single(
         
     | 
| 534 | 
         
            -
                            timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
         
     | 
| 535 | 
         
            -
                        )
         
     | 
| 536 | 
         
            -
             
     | 
| 537 | 
         
            -
                    if self.caption_projection is not None:
         
     | 
| 538 | 
         
            -
                        encoder_hidden_states = self.caption_projection(encoder_hidden_states)
         
     | 
| 539 | 
         
            -
                        encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
         
     | 
| 540 | 
         
            -
             
     | 
| 541 | 
         
            -
                    return hidden_states, encoder_hidden_states, timestep, embedded_timestep
         
     | 
| 542 | 
         
            -
             
     | 
| 543 | 
         
            -
                def _get_output_for_continuous_inputs(self, hidden_states, residual, batch_size, height, width, inner_dim):
         
     | 
| 544 | 
         
            -
                    if not self.use_linear_projection:
         
     | 
| 545 | 
         
            -
                        hidden_states = (
         
     | 
| 546 | 
         
            -
                            hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
         
     | 
| 547 | 
         
            -
                        )
         
     | 
| 548 | 
         
            -
                        hidden_states = self.proj_out(hidden_states)
         
     | 
| 549 | 
         
            -
                    else:
         
     | 
| 550 | 
         
            -
                        hidden_states = self.proj_out(hidden_states)
         
     | 
| 551 | 
         
            -
                        hidden_states = (
         
     | 
| 552 | 
         
            -
                            hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
         
     | 
| 553 | 
         
            -
                        )
         
     | 
| 554 | 
         
            -
             
     | 
| 555 | 
         
            -
                    output = hidden_states + residual
         
     | 
| 556 | 
         
            -
                    return output
         
     | 
| 557 | 
         
            -
             
     | 
| 558 | 
         
            -
                def _get_output_for_vectorized_inputs(self, hidden_states):
         
     | 
| 559 | 
         
            -
                    hidden_states = self.norm_out(hidden_states)
         
     | 
| 560 | 
         
            -
                    logits = self.out(hidden_states)
         
     | 
| 561 | 
         
            -
                    # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
         
     | 
| 562 | 
         
            -
                    logits = logits.permute(0, 2, 1)
         
     | 
| 563 | 
         
            -
                    # log(p(x_0))
         
     | 
| 564 | 
         
            -
                    output = F.log_softmax(logits.double(), dim=1).float()
         
     | 
| 565 | 
         
            -
                    return output
         
     | 
| 566 | 
         
            -
             
     | 
| 567 | 
         
            -
                def _get_output_for_patched_inputs(
         
     | 
| 568 | 
         
            -
                    self, hidden_states, timestep, class_labels, embedded_timestep, height=None, width=None
         
     | 
| 569 | 
         
            -
                ):
         
     | 
| 570 | 
         
            -
                    if self.config.norm_type != "ada_norm_single":
         
     | 
| 571 | 
         
            -
                        conditioning = self.transformer_blocks[0].norm1.emb(
         
     | 
| 572 | 
         
            -
                            timestep, class_labels, hidden_dtype=hidden_states.dtype
         
     | 
| 573 | 
         
            -
                        )
         
     | 
| 574 | 
         
            -
                        shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
         
     | 
| 575 | 
         
            -
                        hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
         
     | 
| 576 | 
         
            -
                        hidden_states = self.proj_out_2(hidden_states)
         
     | 
| 577 | 
         
            -
                    elif self.config.norm_type == "ada_norm_single":
         
     | 
| 578 | 
         
            -
                        shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
         
     | 
| 579 | 
         
            -
                        hidden_states = self.norm_out(hidden_states)
         
     | 
| 580 | 
         
            -
                        # Modulation
         
     | 
| 581 | 
         
            -
                        hidden_states = hidden_states * (1 + scale) + shift
         
     | 
| 582 | 
         
            -
                        hidden_states = self.proj_out(hidden_states)
         
     | 
| 583 | 
         
            -
                        hidden_states = hidden_states.squeeze(1)
         
     | 
| 584 | 
         
            -
             
     | 
| 585 | 
         
            -
                    # unpatchify
         
     | 
| 586 | 
         
            -
                    if self.adaln_single is None:
         
     | 
| 587 | 
         
            -
                        height = width = int(hidden_states.shape[1] ** 0.5)
         
     | 
| 588 | 
         
            -
                    hidden_states = hidden_states.reshape(
         
     | 
| 589 | 
         
            -
                        shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
         
     | 
| 590 | 
         
            -
                    )
         
     | 
| 591 | 
         
            -
                    hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
         
     | 
| 592 | 
         
            -
                    output = hidden_states.reshape(
         
     | 
| 593 | 
         
            -
                        shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
         
     | 
| 594 | 
         
            -
                    )
         
     | 
| 595 | 
         
            -
                    return output
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        module/unet/unet_2d_expandKV.py
    DELETED
    
    | 
         @@ -1,164 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # Copy from diffusers.models.unets.unet_2d_condition.py
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            # Copyright 2024 The HuggingFace Team. All rights reserved.
         
     | 
| 4 | 
         
            -
            #
         
     | 
| 5 | 
         
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 6 | 
         
            -
            # you may not use this file except in compliance with the License.
         
     | 
| 7 | 
         
            -
            # You may obtain a copy of the License at
         
     | 
| 8 | 
         
            -
            #
         
     | 
| 9 | 
         
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 10 | 
         
            -
            #
         
     | 
| 11 | 
         
            -
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 12 | 
         
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 13 | 
         
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 14 | 
         
            -
            # See the License for the specific language governing permissions and
         
     | 
| 15 | 
         
            -
            # limitations under the License.
         
     | 
| 16 | 
         
            -
            from typing import Any, Dict, List, Optional, Tuple, Union
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
            import torch
         
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
            from diffusers.utils import logging
         
     | 
| 21 | 
         
            -
            from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
             
     | 
| 24 | 
         
            -
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
            class ExpandKVUNet2DConditionModel(UNet2DConditionModel):
         
     | 
| 28 | 
         
            -
                r"""
         
     | 
| 29 | 
         
            -
                A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
         
     | 
| 30 | 
         
            -
                shaped output.
         
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
                This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
         
     | 
| 33 | 
         
            -
                for all models (such as downloading or saving).
         
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
                Parameters:
         
     | 
| 36 | 
         
            -
                    sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
         
     | 
| 37 | 
         
            -
                        Height and width of input/output sample.
         
     | 
| 38 | 
         
            -
                    in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
         
     | 
| 39 | 
         
            -
                    out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
         
     | 
| 40 | 
         
            -
                    center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
         
     | 
| 41 | 
         
            -
                    flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
         
     | 
| 42 | 
         
            -
                        Whether to flip the sin to cos in the time embedding.
         
     | 
| 43 | 
         
            -
                    freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
         
     | 
| 44 | 
         
            -
                    down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
         
     | 
| 45 | 
         
            -
                        The tuple of downsample blocks to use.
         
     | 
| 46 | 
         
            -
                    mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
         
     | 
| 47 | 
         
            -
                        Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
         
     | 
| 48 | 
         
            -
                        `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
         
     | 
| 49 | 
         
            -
                    up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
         
     | 
| 50 | 
         
            -
                        The tuple of upsample blocks to use.
         
     | 
| 51 | 
         
            -
                    only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
         
     | 
| 52 | 
         
            -
                        Whether to include self-attention in the basic transformer blocks, see
         
     | 
| 53 | 
         
            -
                        [`~models.attention.BasicTransformerBlock`].
         
     | 
| 54 | 
         
            -
                    block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
         
     | 
| 55 | 
         
            -
                        The tuple of output channels for each block.
         
     | 
| 56 | 
         
            -
                    layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
         
     | 
| 57 | 
         
            -
                    downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
         
     | 
| 58 | 
         
            -
                    mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
         
     | 
| 59 | 
         
            -
                    dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
         
     | 
| 60 | 
         
            -
                    act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
         
     | 
| 61 | 
         
            -
                    norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
         
     | 
| 62 | 
         
            -
                        If `None`, normalization and activation layers is skipped in post-processing.
         
     | 
| 63 | 
         
            -
                    norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
         
     | 
| 64 | 
         
            -
                    cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
         
     | 
| 65 | 
         
            -
                        The dimension of the cross attention features.
         
     | 
| 66 | 
         
            -
                    transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
         
     | 
| 67 | 
         
            -
                        The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
         
     | 
| 68 | 
         
            -
                        [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
         
     | 
| 69 | 
         
            -
                        [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
         
     | 
| 70 | 
         
            -
                    reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
         
     | 
| 71 | 
         
            -
                        The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
         
     | 
| 72 | 
         
            -
                        blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
         
     | 
| 73 | 
         
            -
                        [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
         
     | 
| 74 | 
         
            -
                        [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
         
     | 
| 75 | 
         
            -
                    encoder_hid_dim (`int`, *optional*, defaults to None):
         
     | 
| 76 | 
         
            -
                        If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
         
     | 
| 77 | 
         
            -
                        dimension to `cross_attention_dim`.
         
     | 
| 78 | 
         
            -
                    encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
         
     | 
| 79 | 
         
            -
                        If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
         
     | 
| 80 | 
         
            -
                        embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
         
     | 
| 81 | 
         
            -
                    attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
         
     | 
| 82 | 
         
            -
                    num_attention_heads (`int`, *optional*):
         
     | 
| 83 | 
         
            -
                        The number of attention heads. If not defined, defaults to `attention_head_dim`
         
     | 
| 84 | 
         
            -
                    resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
         
     | 
| 85 | 
         
            -
                        for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
         
     | 
| 86 | 
         
            -
                    class_embed_type (`str`, *optional*, defaults to `None`):
         
     | 
| 87 | 
         
            -
                        The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
         
     | 
| 88 | 
         
            -
                        `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
         
     | 
| 89 | 
         
            -
                    addition_embed_type (`str`, *optional*, defaults to `None`):
         
     | 
| 90 | 
         
            -
                        Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
         
     | 
| 91 | 
         
            -
                        "text". "text" will use the `TextTimeEmbedding` layer.
         
     | 
| 92 | 
         
            -
                    addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
         
     | 
| 93 | 
         
            -
                        Dimension for the timestep embeddings.
         
     | 
| 94 | 
         
            -
                    num_class_embeds (`int`, *optional*, defaults to `None`):
         
     | 
| 95 | 
         
            -
                        Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
         
     | 
| 96 | 
         
            -
                        class conditioning with `class_embed_type` equal to `None`.
         
     | 
| 97 | 
         
            -
                    time_embedding_type (`str`, *optional*, defaults to `positional`):
         
     | 
| 98 | 
         
            -
                        The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
         
     | 
| 99 | 
         
            -
                    time_embedding_dim (`int`, *optional*, defaults to `None`):
         
     | 
| 100 | 
         
            -
                        An optional override for the dimension of the projected time embedding.
         
     | 
| 101 | 
         
            -
                    time_embedding_act_fn (`str`, *optional*, defaults to `None`):
         
     | 
| 102 | 
         
            -
                        Optional activation function to use only once on the time embeddings before they are passed to the rest of
         
     | 
| 103 | 
         
            -
                        the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
         
     | 
| 104 | 
         
            -
                    timestep_post_act (`str`, *optional*, defaults to `None`):
         
     | 
| 105 | 
         
            -
                        The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
         
     | 
| 106 | 
         
            -
                    time_cond_proj_dim (`int`, *optional*, defaults to `None`):
         
     | 
| 107 | 
         
            -
                        The dimension of `cond_proj` layer in the timestep embedding.
         
     | 
| 108 | 
         
            -
                    conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
         
     | 
| 109 | 
         
            -
                    conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
         
     | 
| 110 | 
         
            -
                    projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
         
     | 
| 111 | 
         
            -
                        `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
         
     | 
| 112 | 
         
            -
                    class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
         
     | 
| 113 | 
         
            -
                        embeddings with the class embeddings.
         
     | 
| 114 | 
         
            -
                    mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
         
     | 
| 115 | 
         
            -
                        Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
         
     | 
| 116 | 
         
            -
                        `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
         
     | 
| 117 | 
         
            -
                        `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
         
     | 
| 118 | 
         
            -
                        otherwise.
         
     | 
| 119 | 
         
            -
                """
         
     | 
| 120 | 
         
            -
             
     | 
| 121 | 
         
            -
             
     | 
| 122 | 
         
            -
                def process_encoder_hidden_states(
         
     | 
| 123 | 
         
            -
                    self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
         
     | 
| 124 | 
         
            -
                ) -> torch.Tensor:
         
     | 
| 125 | 
         
            -
                    if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
         
     | 
| 126 | 
         
            -
                        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
         
     | 
| 127 | 
         
            -
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
         
     | 
| 128 | 
         
            -
                        # Kandinsky 2.1 - style
         
     | 
| 129 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 130 | 
         
            -
                            raise ValueError(
         
     | 
| 131 | 
         
            -
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         
     | 
| 132 | 
         
            -
                            )
         
     | 
| 133 | 
         
            -
             
     | 
| 134 | 
         
            -
                        image_embeds = added_cond_kwargs.get("image_embeds")
         
     | 
| 135 | 
         
            -
                        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
         
     | 
| 136 | 
         
            -
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
         
     | 
| 137 | 
         
            -
                        # Kandinsky 2.2 - style
         
     | 
| 138 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 139 | 
         
            -
                            raise ValueError(
         
     | 
| 140 | 
         
            -
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         
     | 
| 141 | 
         
            -
                            )
         
     | 
| 142 | 
         
            -
                        image_embeds = added_cond_kwargs.get("image_embeds")
         
     | 
| 143 | 
         
            -
                        encoder_hidden_states = self.encoder_hid_proj(image_embeds)
         
     | 
| 144 | 
         
            -
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
         
     | 
| 145 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 146 | 
         
            -
                            raise ValueError(
         
     | 
| 147 | 
         
            -
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         
     | 
| 148 | 
         
            -
                            )
         
     | 
| 149 | 
         
            -
                        image_embeds = added_cond_kwargs.get("image_embeds")
         
     | 
| 150 | 
         
            -
                        image_embeds = self.encoder_hid_proj(image_embeds)
         
     | 
| 151 | 
         
            -
                        encoder_hidden_states = (encoder_hidden_states, image_embeds)
         
     | 
| 152 | 
         
            -
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "instantir":
         
     | 
| 153 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 154 | 
         
            -
                            raise ValueError(
         
     | 
| 155 | 
         
            -
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         
     | 
| 156 | 
         
            -
                            )
         
     | 
| 157 | 
         
            -
                        if "extract_kvs" not in added_cond_kwargs:
         
     | 
| 158 | 
         
            -
                            raise ValueError(
         
     | 
| 159 | 
         
            -
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         
     | 
| 160 | 
         
            -
                            )
         
     | 
| 161 | 
         
            -
                        image_embeds = added_cond_kwargs.get("image_embeds")
         
     | 
| 162 | 
         
            -
                        image_embeds = self.encoder_hid_proj(image_embeds)
         
     | 
| 163 | 
         
            -
                        encoder_hidden_states = (encoder_hidden_states, image_embeds)
         
     | 
| 164 | 
         
            -
                    return encoder_hidden_states
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        module/unet/unet_2d_extractKV.py
    DELETED
    
    | 
         @@ -1,1347 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # Copy from diffusers.models.unets.unet_2d_condition.py
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            # Copyright 2024 The HuggingFace Team. All rights reserved.
         
     | 
| 4 | 
         
            -
            #
         
     | 
| 5 | 
         
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 6 | 
         
            -
            # you may not use this file except in compliance with the License.
         
     | 
| 7 | 
         
            -
            # You may obtain a copy of the License at
         
     | 
| 8 | 
         
            -
            #
         
     | 
| 9 | 
         
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 10 | 
         
            -
            #
         
     | 
| 11 | 
         
            -
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 12 | 
         
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 13 | 
         
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 14 | 
         
            -
            # See the License for the specific language governing permissions and
         
     | 
| 15 | 
         
            -
            # limitations under the License.
         
     | 
| 16 | 
         
            -
            from dataclasses import dataclass
         
     | 
| 17 | 
         
            -
            from typing import Any, Dict, List, Optional, Tuple, Union
         
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
            import torch
         
     | 
| 20 | 
         
            -
            import torch.nn as nn
         
     | 
| 21 | 
         
            -
            import torch.utils.checkpoint
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         
     | 
| 24 | 
         
            -
            from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
         
     | 
| 25 | 
         
            -
            from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
         
     | 
| 26 | 
         
            -
            from diffusers.models.activations import get_activation
         
     | 
| 27 | 
         
            -
            from diffusers.models.attention_processor import (
         
     | 
| 28 | 
         
            -
                ADDED_KV_ATTENTION_PROCESSORS,
         
     | 
| 29 | 
         
            -
                CROSS_ATTENTION_PROCESSORS,
         
     | 
| 30 | 
         
            -
                Attention,
         
     | 
| 31 | 
         
            -
                AttentionProcessor,
         
     | 
| 32 | 
         
            -
                AttnAddedKVProcessor,
         
     | 
| 33 | 
         
            -
                AttnProcessor,
         
     | 
| 34 | 
         
            -
            )
         
     | 
| 35 | 
         
            -
            from diffusers.models.embeddings import (
         
     | 
| 36 | 
         
            -
                GaussianFourierProjection,
         
     | 
| 37 | 
         
            -
                GLIGENTextBoundingboxProjection,
         
     | 
| 38 | 
         
            -
                ImageHintTimeEmbedding,
         
     | 
| 39 | 
         
            -
                ImageProjection,
         
     | 
| 40 | 
         
            -
                ImageTimeEmbedding,
         
     | 
| 41 | 
         
            -
                TextImageProjection,
         
     | 
| 42 | 
         
            -
                TextImageTimeEmbedding,
         
     | 
| 43 | 
         
            -
                TextTimeEmbedding,
         
     | 
| 44 | 
         
            -
                TimestepEmbedding,
         
     | 
| 45 | 
         
            -
                Timesteps,
         
     | 
| 46 | 
         
            -
            )
         
     | 
| 47 | 
         
            -
            from diffusers.models.modeling_utils import ModelMixin
         
     | 
| 48 | 
         
            -
            from .unet_2d_extractKV_blocks import (
         
     | 
| 49 | 
         
            -
                get_down_block,
         
     | 
| 50 | 
         
            -
                get_mid_block,
         
     | 
| 51 | 
         
            -
                get_up_block,
         
     | 
| 52 | 
         
            -
            )
         
     | 
| 53 | 
         
            -
             
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         
     | 
| 56 | 
         
            -
             
     | 
| 57 | 
         
            -
             
     | 
| 58 | 
         
            -
            @dataclass
         
     | 
| 59 | 
         
            -
            class ExtractKVUNet2DConditionOutput(BaseOutput):
         
     | 
| 60 | 
         
            -
                """
         
     | 
| 61 | 
         
            -
                The output of [`UNet2DConditionModel`].
         
     | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
                Args:
         
     | 
| 64 | 
         
            -
                    sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
         
     | 
| 65 | 
         
            -
                        The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
         
     | 
| 66 | 
         
            -
                """
         
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
                sample: torch.FloatTensor = None
         
     | 
| 69 | 
         
            -
                cached_kvs: Dict[str, Any] = None
         
     | 
| 70 | 
         
            -
             
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
            class ExtractKVUNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
         
     | 
| 73 | 
         
            -
                r"""
         
     | 
| 74 | 
         
            -
                A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
         
     | 
| 75 | 
         
            -
                shaped output.
         
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
            -
                This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
         
     | 
| 78 | 
         
            -
                for all models (such as downloading or saving).
         
     | 
| 79 | 
         
            -
             
     | 
| 80 | 
         
            -
                Parameters:
         
     | 
| 81 | 
         
            -
                    sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
         
     | 
| 82 | 
         
            -
                        Height and width of input/output sample.
         
     | 
| 83 | 
         
            -
                    in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
         
     | 
| 84 | 
         
            -
                    out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
         
     | 
| 85 | 
         
            -
                    center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
         
     | 
| 86 | 
         
            -
                    flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
         
     | 
| 87 | 
         
            -
                        Whether to flip the sin to cos in the time embedding.
         
     | 
| 88 | 
         
            -
                    freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
         
     | 
| 89 | 
         
            -
                    down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
         
     | 
| 90 | 
         
            -
                        The tuple of downsample blocks to use.
         
     | 
| 91 | 
         
            -
                    mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
         
     | 
| 92 | 
         
            -
                        Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
         
     | 
| 93 | 
         
            -
                        `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
         
     | 
| 94 | 
         
            -
                    up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
         
     | 
| 95 | 
         
            -
                        The tuple of upsample blocks to use.
         
     | 
| 96 | 
         
            -
                    only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
         
     | 
| 97 | 
         
            -
                        Whether to include self-attention in the basic transformer blocks, see
         
     | 
| 98 | 
         
            -
                        [`~models.attention.BasicTransformerBlock`].
         
     | 
| 99 | 
         
            -
                    block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
         
     | 
| 100 | 
         
            -
                        The tuple of output channels for each block.
         
     | 
| 101 | 
         
            -
                    layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
         
     | 
| 102 | 
         
            -
                    downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
         
     | 
| 103 | 
         
            -
                    mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
         
     | 
| 104 | 
         
            -
                    dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
         
     | 
| 105 | 
         
            -
                    act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
         
     | 
| 106 | 
         
            -
                    norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
         
     | 
| 107 | 
         
            -
                        If `None`, normalization and activation layers is skipped in post-processing.
         
     | 
| 108 | 
         
            -
                    norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
         
     | 
| 109 | 
         
            -
                    cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
         
     | 
| 110 | 
         
            -
                        The dimension of the cross attention features.
         
     | 
| 111 | 
         
            -
                    transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
         
     | 
| 112 | 
         
            -
                        The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
         
     | 
| 113 | 
         
            -
                        [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
         
     | 
| 114 | 
         
            -
                        [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
         
     | 
| 115 | 
         
            -
                    reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
         
     | 
| 116 | 
         
            -
                        The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
         
     | 
| 117 | 
         
            -
                        blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
         
     | 
| 118 | 
         
            -
                        [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
         
     | 
| 119 | 
         
            -
                        [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
         
     | 
| 120 | 
         
            -
                    encoder_hid_dim (`int`, *optional*, defaults to None):
         
     | 
| 121 | 
         
            -
                        If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
         
     | 
| 122 | 
         
            -
                        dimension to `cross_attention_dim`.
         
     | 
| 123 | 
         
            -
                    encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
         
     | 
| 124 | 
         
            -
                        If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
         
     | 
| 125 | 
         
            -
                        embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
         
     | 
| 126 | 
         
            -
                    attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
         
     | 
| 127 | 
         
            -
                    num_attention_heads (`int`, *optional*):
         
     | 
| 128 | 
         
            -
                        The number of attention heads. If not defined, defaults to `attention_head_dim`
         
     | 
| 129 | 
         
            -
                    resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
         
     | 
| 130 | 
         
            -
                        for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
         
     | 
| 131 | 
         
            -
                    class_embed_type (`str`, *optional*, defaults to `None`):
         
     | 
| 132 | 
         
            -
                        The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
         
     | 
| 133 | 
         
            -
                        `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
         
     | 
| 134 | 
         
            -
                    addition_embed_type (`str`, *optional*, defaults to `None`):
         
     | 
| 135 | 
         
            -
                        Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
         
     | 
| 136 | 
         
            -
                        "text". "text" will use the `TextTimeEmbedding` layer.
         
     | 
| 137 | 
         
            -
                    addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
         
     | 
| 138 | 
         
            -
                        Dimension for the timestep embeddings.
         
     | 
| 139 | 
         
            -
                    num_class_embeds (`int`, *optional*, defaults to `None`):
         
     | 
| 140 | 
         
            -
                        Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
         
     | 
| 141 | 
         
            -
                        class conditioning with `class_embed_type` equal to `None`.
         
     | 
| 142 | 
         
            -
                    time_embedding_type (`str`, *optional*, defaults to `positional`):
         
     | 
| 143 | 
         
            -
                        The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
         
     | 
| 144 | 
         
            -
                    time_embedding_dim (`int`, *optional*, defaults to `None`):
         
     | 
| 145 | 
         
            -
                        An optional override for the dimension of the projected time embedding.
         
     | 
| 146 | 
         
            -
                    time_embedding_act_fn (`str`, *optional*, defaults to `None`):
         
     | 
| 147 | 
         
            -
                        Optional activation function to use only once on the time embeddings before they are passed to the rest of
         
     | 
| 148 | 
         
            -
                        the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
         
     | 
| 149 | 
         
            -
                    timestep_post_act (`str`, *optional*, defaults to `None`):
         
     | 
| 150 | 
         
            -
                        The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
         
     | 
| 151 | 
         
            -
                    time_cond_proj_dim (`int`, *optional*, defaults to `None`):
         
     | 
| 152 | 
         
            -
                        The dimension of `cond_proj` layer in the timestep embedding.
         
     | 
| 153 | 
         
            -
                    conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
         
     | 
| 154 | 
         
            -
                    conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
         
     | 
| 155 | 
         
            -
                    projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
         
     | 
| 156 | 
         
            -
                        `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
         
     | 
| 157 | 
         
            -
                    class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
         
     | 
| 158 | 
         
            -
                        embeddings with the class embeddings.
         
     | 
| 159 | 
         
            -
                    mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
         
     | 
| 160 | 
         
            -
                        Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
         
     | 
| 161 | 
         
            -
                        `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
         
     | 
| 162 | 
         
            -
                        `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
         
     | 
| 163 | 
         
            -
                        otherwise.
         
     | 
| 164 | 
         
            -
                """
         
     | 
| 165 | 
         
            -
             
     | 
| 166 | 
         
            -
                _supports_gradient_checkpointing = True
         
     | 
| 167 | 
         
            -
                _no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
         
     | 
| 168 | 
         
            -
             
     | 
| 169 | 
         
            -
                @register_to_config
         
     | 
| 170 | 
         
            -
                def __init__(
         
     | 
| 171 | 
         
            -
                    self,
         
     | 
| 172 | 
         
            -
                    sample_size: Optional[int] = None,
         
     | 
| 173 | 
         
            -
                    in_channels: int = 4,
         
     | 
| 174 | 
         
            -
                    out_channels: int = 4,
         
     | 
| 175 | 
         
            -
                    center_input_sample: bool = False,
         
     | 
| 176 | 
         
            -
                    flip_sin_to_cos: bool = True,
         
     | 
| 177 | 
         
            -
                    freq_shift: int = 0,
         
     | 
| 178 | 
         
            -
                    down_block_types: Tuple[str] = (
         
     | 
| 179 | 
         
            -
                        "CrossAttnDownBlock2D",
         
     | 
| 180 | 
         
            -
                        "CrossAttnDownBlock2D",
         
     | 
| 181 | 
         
            -
                        "CrossAttnDownBlock2D",
         
     | 
| 182 | 
         
            -
                        "DownBlock2D",
         
     | 
| 183 | 
         
            -
                    ),
         
     | 
| 184 | 
         
            -
                    mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
         
     | 
| 185 | 
         
            -
                    up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
         
     | 
| 186 | 
         
            -
                    only_cross_attention: Union[bool, Tuple[bool]] = False,
         
     | 
| 187 | 
         
            -
                    block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
         
     | 
| 188 | 
         
            -
                    layers_per_block: Union[int, Tuple[int]] = 2,
         
     | 
| 189 | 
         
            -
                    downsample_padding: int = 1,
         
     | 
| 190 | 
         
            -
                    mid_block_scale_factor: float = 1,
         
     | 
| 191 | 
         
            -
                    dropout: float = 0.0,
         
     | 
| 192 | 
         
            -
                    act_fn: str = "silu",
         
     | 
| 193 | 
         
            -
                    norm_num_groups: Optional[int] = 32,
         
     | 
| 194 | 
         
            -
                    norm_eps: float = 1e-5,
         
     | 
| 195 | 
         
            -
                    cross_attention_dim: Union[int, Tuple[int]] = 1280,
         
     | 
| 196 | 
         
            -
                    transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
         
     | 
| 197 | 
         
            -
                    reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
         
     | 
| 198 | 
         
            -
                    encoder_hid_dim: Optional[int] = None,
         
     | 
| 199 | 
         
            -
                    encoder_hid_dim_type: Optional[str] = None,
         
     | 
| 200 | 
         
            -
                    attention_head_dim: Union[int, Tuple[int]] = 8,
         
     | 
| 201 | 
         
            -
                    num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
         
     | 
| 202 | 
         
            -
                    dual_cross_attention: bool = False,
         
     | 
| 203 | 
         
            -
                    use_linear_projection: bool = False,
         
     | 
| 204 | 
         
            -
                    class_embed_type: Optional[str] = None,
         
     | 
| 205 | 
         
            -
                    addition_embed_type: Optional[str] = None,
         
     | 
| 206 | 
         
            -
                    addition_time_embed_dim: Optional[int] = None,
         
     | 
| 207 | 
         
            -
                    num_class_embeds: Optional[int] = None,
         
     | 
| 208 | 
         
            -
                    upcast_attention: bool = False,
         
     | 
| 209 | 
         
            -
                    resnet_time_scale_shift: str = "default",
         
     | 
| 210 | 
         
            -
                    resnet_skip_time_act: bool = False,
         
     | 
| 211 | 
         
            -
                    resnet_out_scale_factor: float = 1.0,
         
     | 
| 212 | 
         
            -
                    time_embedding_type: str = "positional",
         
     | 
| 213 | 
         
            -
                    time_embedding_dim: Optional[int] = None,
         
     | 
| 214 | 
         
            -
                    time_embedding_act_fn: Optional[str] = None,
         
     | 
| 215 | 
         
            -
                    timestep_post_act: Optional[str] = None,
         
     | 
| 216 | 
         
            -
                    time_cond_proj_dim: Optional[int] = None,
         
     | 
| 217 | 
         
            -
                    conv_in_kernel: int = 3,
         
     | 
| 218 | 
         
            -
                    conv_out_kernel: int = 3,
         
     | 
| 219 | 
         
            -
                    projection_class_embeddings_input_dim: Optional[int] = None,
         
     | 
| 220 | 
         
            -
                    attention_type: str = "default",
         
     | 
| 221 | 
         
            -
                    class_embeddings_concat: bool = False,
         
     | 
| 222 | 
         
            -
                    mid_block_only_cross_attention: Optional[bool] = None,
         
     | 
| 223 | 
         
            -
                    cross_attention_norm: Optional[str] = None,
         
     | 
| 224 | 
         
            -
                    addition_embed_type_num_heads: int = 64,
         
     | 
| 225 | 
         
            -
                    extract_self_attention_kv: bool = False,
         
     | 
| 226 | 
         
            -
                    extract_cross_attention_kv: bool = False,
         
     | 
| 227 | 
         
            -
                ):
         
     | 
| 228 | 
         
            -
                    super().__init__()
         
     | 
| 229 | 
         
            -
             
     | 
| 230 | 
         
            -
                    self.sample_size = sample_size
         
     | 
| 231 | 
         
            -
             
     | 
| 232 | 
         
            -
                    if num_attention_heads is not None:
         
     | 
| 233 | 
         
            -
                        raise ValueError(
         
     | 
| 234 | 
         
            -
                            "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
         
     | 
| 235 | 
         
            -
                        )
         
     | 
| 236 | 
         
            -
             
     | 
| 237 | 
         
            -
                    # If `num_attention_heads` is not defined (which is the case for most models)
         
     | 
| 238 | 
         
            -
                    # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
         
     | 
| 239 | 
         
            -
                    # The reason for this behavior is to correct for incorrectly named variables that were introduced
         
     | 
| 240 | 
         
            -
                    # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
         
     | 
| 241 | 
         
            -
                    # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
         
     | 
| 242 | 
         
            -
                    # which is why we correct for the naming here.
         
     | 
| 243 | 
         
            -
                    num_attention_heads = num_attention_heads or attention_head_dim
         
     | 
| 244 | 
         
            -
             
     | 
| 245 | 
         
            -
                    # Check inputs
         
     | 
| 246 | 
         
            -
                    self._check_config(
         
     | 
| 247 | 
         
            -
                        down_block_types=down_block_types,
         
     | 
| 248 | 
         
            -
                        up_block_types=up_block_types,
         
     | 
| 249 | 
         
            -
                        only_cross_attention=only_cross_attention,
         
     | 
| 250 | 
         
            -
                        block_out_channels=block_out_channels,
         
     | 
| 251 | 
         
            -
                        layers_per_block=layers_per_block,
         
     | 
| 252 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 253 | 
         
            -
                        transformer_layers_per_block=transformer_layers_per_block,
         
     | 
| 254 | 
         
            -
                        reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
         
     | 
| 255 | 
         
            -
                        attention_head_dim=attention_head_dim,
         
     | 
| 256 | 
         
            -
                        num_attention_heads=num_attention_heads,
         
     | 
| 257 | 
         
            -
                    )
         
     | 
| 258 | 
         
            -
             
     | 
| 259 | 
         
            -
                    # input
         
     | 
| 260 | 
         
            -
                    conv_in_padding = (conv_in_kernel - 1) // 2
         
     | 
| 261 | 
         
            -
                    self.conv_in = nn.Conv2d(
         
     | 
| 262 | 
         
            -
                        in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
         
     | 
| 263 | 
         
            -
                    )
         
     | 
| 264 | 
         
            -
             
     | 
| 265 | 
         
            -
                    # time
         
     | 
| 266 | 
         
            -
                    time_embed_dim, timestep_input_dim = self._set_time_proj(
         
     | 
| 267 | 
         
            -
                        time_embedding_type,
         
     | 
| 268 | 
         
            -
                        block_out_channels=block_out_channels,
         
     | 
| 269 | 
         
            -
                        flip_sin_to_cos=flip_sin_to_cos,
         
     | 
| 270 | 
         
            -
                        freq_shift=freq_shift,
         
     | 
| 271 | 
         
            -
                        time_embedding_dim=time_embedding_dim,
         
     | 
| 272 | 
         
            -
                    )
         
     | 
| 273 | 
         
            -
             
     | 
| 274 | 
         
            -
                    self.time_embedding = TimestepEmbedding(
         
     | 
| 275 | 
         
            -
                        timestep_input_dim,
         
     | 
| 276 | 
         
            -
                        time_embed_dim,
         
     | 
| 277 | 
         
            -
                        act_fn=act_fn,
         
     | 
| 278 | 
         
            -
                        post_act_fn=timestep_post_act,
         
     | 
| 279 | 
         
            -
                        cond_proj_dim=time_cond_proj_dim,
         
     | 
| 280 | 
         
            -
                    )
         
     | 
| 281 | 
         
            -
             
     | 
| 282 | 
         
            -
                    self._set_encoder_hid_proj(
         
     | 
| 283 | 
         
            -
                        encoder_hid_dim_type,
         
     | 
| 284 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 285 | 
         
            -
                        encoder_hid_dim=encoder_hid_dim,
         
     | 
| 286 | 
         
            -
                    )
         
     | 
| 287 | 
         
            -
             
     | 
| 288 | 
         
            -
                    # class embedding
         
     | 
| 289 | 
         
            -
                    self._set_class_embedding(
         
     | 
| 290 | 
         
            -
                        class_embed_type,
         
     | 
| 291 | 
         
            -
                        act_fn=act_fn,
         
     | 
| 292 | 
         
            -
                        num_class_embeds=num_class_embeds,
         
     | 
| 293 | 
         
            -
                        projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
         
     | 
| 294 | 
         
            -
                        time_embed_dim=time_embed_dim,
         
     | 
| 295 | 
         
            -
                        timestep_input_dim=timestep_input_dim,
         
     | 
| 296 | 
         
            -
                    )
         
     | 
| 297 | 
         
            -
             
     | 
| 298 | 
         
            -
                    self._set_add_embedding(
         
     | 
| 299 | 
         
            -
                        addition_embed_type,
         
     | 
| 300 | 
         
            -
                        addition_embed_type_num_heads=addition_embed_type_num_heads,
         
     | 
| 301 | 
         
            -
                        addition_time_embed_dim=addition_time_embed_dim,
         
     | 
| 302 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 303 | 
         
            -
                        encoder_hid_dim=encoder_hid_dim,
         
     | 
| 304 | 
         
            -
                        flip_sin_to_cos=flip_sin_to_cos,
         
     | 
| 305 | 
         
            -
                        freq_shift=freq_shift,
         
     | 
| 306 | 
         
            -
                        projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
         
     | 
| 307 | 
         
            -
                        time_embed_dim=time_embed_dim,
         
     | 
| 308 | 
         
            -
                    )
         
     | 
| 309 | 
         
            -
             
     | 
| 310 | 
         
            -
                    if time_embedding_act_fn is None:
         
     | 
| 311 | 
         
            -
                        self.time_embed_act = None
         
     | 
| 312 | 
         
            -
                    else:
         
     | 
| 313 | 
         
            -
                        self.time_embed_act = get_activation(time_embedding_act_fn)
         
     | 
| 314 | 
         
            -
             
     | 
| 315 | 
         
            -
                    self.down_blocks = nn.ModuleList([])
         
     | 
| 316 | 
         
            -
                    self.up_blocks = nn.ModuleList([])
         
     | 
| 317 | 
         
            -
             
     | 
| 318 | 
         
            -
                    if isinstance(only_cross_attention, bool):
         
     | 
| 319 | 
         
            -
                        if mid_block_only_cross_attention is None:
         
     | 
| 320 | 
         
            -
                            mid_block_only_cross_attention = only_cross_attention
         
     | 
| 321 | 
         
            -
             
     | 
| 322 | 
         
            -
                        only_cross_attention = [only_cross_attention] * len(down_block_types)
         
     | 
| 323 | 
         
            -
             
     | 
| 324 | 
         
            -
                    if mid_block_only_cross_attention is None:
         
     | 
| 325 | 
         
            -
                        mid_block_only_cross_attention = False
         
     | 
| 326 | 
         
            -
             
     | 
| 327 | 
         
            -
                    if isinstance(num_attention_heads, int):
         
     | 
| 328 | 
         
            -
                        num_attention_heads = (num_attention_heads,) * len(down_block_types)
         
     | 
| 329 | 
         
            -
             
     | 
| 330 | 
         
            -
                    if isinstance(attention_head_dim, int):
         
     | 
| 331 | 
         
            -
                        attention_head_dim = (attention_head_dim,) * len(down_block_types)
         
     | 
| 332 | 
         
            -
             
     | 
| 333 | 
         
            -
                    if isinstance(cross_attention_dim, int):
         
     | 
| 334 | 
         
            -
                        cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
         
     | 
| 335 | 
         
            -
             
     | 
| 336 | 
         
            -
                    if isinstance(layers_per_block, int):
         
     | 
| 337 | 
         
            -
                        layers_per_block = [layers_per_block] * len(down_block_types)
         
     | 
| 338 | 
         
            -
             
     | 
| 339 | 
         
            -
                    if isinstance(transformer_layers_per_block, int):
         
     | 
| 340 | 
         
            -
                        transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
         
     | 
| 341 | 
         
            -
             
     | 
| 342 | 
         
            -
                    if class_embeddings_concat:
         
     | 
| 343 | 
         
            -
                        # The time embeddings are concatenated with the class embeddings. The dimension of the
         
     | 
| 344 | 
         
            -
                        # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
         
     | 
| 345 | 
         
            -
                        # regular time embeddings
         
     | 
| 346 | 
         
            -
                        blocks_time_embed_dim = time_embed_dim * 2
         
     | 
| 347 | 
         
            -
                    else:
         
     | 
| 348 | 
         
            -
                        blocks_time_embed_dim = time_embed_dim
         
     | 
| 349 | 
         
            -
             
     | 
| 350 | 
         
            -
                    # down
         
     | 
| 351 | 
         
            -
                    output_channel = block_out_channels[0]
         
     | 
| 352 | 
         
            -
                    for i, down_block_type in enumerate(down_block_types):
         
     | 
| 353 | 
         
            -
                        input_channel = output_channel
         
     | 
| 354 | 
         
            -
                        output_channel = block_out_channels[i]
         
     | 
| 355 | 
         
            -
                        is_final_block = i == len(block_out_channels) - 1
         
     | 
| 356 | 
         
            -
             
     | 
| 357 | 
         
            -
                        down_block = get_down_block(
         
     | 
| 358 | 
         
            -
                            down_block_type,
         
     | 
| 359 | 
         
            -
                            num_layers=layers_per_block[i],
         
     | 
| 360 | 
         
            -
                            transformer_layers_per_block=transformer_layers_per_block[i],
         
     | 
| 361 | 
         
            -
                            in_channels=input_channel,
         
     | 
| 362 | 
         
            -
                            out_channels=output_channel,
         
     | 
| 363 | 
         
            -
                            temb_channels=blocks_time_embed_dim,
         
     | 
| 364 | 
         
            -
                            add_downsample=not is_final_block,
         
     | 
| 365 | 
         
            -
                            resnet_eps=norm_eps,
         
     | 
| 366 | 
         
            -
                            resnet_act_fn=act_fn,
         
     | 
| 367 | 
         
            -
                            resnet_groups=norm_num_groups,
         
     | 
| 368 | 
         
            -
                            cross_attention_dim=cross_attention_dim[i],
         
     | 
| 369 | 
         
            -
                            num_attention_heads=num_attention_heads[i],
         
     | 
| 370 | 
         
            -
                            downsample_padding=downsample_padding,
         
     | 
| 371 | 
         
            -
                            dual_cross_attention=dual_cross_attention,
         
     | 
| 372 | 
         
            -
                            use_linear_projection=use_linear_projection,
         
     | 
| 373 | 
         
            -
                            only_cross_attention=only_cross_attention[i],
         
     | 
| 374 | 
         
            -
                            upcast_attention=upcast_attention,
         
     | 
| 375 | 
         
            -
                            resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 376 | 
         
            -
                            attention_type=attention_type,
         
     | 
| 377 | 
         
            -
                            resnet_skip_time_act=resnet_skip_time_act,
         
     | 
| 378 | 
         
            -
                            resnet_out_scale_factor=resnet_out_scale_factor,
         
     | 
| 379 | 
         
            -
                            cross_attention_norm=cross_attention_norm,
         
     | 
| 380 | 
         
            -
                            attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
         
     | 
| 381 | 
         
            -
                            dropout=dropout,
         
     | 
| 382 | 
         
            -
                            extract_self_attention_kv=extract_self_attention_kv,
         
     | 
| 383 | 
         
            -
                            extract_cross_attention_kv=extract_cross_attention_kv,
         
     | 
| 384 | 
         
            -
                        )
         
     | 
| 385 | 
         
            -
                        self.down_blocks.append(down_block)
         
     | 
| 386 | 
         
            -
             
     | 
| 387 | 
         
            -
                    # mid
         
     | 
| 388 | 
         
            -
                    self.mid_block = get_mid_block(
         
     | 
| 389 | 
         
            -
                        mid_block_type,
         
     | 
| 390 | 
         
            -
                        temb_channels=blocks_time_embed_dim,
         
     | 
| 391 | 
         
            -
                        in_channels=block_out_channels[-1],
         
     | 
| 392 | 
         
            -
                        resnet_eps=norm_eps,
         
     | 
| 393 | 
         
            -
                        resnet_act_fn=act_fn,
         
     | 
| 394 | 
         
            -
                        resnet_groups=norm_num_groups,
         
     | 
| 395 | 
         
            -
                        output_scale_factor=mid_block_scale_factor,
         
     | 
| 396 | 
         
            -
                        transformer_layers_per_block=transformer_layers_per_block[-1],
         
     | 
| 397 | 
         
            -
                        num_attention_heads=num_attention_heads[-1],
         
     | 
| 398 | 
         
            -
                        cross_attention_dim=cross_attention_dim[-1],
         
     | 
| 399 | 
         
            -
                        dual_cross_attention=dual_cross_attention,
         
     | 
| 400 | 
         
            -
                        use_linear_projection=use_linear_projection,
         
     | 
| 401 | 
         
            -
                        mid_block_only_cross_attention=mid_block_only_cross_attention,
         
     | 
| 402 | 
         
            -
                        upcast_attention=upcast_attention,
         
     | 
| 403 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 404 | 
         
            -
                        attention_type=attention_type,
         
     | 
| 405 | 
         
            -
                        resnet_skip_time_act=resnet_skip_time_act,
         
     | 
| 406 | 
         
            -
                        cross_attention_norm=cross_attention_norm,
         
     | 
| 407 | 
         
            -
                        attention_head_dim=attention_head_dim[-1],
         
     | 
| 408 | 
         
            -
                        dropout=dropout,
         
     | 
| 409 | 
         
            -
                        extract_self_attention_kv=extract_self_attention_kv,
         
     | 
| 410 | 
         
            -
                        extract_cross_attention_kv=extract_cross_attention_kv,
         
     | 
| 411 | 
         
            -
                    )
         
     | 
| 412 | 
         
            -
             
     | 
| 413 | 
         
            -
                    # count how many layers upsample the images
         
     | 
| 414 | 
         
            -
                    self.num_upsamplers = 0
         
     | 
| 415 | 
         
            -
             
     | 
| 416 | 
         
            -
                    # up
         
     | 
| 417 | 
         
            -
                    reversed_block_out_channels = list(reversed(block_out_channels))
         
     | 
| 418 | 
         
            -
                    reversed_num_attention_heads = list(reversed(num_attention_heads))
         
     | 
| 419 | 
         
            -
                    reversed_layers_per_block = list(reversed(layers_per_block))
         
     | 
| 420 | 
         
            -
                    reversed_cross_attention_dim = list(reversed(cross_attention_dim))
         
     | 
| 421 | 
         
            -
                    reversed_transformer_layers_per_block = (
         
     | 
| 422 | 
         
            -
                        list(reversed(transformer_layers_per_block))
         
     | 
| 423 | 
         
            -
                        if reverse_transformer_layers_per_block is None
         
     | 
| 424 | 
         
            -
                        else reverse_transformer_layers_per_block
         
     | 
| 425 | 
         
            -
                    )
         
     | 
| 426 | 
         
            -
                    only_cross_attention = list(reversed(only_cross_attention))
         
     | 
| 427 | 
         
            -
             
     | 
| 428 | 
         
            -
                    output_channel = reversed_block_out_channels[0]
         
     | 
| 429 | 
         
            -
                    for i, up_block_type in enumerate(up_block_types):
         
     | 
| 430 | 
         
            -
                        is_final_block = i == len(block_out_channels) - 1
         
     | 
| 431 | 
         
            -
             
     | 
| 432 | 
         
            -
                        prev_output_channel = output_channel
         
     | 
| 433 | 
         
            -
                        output_channel = reversed_block_out_channels[i]
         
     | 
| 434 | 
         
            -
                        input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
         
     | 
| 435 | 
         
            -
             
     | 
| 436 | 
         
            -
                        # add upsample block for all BUT final layer
         
     | 
| 437 | 
         
            -
                        if not is_final_block:
         
     | 
| 438 | 
         
            -
                            add_upsample = True
         
     | 
| 439 | 
         
            -
                            self.num_upsamplers += 1
         
     | 
| 440 | 
         
            -
                        else:
         
     | 
| 441 | 
         
            -
                            add_upsample = False
         
     | 
| 442 | 
         
            -
             
     | 
| 443 | 
         
            -
                        up_block = get_up_block(
         
     | 
| 444 | 
         
            -
                            up_block_type,
         
     | 
| 445 | 
         
            -
                            num_layers=reversed_layers_per_block[i] + 1,
         
     | 
| 446 | 
         
            -
                            transformer_layers_per_block=reversed_transformer_layers_per_block[i],
         
     | 
| 447 | 
         
            -
                            in_channels=input_channel,
         
     | 
| 448 | 
         
            -
                            out_channels=output_channel,
         
     | 
| 449 | 
         
            -
                            prev_output_channel=prev_output_channel,
         
     | 
| 450 | 
         
            -
                            temb_channels=blocks_time_embed_dim,
         
     | 
| 451 | 
         
            -
                            add_upsample=add_upsample,
         
     | 
| 452 | 
         
            -
                            resnet_eps=norm_eps,
         
     | 
| 453 | 
         
            -
                            resnet_act_fn=act_fn,
         
     | 
| 454 | 
         
            -
                            resolution_idx=i,
         
     | 
| 455 | 
         
            -
                            resnet_groups=norm_num_groups,
         
     | 
| 456 | 
         
            -
                            cross_attention_dim=reversed_cross_attention_dim[i],
         
     | 
| 457 | 
         
            -
                            num_attention_heads=reversed_num_attention_heads[i],
         
     | 
| 458 | 
         
            -
                            dual_cross_attention=dual_cross_attention,
         
     | 
| 459 | 
         
            -
                            use_linear_projection=use_linear_projection,
         
     | 
| 460 | 
         
            -
                            only_cross_attention=only_cross_attention[i],
         
     | 
| 461 | 
         
            -
                            upcast_attention=upcast_attention,
         
     | 
| 462 | 
         
            -
                            resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 463 | 
         
            -
                            attention_type=attention_type,
         
     | 
| 464 | 
         
            -
                            resnet_skip_time_act=resnet_skip_time_act,
         
     | 
| 465 | 
         
            -
                            resnet_out_scale_factor=resnet_out_scale_factor,
         
     | 
| 466 | 
         
            -
                            cross_attention_norm=cross_attention_norm,
         
     | 
| 467 | 
         
            -
                            attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
         
     | 
| 468 | 
         
            -
                            dropout=dropout,
         
     | 
| 469 | 
         
            -
                            extract_self_attention_kv=extract_self_attention_kv,
         
     | 
| 470 | 
         
            -
                            extract_cross_attention_kv=extract_cross_attention_kv,
         
     | 
| 471 | 
         
            -
                        )
         
     | 
| 472 | 
         
            -
                        self.up_blocks.append(up_block)
         
     | 
| 473 | 
         
            -
                        prev_output_channel = output_channel
         
     | 
| 474 | 
         
            -
             
     | 
| 475 | 
         
            -
                    # out
         
     | 
| 476 | 
         
            -
                    if norm_num_groups is not None:
         
     | 
| 477 | 
         
            -
                        self.conv_norm_out = nn.GroupNorm(
         
     | 
| 478 | 
         
            -
                            num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
         
     | 
| 479 | 
         
            -
                        )
         
     | 
| 480 | 
         
            -
             
     | 
| 481 | 
         
            -
                        self.conv_act = get_activation(act_fn)
         
     | 
| 482 | 
         
            -
             
     | 
| 483 | 
         
            -
                    else:
         
     | 
| 484 | 
         
            -
                        self.conv_norm_out = None
         
     | 
| 485 | 
         
            -
                        self.conv_act = None
         
     | 
| 486 | 
         
            -
             
     | 
| 487 | 
         
            -
                    conv_out_padding = (conv_out_kernel - 1) // 2
         
     | 
| 488 | 
         
            -
                    self.conv_out = nn.Conv2d(
         
     | 
| 489 | 
         
            -
                        block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
         
     | 
| 490 | 
         
            -
                    )
         
     | 
| 491 | 
         
            -
             
     | 
| 492 | 
         
            -
                    self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
         
     | 
| 493 | 
         
            -
             
     | 
| 494 | 
         
            -
                def _check_config(
         
     | 
| 495 | 
         
            -
                    self,
         
     | 
| 496 | 
         
            -
                    down_block_types: Tuple[str],
         
     | 
| 497 | 
         
            -
                    up_block_types: Tuple[str],
         
     | 
| 498 | 
         
            -
                    only_cross_attention: Union[bool, Tuple[bool]],
         
     | 
| 499 | 
         
            -
                    block_out_channels: Tuple[int],
         
     | 
| 500 | 
         
            -
                    layers_per_block: Union[int, Tuple[int]],
         
     | 
| 501 | 
         
            -
                    cross_attention_dim: Union[int, Tuple[int]],
         
     | 
| 502 | 
         
            -
                    transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
         
     | 
| 503 | 
         
            -
                    reverse_transformer_layers_per_block: bool,
         
     | 
| 504 | 
         
            -
                    attention_head_dim: int,
         
     | 
| 505 | 
         
            -
                    num_attention_heads: Optional[Union[int, Tuple[int]]],
         
     | 
| 506 | 
         
            -
                ):
         
     | 
| 507 | 
         
            -
                    assert "ExtractKVCrossAttnDownBlock2D" in down_block_types, "ExtractKVUNet must have ExtractKVCrossAttnDownBlock2D."
         
     | 
| 508 | 
         
            -
                    assert "ExtractKVCrossAttnUpBlock2D" in up_block_types, "ExtractKVUNet must have ExtractKVCrossAttnUpBlock2D."
         
     | 
| 509 | 
         
            -
             
     | 
| 510 | 
         
            -
                    if len(down_block_types) != len(up_block_types):
         
     | 
| 511 | 
         
            -
                        raise ValueError(
         
     | 
| 512 | 
         
            -
                            f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
         
     | 
| 513 | 
         
            -
                        )
         
     | 
| 514 | 
         
            -
             
     | 
| 515 | 
         
            -
                    if len(block_out_channels) != len(down_block_types):
         
     | 
| 516 | 
         
            -
                        raise ValueError(
         
     | 
| 517 | 
         
            -
                            f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
         
     | 
| 518 | 
         
            -
                        )
         
     | 
| 519 | 
         
            -
             
     | 
| 520 | 
         
            -
                    if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
         
     | 
| 521 | 
         
            -
                        raise ValueError(
         
     | 
| 522 | 
         
            -
                            f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
         
     | 
| 523 | 
         
            -
                        )
         
     | 
| 524 | 
         
            -
             
     | 
| 525 | 
         
            -
                    if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
         
     | 
| 526 | 
         
            -
                        raise ValueError(
         
     | 
| 527 | 
         
            -
                            f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
         
     | 
| 528 | 
         
            -
                        )
         
     | 
| 529 | 
         
            -
             
     | 
| 530 | 
         
            -
                    if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
         
     | 
| 531 | 
         
            -
                        raise ValueError(
         
     | 
| 532 | 
         
            -
                            f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
         
     | 
| 533 | 
         
            -
                        )
         
     | 
| 534 | 
         
            -
             
     | 
| 535 | 
         
            -
                    if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
         
     | 
| 536 | 
         
            -
                        raise ValueError(
         
     | 
| 537 | 
         
            -
                            f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
         
     | 
| 538 | 
         
            -
                        )
         
     | 
| 539 | 
         
            -
             
     | 
| 540 | 
         
            -
                    if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
         
     | 
| 541 | 
         
            -
                        raise ValueError(
         
     | 
| 542 | 
         
            -
                            f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
         
     | 
| 543 | 
         
            -
                        )
         
     | 
| 544 | 
         
            -
                    if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
         
     | 
| 545 | 
         
            -
                        for layer_number_per_block in transformer_layers_per_block:
         
     | 
| 546 | 
         
            -
                            if isinstance(layer_number_per_block, list):
         
     | 
| 547 | 
         
            -
                                raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
         
     | 
| 548 | 
         
            -
             
     | 
| 549 | 
         
            -
                def _set_time_proj(
         
     | 
| 550 | 
         
            -
                    self,
         
     | 
| 551 | 
         
            -
                    time_embedding_type: str,
         
     | 
| 552 | 
         
            -
                    block_out_channels: int,
         
     | 
| 553 | 
         
            -
                    flip_sin_to_cos: bool,
         
     | 
| 554 | 
         
            -
                    freq_shift: float,
         
     | 
| 555 | 
         
            -
                    time_embedding_dim: int,
         
     | 
| 556 | 
         
            -
                ) -> Tuple[int, int]:
         
     | 
| 557 | 
         
            -
                    if time_embedding_type == "fourier":
         
     | 
| 558 | 
         
            -
                        time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
         
     | 
| 559 | 
         
            -
                        if time_embed_dim % 2 != 0:
         
     | 
| 560 | 
         
            -
                            raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
         
     | 
| 561 | 
         
            -
                        self.time_proj = GaussianFourierProjection(
         
     | 
| 562 | 
         
            -
                            time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
         
     | 
| 563 | 
         
            -
                        )
         
     | 
| 564 | 
         
            -
                        timestep_input_dim = time_embed_dim
         
     | 
| 565 | 
         
            -
                    elif time_embedding_type == "positional":
         
     | 
| 566 | 
         
            -
                        time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
         
     | 
| 567 | 
         
            -
             
     | 
| 568 | 
         
            -
                        self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
         
     | 
| 569 | 
         
            -
                        timestep_input_dim = block_out_channels[0]
         
     | 
| 570 | 
         
            -
                    else:
         
     | 
| 571 | 
         
            -
                        raise ValueError(
         
     | 
| 572 | 
         
            -
                            f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
         
     | 
| 573 | 
         
            -
                        )
         
     | 
| 574 | 
         
            -
             
     | 
| 575 | 
         
            -
                    return time_embed_dim, timestep_input_dim
         
     | 
| 576 | 
         
            -
             
     | 
| 577 | 
         
            -
                def _set_encoder_hid_proj(
         
     | 
| 578 | 
         
            -
                    self,
         
     | 
| 579 | 
         
            -
                    encoder_hid_dim_type: Optional[str],
         
     | 
| 580 | 
         
            -
                    cross_attention_dim: Union[int, Tuple[int]],
         
     | 
| 581 | 
         
            -
                    encoder_hid_dim: Optional[int],
         
     | 
| 582 | 
         
            -
                ):
         
     | 
| 583 | 
         
            -
                    if encoder_hid_dim_type is None and encoder_hid_dim is not None:
         
     | 
| 584 | 
         
            -
                        encoder_hid_dim_type = "text_proj"
         
     | 
| 585 | 
         
            -
                        self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
         
     | 
| 586 | 
         
            -
                        logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
         
     | 
| 587 | 
         
            -
             
     | 
| 588 | 
         
            -
                    if encoder_hid_dim is None and encoder_hid_dim_type is not None:
         
     | 
| 589 | 
         
            -
                        raise ValueError(
         
     | 
| 590 | 
         
            -
                            f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
         
     | 
| 591 | 
         
            -
                        )
         
     | 
| 592 | 
         
            -
             
     | 
| 593 | 
         
            -
                    if encoder_hid_dim_type == "text_proj":
         
     | 
| 594 | 
         
            -
                        self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
         
     | 
| 595 | 
         
            -
                    elif encoder_hid_dim_type == "text_image_proj":
         
     | 
| 596 | 
         
            -
                        # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
         
     | 
| 597 | 
         
            -
                        # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
         
     | 
| 598 | 
         
            -
                        # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
         
     | 
| 599 | 
         
            -
                        self.encoder_hid_proj = TextImageProjection(
         
     | 
| 600 | 
         
            -
                            text_embed_dim=encoder_hid_dim,
         
     | 
| 601 | 
         
            -
                            image_embed_dim=cross_attention_dim,
         
     | 
| 602 | 
         
            -
                            cross_attention_dim=cross_attention_dim,
         
     | 
| 603 | 
         
            -
                        )
         
     | 
| 604 | 
         
            -
                    elif encoder_hid_dim_type == "image_proj":
         
     | 
| 605 | 
         
            -
                        # Kandinsky 2.2
         
     | 
| 606 | 
         
            -
                        self.encoder_hid_proj = ImageProjection(
         
     | 
| 607 | 
         
            -
                            image_embed_dim=encoder_hid_dim,
         
     | 
| 608 | 
         
            -
                            cross_attention_dim=cross_attention_dim,
         
     | 
| 609 | 
         
            -
                        )
         
     | 
| 610 | 
         
            -
                    elif encoder_hid_dim_type is not None:
         
     | 
| 611 | 
         
            -
                        raise ValueError(
         
     | 
| 612 | 
         
            -
                            f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
         
     | 
| 613 | 
         
            -
                        )
         
     | 
| 614 | 
         
            -
                    else:
         
     | 
| 615 | 
         
            -
                        self.encoder_hid_proj = None
         
     | 
| 616 | 
         
            -
             
     | 
| 617 | 
         
            -
                def _set_class_embedding(
         
     | 
| 618 | 
         
            -
                    self,
         
     | 
| 619 | 
         
            -
                    class_embed_type: Optional[str],
         
     | 
| 620 | 
         
            -
                    act_fn: str,
         
     | 
| 621 | 
         
            -
                    num_class_embeds: Optional[int],
         
     | 
| 622 | 
         
            -
                    projection_class_embeddings_input_dim: Optional[int],
         
     | 
| 623 | 
         
            -
                    time_embed_dim: int,
         
     | 
| 624 | 
         
            -
                    timestep_input_dim: int,
         
     | 
| 625 | 
         
            -
                ):
         
     | 
| 626 | 
         
            -
                    if class_embed_type is None and num_class_embeds is not None:
         
     | 
| 627 | 
         
            -
                        self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
         
     | 
| 628 | 
         
            -
                    elif class_embed_type == "timestep":
         
     | 
| 629 | 
         
            -
                        self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
         
     | 
| 630 | 
         
            -
                    elif class_embed_type == "identity":
         
     | 
| 631 | 
         
            -
                        self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
         
     | 
| 632 | 
         
            -
                    elif class_embed_type == "projection":
         
     | 
| 633 | 
         
            -
                        if projection_class_embeddings_input_dim is None:
         
     | 
| 634 | 
         
            -
                            raise ValueError(
         
     | 
| 635 | 
         
            -
                                "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
         
     | 
| 636 | 
         
            -
                            )
         
     | 
| 637 | 
         
            -
                        # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
         
     | 
| 638 | 
         
            -
                        # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
         
     | 
| 639 | 
         
            -
                        # 2. it projects from an arbitrary input dimension.
         
     | 
| 640 | 
         
            -
                        #
         
     | 
| 641 | 
         
            -
                        # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
         
     | 
| 642 | 
         
            -
                        # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
         
     | 
| 643 | 
         
            -
                        # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
         
     | 
| 644 | 
         
            -
                        self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         
     | 
| 645 | 
         
            -
                    elif class_embed_type == "simple_projection":
         
     | 
| 646 | 
         
            -
                        if projection_class_embeddings_input_dim is None:
         
     | 
| 647 | 
         
            -
                            raise ValueError(
         
     | 
| 648 | 
         
            -
                                "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
         
     | 
| 649 | 
         
            -
                            )
         
     | 
| 650 | 
         
            -
                        self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
         
     | 
| 651 | 
         
            -
                    else:
         
     | 
| 652 | 
         
            -
                        self.class_embedding = None
         
     | 
| 653 | 
         
            -
             
     | 
| 654 | 
         
            -
                def _set_add_embedding(
         
     | 
| 655 | 
         
            -
                    self,
         
     | 
| 656 | 
         
            -
                    addition_embed_type: str,
         
     | 
| 657 | 
         
            -
                    addition_embed_type_num_heads: int,
         
     | 
| 658 | 
         
            -
                    addition_time_embed_dim: Optional[int],
         
     | 
| 659 | 
         
            -
                    flip_sin_to_cos: bool,
         
     | 
| 660 | 
         
            -
                    freq_shift: float,
         
     | 
| 661 | 
         
            -
                    cross_attention_dim: Optional[int],
         
     | 
| 662 | 
         
            -
                    encoder_hid_dim: Optional[int],
         
     | 
| 663 | 
         
            -
                    projection_class_embeddings_input_dim: Optional[int],
         
     | 
| 664 | 
         
            -
                    time_embed_dim: int,
         
     | 
| 665 | 
         
            -
                ):
         
     | 
| 666 | 
         
            -
                    if addition_embed_type == "text":
         
     | 
| 667 | 
         
            -
                        if encoder_hid_dim is not None:
         
     | 
| 668 | 
         
            -
                            text_time_embedding_from_dim = encoder_hid_dim
         
     | 
| 669 | 
         
            -
                        else:
         
     | 
| 670 | 
         
            -
                            text_time_embedding_from_dim = cross_attention_dim
         
     | 
| 671 | 
         
            -
             
     | 
| 672 | 
         
            -
                        self.add_embedding = TextTimeEmbedding(
         
     | 
| 673 | 
         
            -
                            text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
         
     | 
| 674 | 
         
            -
                        )
         
     | 
| 675 | 
         
            -
                    elif addition_embed_type == "text_image":
         
     | 
| 676 | 
         
            -
                        # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
         
     | 
| 677 | 
         
            -
                        # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
         
     | 
| 678 | 
         
            -
                        # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
         
     | 
| 679 | 
         
            -
                        self.add_embedding = TextImageTimeEmbedding(
         
     | 
| 680 | 
         
            -
                            text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
         
     | 
| 681 | 
         
            -
                        )
         
     | 
| 682 | 
         
            -
                    elif addition_embed_type == "text_time":
         
     | 
| 683 | 
         
            -
                        self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
         
     | 
| 684 | 
         
            -
                        self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         
     | 
| 685 | 
         
            -
                    elif addition_embed_type == "image":
         
     | 
| 686 | 
         
            -
                        # Kandinsky 2.2
         
     | 
| 687 | 
         
            -
                        self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
         
     | 
| 688 | 
         
            -
                    elif addition_embed_type == "image_hint":
         
     | 
| 689 | 
         
            -
                        # Kandinsky 2.2 ControlNet
         
     | 
| 690 | 
         
            -
                        self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
         
     | 
| 691 | 
         
            -
                    elif addition_embed_type is not None:
         
     | 
| 692 | 
         
            -
                        raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
         
     | 
| 693 | 
         
            -
             
     | 
| 694 | 
         
            -
                def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
         
     | 
| 695 | 
         
            -
                    if attention_type in ["gated", "gated-text-image"]:
         
     | 
| 696 | 
         
            -
                        positive_len = 768
         
     | 
| 697 | 
         
            -
                        if isinstance(cross_attention_dim, int):
         
     | 
| 698 | 
         
            -
                            positive_len = cross_attention_dim
         
     | 
| 699 | 
         
            -
                        elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
         
     | 
| 700 | 
         
            -
                            positive_len = cross_attention_dim[0]
         
     | 
| 701 | 
         
            -
             
     | 
| 702 | 
         
            -
                        feature_type = "text-only" if attention_type == "gated" else "text-image"
         
     | 
| 703 | 
         
            -
                        self.position_net = GLIGENTextBoundingboxProjection(
         
     | 
| 704 | 
         
            -
                            positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
         
     | 
| 705 | 
         
            -
                        )
         
     | 
| 706 | 
         
            -
             
     | 
| 707 | 
         
            -
                @property
         
     | 
| 708 | 
         
            -
                def attn_processors(self) -> Dict[str, AttentionProcessor]:
         
     | 
| 709 | 
         
            -
                    r"""
         
     | 
| 710 | 
         
            -
                    Returns:
         
     | 
| 711 | 
         
            -
                        `dict` of attention processors: A dictionary containing all attention processors used in the model with
         
     | 
| 712 | 
         
            -
                        indexed by its weight name.
         
     | 
| 713 | 
         
            -
                    """
         
     | 
| 714 | 
         
            -
                    # set recursively
         
     | 
| 715 | 
         
            -
                    processors = {}
         
     | 
| 716 | 
         
            -
             
     | 
| 717 | 
         
            -
                    def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
         
     | 
| 718 | 
         
            -
                        if hasattr(module, "get_processor"):
         
     | 
| 719 | 
         
            -
                            processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
         
     | 
| 720 | 
         
            -
             
     | 
| 721 | 
         
            -
                        for sub_name, child in module.named_children():
         
     | 
| 722 | 
         
            -
                            fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
         
     | 
| 723 | 
         
            -
             
     | 
| 724 | 
         
            -
                        return processors
         
     | 
| 725 | 
         
            -
             
     | 
| 726 | 
         
            -
                    for name, module in self.named_children():
         
     | 
| 727 | 
         
            -
                        fn_recursive_add_processors(name, module, processors)
         
     | 
| 728 | 
         
            -
             
     | 
| 729 | 
         
            -
                    return processors
         
     | 
| 730 | 
         
            -
             
     | 
| 731 | 
         
            -
                def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
         
     | 
| 732 | 
         
            -
                    r"""
         
     | 
| 733 | 
         
            -
                    Sets the attention processor to use to compute attention.
         
     | 
| 734 | 
         
            -
             
     | 
| 735 | 
         
            -
                    Parameters:
         
     | 
| 736 | 
         
            -
                        processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
         
     | 
| 737 | 
         
            -
                            The instantiated processor class or a dictionary of processor classes that will be set as the processor
         
     | 
| 738 | 
         
            -
                            for **all** `Attention` layers.
         
     | 
| 739 | 
         
            -
             
     | 
| 740 | 
         
            -
                            If `processor` is a dict, the key needs to define the path to the corresponding cross attention
         
     | 
| 741 | 
         
            -
                            processor. This is strongly recommended when setting trainable attention processors.
         
     | 
| 742 | 
         
            -
             
     | 
| 743 | 
         
            -
                    """
         
     | 
| 744 | 
         
            -
                    count = len(self.attn_processors.keys())
         
     | 
| 745 | 
         
            -
             
     | 
| 746 | 
         
            -
                    if isinstance(processor, dict) and len(processor) != count:
         
     | 
| 747 | 
         
            -
                        raise ValueError(
         
     | 
| 748 | 
         
            -
                            f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
         
     | 
| 749 | 
         
            -
                            f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
         
     | 
| 750 | 
         
            -
                        )
         
     | 
| 751 | 
         
            -
             
     | 
| 752 | 
         
            -
                    def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
         
     | 
| 753 | 
         
            -
                        if hasattr(module, "set_processor"):
         
     | 
| 754 | 
         
            -
                            if not isinstance(processor, dict):
         
     | 
| 755 | 
         
            -
                                module.set_processor(processor)
         
     | 
| 756 | 
         
            -
                            else:
         
     | 
| 757 | 
         
            -
                                module.set_processor(processor.pop(f"{name}.processor"))
         
     | 
| 758 | 
         
            -
             
     | 
| 759 | 
         
            -
                        for sub_name, child in module.named_children():
         
     | 
| 760 | 
         
            -
                            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
         
     | 
| 761 | 
         
            -
             
     | 
| 762 | 
         
            -
                    for name, module in self.named_children():
         
     | 
| 763 | 
         
            -
                        fn_recursive_attn_processor(name, module, processor)
         
     | 
| 764 | 
         
            -
             
     | 
| 765 | 
         
            -
                def set_default_attn_processor(self):
         
     | 
| 766 | 
         
            -
                    """
         
     | 
| 767 | 
         
            -
                    Disables custom attention processors and sets the default attention implementation.
         
     | 
| 768 | 
         
            -
                    """
         
     | 
| 769 | 
         
            -
                    if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
         
     | 
| 770 | 
         
            -
                        processor = AttnAddedKVProcessor()
         
     | 
| 771 | 
         
            -
                    elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
         
     | 
| 772 | 
         
            -
                        processor = AttnProcessor()
         
     | 
| 773 | 
         
            -
                    else:
         
     | 
| 774 | 
         
            -
                        raise ValueError(
         
     | 
| 775 | 
         
            -
                            f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
         
     | 
| 776 | 
         
            -
                        )
         
     | 
| 777 | 
         
            -
             
     | 
| 778 | 
         
            -
                    self.set_attn_processor(processor)
         
     | 
| 779 | 
         
            -
             
     | 
| 780 | 
         
            -
                def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
         
     | 
| 781 | 
         
            -
                    r"""
         
     | 
| 782 | 
         
            -
                    Enable sliced attention computation.
         
     | 
| 783 | 
         
            -
             
     | 
| 784 | 
         
            -
                    When this option is enabled, the attention module splits the input tensor in slices to compute attention in
         
     | 
| 785 | 
         
            -
                    several steps. This is useful for saving some memory in exchange for a small decrease in speed.
         
     | 
| 786 | 
         
            -
             
     | 
| 787 | 
         
            -
                    Args:
         
     | 
| 788 | 
         
            -
                        slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
         
     | 
| 789 | 
         
            -
                            When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
         
     | 
| 790 | 
         
            -
                            `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
         
     | 
| 791 | 
         
            -
                            provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
         
     | 
| 792 | 
         
            -
                            must be a multiple of `slice_size`.
         
     | 
| 793 | 
         
            -
                    """
         
     | 
| 794 | 
         
            -
                    sliceable_head_dims = []
         
     | 
| 795 | 
         
            -
             
     | 
| 796 | 
         
            -
                    def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
         
     | 
| 797 | 
         
            -
                        if hasattr(module, "set_attention_slice"):
         
     | 
| 798 | 
         
            -
                            sliceable_head_dims.append(module.sliceable_head_dim)
         
     | 
| 799 | 
         
            -
             
     | 
| 800 | 
         
            -
                        for child in module.children():
         
     | 
| 801 | 
         
            -
                            fn_recursive_retrieve_sliceable_dims(child)
         
     | 
| 802 | 
         
            -
             
     | 
| 803 | 
         
            -
                    # retrieve number of attention layers
         
     | 
| 804 | 
         
            -
                    for module in self.children():
         
     | 
| 805 | 
         
            -
                        fn_recursive_retrieve_sliceable_dims(module)
         
     | 
| 806 | 
         
            -
             
     | 
| 807 | 
         
            -
                    num_sliceable_layers = len(sliceable_head_dims)
         
     | 
| 808 | 
         
            -
             
     | 
| 809 | 
         
            -
                    if slice_size == "auto":
         
     | 
| 810 | 
         
            -
                        # half the attention head size is usually a good trade-off between
         
     | 
| 811 | 
         
            -
                        # speed and memory
         
     | 
| 812 | 
         
            -
                        slice_size = [dim // 2 for dim in sliceable_head_dims]
         
     | 
| 813 | 
         
            -
                    elif slice_size == "max":
         
     | 
| 814 | 
         
            -
                        # make smallest slice possible
         
     | 
| 815 | 
         
            -
                        slice_size = num_sliceable_layers * [1]
         
     | 
| 816 | 
         
            -
             
     | 
| 817 | 
         
            -
                    slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
         
     | 
| 818 | 
         
            -
             
     | 
| 819 | 
         
            -
                    if len(slice_size) != len(sliceable_head_dims):
         
     | 
| 820 | 
         
            -
                        raise ValueError(
         
     | 
| 821 | 
         
            -
                            f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
         
     | 
| 822 | 
         
            -
                            f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
         
     | 
| 823 | 
         
            -
                        )
         
     | 
| 824 | 
         
            -
             
     | 
| 825 | 
         
            -
                    for i in range(len(slice_size)):
         
     | 
| 826 | 
         
            -
                        size = slice_size[i]
         
     | 
| 827 | 
         
            -
                        dim = sliceable_head_dims[i]
         
     | 
| 828 | 
         
            -
                        if size is not None and size > dim:
         
     | 
| 829 | 
         
            -
                            raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
         
     | 
| 830 | 
         
            -
             
     | 
| 831 | 
         
            -
                    # Recursively walk through all the children.
         
     | 
| 832 | 
         
            -
                    # Any children which exposes the set_attention_slice method
         
     | 
| 833 | 
         
            -
                    # gets the message
         
     | 
| 834 | 
         
            -
                    def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
         
     | 
| 835 | 
         
            -
                        if hasattr(module, "set_attention_slice"):
         
     | 
| 836 | 
         
            -
                            module.set_attention_slice(slice_size.pop())
         
     | 
| 837 | 
         
            -
             
     | 
| 838 | 
         
            -
                        for child in module.children():
         
     | 
| 839 | 
         
            -
                            fn_recursive_set_attention_slice(child, slice_size)
         
     | 
| 840 | 
         
            -
             
     | 
| 841 | 
         
            -
                    reversed_slice_size = list(reversed(slice_size))
         
     | 
| 842 | 
         
            -
                    for module in self.children():
         
     | 
| 843 | 
         
            -
                        fn_recursive_set_attention_slice(module, reversed_slice_size)
         
     | 
| 844 | 
         
            -
             
     | 
| 845 | 
         
            -
                def _set_gradient_checkpointing(self, module, value=False):
         
     | 
| 846 | 
         
            -
                    if hasattr(module, "gradient_checkpointing"):
         
     | 
| 847 | 
         
            -
                        module.gradient_checkpointing = value
         
     | 
| 848 | 
         
            -
             
     | 
| 849 | 
         
            -
                def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
         
     | 
| 850 | 
         
            -
                    r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
         
     | 
| 851 | 
         
            -
             
     | 
| 852 | 
         
            -
                    The suffixes after the scaling factors represent the stage blocks where they are being applied.
         
     | 
| 853 | 
         
            -
             
     | 
| 854 | 
         
            -
                    Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
         
     | 
| 855 | 
         
            -
                    are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
         
     | 
| 856 | 
         
            -
             
     | 
| 857 | 
         
            -
                    Args:
         
     | 
| 858 | 
         
            -
                        s1 (`float`):
         
     | 
| 859 | 
         
            -
                            Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
         
     | 
| 860 | 
         
            -
                            mitigate the "oversmoothing effect" in the enhanced denoising process.
         
     | 
| 861 | 
         
            -
                        s2 (`float`):
         
     | 
| 862 | 
         
            -
                            Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
         
     | 
| 863 | 
         
            -
                            mitigate the "oversmoothing effect" in the enhanced denoising process.
         
     | 
| 864 | 
         
            -
                        b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
         
     | 
| 865 | 
         
            -
                        b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
         
     | 
| 866 | 
         
            -
                    """
         
     | 
| 867 | 
         
            -
                    for i, upsample_block in enumerate(self.up_blocks):
         
     | 
| 868 | 
         
            -
                        setattr(upsample_block, "s1", s1)
         
     | 
| 869 | 
         
            -
                        setattr(upsample_block, "s2", s2)
         
     | 
| 870 | 
         
            -
                        setattr(upsample_block, "b1", b1)
         
     | 
| 871 | 
         
            -
                        setattr(upsample_block, "b2", b2)
         
     | 
| 872 | 
         
            -
             
     | 
| 873 | 
         
            -
                def disable_freeu(self):
         
     | 
| 874 | 
         
            -
                    """Disables the FreeU mechanism."""
         
     | 
| 875 | 
         
            -
                    freeu_keys = {"s1", "s2", "b1", "b2"}
         
     | 
| 876 | 
         
            -
                    for i, upsample_block in enumerate(self.up_blocks):
         
     | 
| 877 | 
         
            -
                        for k in freeu_keys:
         
     | 
| 878 | 
         
            -
                            if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
         
     | 
| 879 | 
         
            -
                                setattr(upsample_block, k, None)
         
     | 
| 880 | 
         
            -
             
     | 
| 881 | 
         
            -
                def fuse_qkv_projections(self):
         
     | 
| 882 | 
         
            -
                    """
         
     | 
| 883 | 
         
            -
                    Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
         
     | 
| 884 | 
         
            -
                    are fused. For cross-attention modules, key and value projection matrices are fused.
         
     | 
| 885 | 
         
            -
             
     | 
| 886 | 
         
            -
                    <Tip warning={true}>
         
     | 
| 887 | 
         
            -
             
     | 
| 888 | 
         
            -
                    This API is 🧪 experimental.
         
     | 
| 889 | 
         
            -
             
     | 
| 890 | 
         
            -
                    </Tip>
         
     | 
| 891 | 
         
            -
                    """
         
     | 
| 892 | 
         
            -
                    self.original_attn_processors = None
         
     | 
| 893 | 
         
            -
             
     | 
| 894 | 
         
            -
                    for _, attn_processor in self.attn_processors.items():
         
     | 
| 895 | 
         
            -
                        if "Added" in str(attn_processor.__class__.__name__):
         
     | 
| 896 | 
         
            -
                            raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
         
     | 
| 897 | 
         
            -
             
     | 
| 898 | 
         
            -
                    self.original_attn_processors = self.attn_processors
         
     | 
| 899 | 
         
            -
             
     | 
| 900 | 
         
            -
                    for module in self.modules():
         
     | 
| 901 | 
         
            -
                        if isinstance(module, Attention):
         
     | 
| 902 | 
         
            -
                            module.fuse_projections(fuse=True)
         
     | 
| 903 | 
         
            -
             
     | 
| 904 | 
         
            -
                def unfuse_qkv_projections(self):
         
     | 
| 905 | 
         
            -
                    """Disables the fused QKV projection if enabled.
         
     | 
| 906 | 
         
            -
             
     | 
| 907 | 
         
            -
                    <Tip warning={true}>
         
     | 
| 908 | 
         
            -
             
     | 
| 909 | 
         
            -
                    This API is 🧪 experimental.
         
     | 
| 910 | 
         
            -
             
     | 
| 911 | 
         
            -
                    </Tip>
         
     | 
| 912 | 
         
            -
             
     | 
| 913 | 
         
            -
                    """
         
     | 
| 914 | 
         
            -
                    if self.original_attn_processors is not None:
         
     | 
| 915 | 
         
            -
                        self.set_attn_processor(self.original_attn_processors)
         
     | 
| 916 | 
         
            -
             
     | 
| 917 | 
         
            -
                def unload_lora(self):
         
     | 
| 918 | 
         
            -
                    """Unloads LoRA weights."""
         
     | 
| 919 | 
         
            -
                    deprecate(
         
     | 
| 920 | 
         
            -
                        "unload_lora",
         
     | 
| 921 | 
         
            -
                        "0.28.0",
         
     | 
| 922 | 
         
            -
                        "Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().",
         
     | 
| 923 | 
         
            -
                    )
         
     | 
| 924 | 
         
            -
                    for module in self.modules():
         
     | 
| 925 | 
         
            -
                        if hasattr(module, "set_lora_layer"):
         
     | 
| 926 | 
         
            -
                            module.set_lora_layer(None)
         
     | 
| 927 | 
         
            -
             
     | 
| 928 | 
         
            -
                def get_time_embed(
         
     | 
| 929 | 
         
            -
                    self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
         
     | 
| 930 | 
         
            -
                ) -> Optional[torch.Tensor]:
         
     | 
| 931 | 
         
            -
                    timesteps = timestep
         
     | 
| 932 | 
         
            -
                    if not torch.is_tensor(timesteps):
         
     | 
| 933 | 
         
            -
                        # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
         
     | 
| 934 | 
         
            -
                        # This would be a good case for the `match` statement (Python 3.10+)
         
     | 
| 935 | 
         
            -
                        is_mps = sample.device.type == "mps"
         
     | 
| 936 | 
         
            -
                        if isinstance(timestep, float):
         
     | 
| 937 | 
         
            -
                            dtype = torch.float32 if is_mps else torch.float64
         
     | 
| 938 | 
         
            -
                        else:
         
     | 
| 939 | 
         
            -
                            dtype = torch.int32 if is_mps else torch.int64
         
     | 
| 940 | 
         
            -
                        timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
         
     | 
| 941 | 
         
            -
                    elif len(timesteps.shape) == 0:
         
     | 
| 942 | 
         
            -
                        timesteps = timesteps[None].to(sample.device)
         
     | 
| 943 | 
         
            -
             
     | 
| 944 | 
         
            -
                    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         
     | 
| 945 | 
         
            -
                    timesteps = timesteps.expand(sample.shape[0])
         
     | 
| 946 | 
         
            -
             
     | 
| 947 | 
         
            -
                    t_emb = self.time_proj(timesteps)
         
     | 
| 948 | 
         
            -
                    # `Timesteps` does not contain any weights and will always return f32 tensors
         
     | 
| 949 | 
         
            -
                    # but time_embedding might actually be running in fp16. so we need to cast here.
         
     | 
| 950 | 
         
            -
                    # there might be better ways to encapsulate this.
         
     | 
| 951 | 
         
            -
                    t_emb = t_emb.to(dtype=sample.dtype)
         
     | 
| 952 | 
         
            -
                    return t_emb
         
     | 
| 953 | 
         
            -
             
     | 
| 954 | 
         
            -
                def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
         
     | 
| 955 | 
         
            -
                    class_emb = None
         
     | 
| 956 | 
         
            -
                    if self.class_embedding is not None:
         
     | 
| 957 | 
         
            -
                        if class_labels is None:
         
     | 
| 958 | 
         
            -
                            raise ValueError("class_labels should be provided when num_class_embeds > 0")
         
     | 
| 959 | 
         
            -
             
     | 
| 960 | 
         
            -
                        if self.config.class_embed_type == "timestep":
         
     | 
| 961 | 
         
            -
                            class_labels = self.time_proj(class_labels)
         
     | 
| 962 | 
         
            -
             
     | 
| 963 | 
         
            -
                            # `Timesteps` does not contain any weights and will always return f32 tensors
         
     | 
| 964 | 
         
            -
                            # there might be better ways to encapsulate this.
         
     | 
| 965 | 
         
            -
                            class_labels = class_labels.to(dtype=sample.dtype)
         
     | 
| 966 | 
         
            -
             
     | 
| 967 | 
         
            -
                        class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
         
     | 
| 968 | 
         
            -
                    return class_emb
         
     | 
| 969 | 
         
            -
             
     | 
| 970 | 
         
            -
                def get_aug_embed(
         
     | 
| 971 | 
         
            -
                    self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
         
     | 
| 972 | 
         
            -
                ) -> Optional[torch.Tensor]:
         
     | 
| 973 | 
         
            -
                    aug_emb = None
         
     | 
| 974 | 
         
            -
                    if self.config.addition_embed_type == "text":
         
     | 
| 975 | 
         
            -
                        aug_emb = self.add_embedding(encoder_hidden_states)
         
     | 
| 976 | 
         
            -
                    elif self.config.addition_embed_type == "text_image":
         
     | 
| 977 | 
         
            -
                        # Kandinsky 2.1 - style
         
     | 
| 978 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 979 | 
         
            -
                            raise ValueError(
         
     | 
| 980 | 
         
            -
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
         
     | 
| 981 | 
         
            -
                            )
         
     | 
| 982 | 
         
            -
             
     | 
| 983 | 
         
            -
                        image_embs = added_cond_kwargs.get("image_embeds")
         
     | 
| 984 | 
         
            -
                        text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
         
     | 
| 985 | 
         
            -
                        aug_emb = self.add_embedding(text_embs, image_embs)
         
     | 
| 986 | 
         
            -
                    elif self.config.addition_embed_type == "text_time":
         
     | 
| 987 | 
         
            -
                        # SDXL - style
         
     | 
| 988 | 
         
            -
                        if "text_embeds" not in added_cond_kwargs:
         
     | 
| 989 | 
         
            -
                            raise ValueError(
         
     | 
| 990 | 
         
            -
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
         
     | 
| 991 | 
         
            -
                            )
         
     | 
| 992 | 
         
            -
                        text_embeds = added_cond_kwargs.get("text_embeds")
         
     | 
| 993 | 
         
            -
                        if "time_ids" not in added_cond_kwargs:
         
     | 
| 994 | 
         
            -
                            raise ValueError(
         
     | 
| 995 | 
         
            -
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
         
     | 
| 996 | 
         
            -
                            )
         
     | 
| 997 | 
         
            -
                        time_ids = added_cond_kwargs.get("time_ids")
         
     | 
| 998 | 
         
            -
                        time_embeds = self.add_time_proj(time_ids.flatten())
         
     | 
| 999 | 
         
            -
                        time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
         
     | 
| 1000 | 
         
            -
                        add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
         
     | 
| 1001 | 
         
            -
                        add_embeds = add_embeds.to(emb.dtype)
         
     | 
| 1002 | 
         
            -
                        aug_emb = self.add_embedding(add_embeds)
         
     | 
| 1003 | 
         
            -
                    elif self.config.addition_embed_type == "image":
         
     | 
| 1004 | 
         
            -
                        # Kandinsky 2.2 - style
         
     | 
| 1005 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 1006 | 
         
            -
                            raise ValueError(
         
     | 
| 1007 | 
         
            -
                                f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
         
     | 
| 1008 | 
         
            -
                            )
         
     | 
| 1009 | 
         
            -
                        image_embs = added_cond_kwargs.get("image_embeds")
         
     | 
| 1010 | 
         
            -
                        aug_emb = self.add_embedding(image_embs)
         
     | 
| 1011 | 
         
            -
                    elif self.config.addition_embed_type == "image_hint":
         
     | 
| 1012 | 
         
            -
                        # Kandinsky 2.2 - style
         
     | 
| 1013 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
         
     | 
| 1014 | 
         
            -
                            raise ValueError(
         
     | 
| 1015 | 
         
            -
                                f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
         
     | 
| 1016 | 
         
            -
                            )
         
     | 
| 1017 | 
         
            -
                        image_embs = added_cond_kwargs.get("image_embeds")
         
     | 
| 1018 | 
         
            -
                        hint = added_cond_kwargs.get("hint")
         
     | 
| 1019 | 
         
            -
                        aug_emb = self.add_embedding(image_embs, hint)
         
     | 
| 1020 | 
         
            -
                    return aug_emb
         
     | 
| 1021 | 
         
            -
             
     | 
| 1022 | 
         
            -
                def process_encoder_hidden_states(
         
     | 
| 1023 | 
         
            -
                    self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
         
     | 
| 1024 | 
         
            -
                ) -> torch.Tensor:
         
     | 
| 1025 | 
         
            -
                    if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
         
     | 
| 1026 | 
         
            -
                        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
         
     | 
| 1027 | 
         
            -
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
         
     | 
| 1028 | 
         
            -
                        # Kandinsky 2.1 - style
         
     | 
| 1029 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 1030 | 
         
            -
                            raise ValueError(
         
     | 
| 1031 | 
         
            -
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         
     | 
| 1032 | 
         
            -
                            )
         
     | 
| 1033 | 
         
            -
             
     | 
| 1034 | 
         
            -
                        image_embeds = added_cond_kwargs.get("image_embeds")
         
     | 
| 1035 | 
         
            -
                        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
         
     | 
| 1036 | 
         
            -
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
         
     | 
| 1037 | 
         
            -
                        # Kandinsky 2.2 - style
         
     | 
| 1038 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 1039 | 
         
            -
                            raise ValueError(
         
     | 
| 1040 | 
         
            -
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         
     | 
| 1041 | 
         
            -
                            )
         
     | 
| 1042 | 
         
            -
                        image_embeds = added_cond_kwargs.get("image_embeds")
         
     | 
| 1043 | 
         
            -
                        encoder_hidden_states = self.encoder_hid_proj(image_embeds)
         
     | 
| 1044 | 
         
            -
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
         
     | 
| 1045 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 1046 | 
         
            -
                            raise ValueError(
         
     | 
| 1047 | 
         
            -
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         
     | 
| 1048 | 
         
            -
                            )
         
     | 
| 1049 | 
         
            -
                        image_embeds = added_cond_kwargs.get("image_embeds")
         
     | 
| 1050 | 
         
            -
                        image_embeds = self.encoder_hid_proj(image_embeds)
         
     | 
| 1051 | 
         
            -
                        encoder_hidden_states = (encoder_hidden_states, image_embeds)
         
     | 
| 1052 | 
         
            -
                    return encoder_hidden_states
         
     | 
| 1053 | 
         
            -
             
     | 
| 1054 | 
         
            -
                def init_kv_extraction(self):
         
     | 
| 1055 | 
         
            -
                    for block in self.down_blocks:
         
     | 
| 1056 | 
         
            -
                        if hasattr(block, "has_cross_attention") and block.has_cross_attention:
         
     | 
| 1057 | 
         
            -
                            block.init_kv_extraction()
         
     | 
| 1058 | 
         
            -
             
     | 
| 1059 | 
         
            -
                    for block in self.up_blocks:
         
     | 
| 1060 | 
         
            -
                        if hasattr(block, "has_cross_attention") and block.has_cross_attention:
         
     | 
| 1061 | 
         
            -
                            block.init_kv_extraction()
         
     | 
| 1062 | 
         
            -
             
     | 
| 1063 | 
         
            -
                    if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
         
     | 
| 1064 | 
         
            -
                        self.mid_block.init_kv_extraction()
         
     | 
| 1065 | 
         
            -
             
     | 
| 1066 | 
         
            -
                def forward(
         
     | 
| 1067 | 
         
            -
                    self,
         
     | 
| 1068 | 
         
            -
                    sample: torch.FloatTensor,
         
     | 
| 1069 | 
         
            -
                    timestep: Union[torch.Tensor, float, int],
         
     | 
| 1070 | 
         
            -
                    encoder_hidden_states: torch.Tensor,
         
     | 
| 1071 | 
         
            -
                    class_labels: Optional[torch.Tensor] = None,
         
     | 
| 1072 | 
         
            -
                    timestep_cond: Optional[torch.Tensor] = None,
         
     | 
| 1073 | 
         
            -
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1074 | 
         
            -
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 1075 | 
         
            -
                    added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
         
     | 
| 1076 | 
         
            -
                    down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
         
     | 
| 1077 | 
         
            -
                    mid_block_additional_residual: Optional[torch.Tensor] = None,
         
     | 
| 1078 | 
         
            -
                    down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
         
     | 
| 1079 | 
         
            -
                    encoder_attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1080 | 
         
            -
                    return_dict: bool = True,
         
     | 
| 1081 | 
         
            -
                ) -> Union[ExtractKVUNet2DConditionOutput, Tuple]:
         
     | 
| 1082 | 
         
            -
                    r"""
         
     | 
| 1083 | 
         
            -
                    The [`UNet2DConditionModel`] forward method.
         
     | 
| 1084 | 
         
            -
             
     | 
| 1085 | 
         
            -
                    Args:
         
     | 
| 1086 | 
         
            -
                        sample (`torch.FloatTensor`):
         
     | 
| 1087 | 
         
            -
                            The noisy input tensor with the following shape `(batch, channel, height, width)`.
         
     | 
| 1088 | 
         
            -
                        timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
         
     | 
| 1089 | 
         
            -
                        encoder_hidden_states (`torch.FloatTensor`):
         
     | 
| 1090 | 
         
            -
                            The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
         
     | 
| 1091 | 
         
            -
                        class_labels (`torch.Tensor`, *optional*, defaults to `None`):
         
     | 
| 1092 | 
         
            -
                            Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
         
     | 
| 1093 | 
         
            -
                        timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
         
     | 
| 1094 | 
         
            -
                            Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
         
     | 
| 1095 | 
         
            -
                            through the `self.time_embedding` layer to obtain the timestep embeddings.
         
     | 
| 1096 | 
         
            -
                        attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
         
     | 
| 1097 | 
         
            -
                            An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
         
     | 
| 1098 | 
         
            -
                            is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
         
     | 
| 1099 | 
         
            -
                            negative values to the attention scores corresponding to "discard" tokens.
         
     | 
| 1100 | 
         
            -
                        cross_attention_kwargs (`dict`, *optional*):
         
     | 
| 1101 | 
         
            -
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         
     | 
| 1102 | 
         
            -
                            `self.processor` in
         
     | 
| 1103 | 
         
            -
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         
     | 
| 1104 | 
         
            -
                        added_cond_kwargs: (`dict`, *optional*):
         
     | 
| 1105 | 
         
            -
                            A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
         
     | 
| 1106 | 
         
            -
                            are passed along to the UNet blocks.
         
     | 
| 1107 | 
         
            -
                        down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
         
     | 
| 1108 | 
         
            -
                            A tuple of tensors that if specified are added to the residuals of down unet blocks.
         
     | 
| 1109 | 
         
            -
                        mid_block_additional_residual: (`torch.Tensor`, *optional*):
         
     | 
| 1110 | 
         
            -
                            A tensor that if specified is added to the residual of the middle unet block.
         
     | 
| 1111 | 
         
            -
                        down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
         
     | 
| 1112 | 
         
            -
                            additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
         
     | 
| 1113 | 
         
            -
                        encoder_attention_mask (`torch.Tensor`):
         
     | 
| 1114 | 
         
            -
                            A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
         
     | 
| 1115 | 
         
            -
                            `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
         
     | 
| 1116 | 
         
            -
                            which adds large negative values to the attention scores corresponding to "discard" tokens.
         
     | 
| 1117 | 
         
            -
                        return_dict (`bool`, *optional*, defaults to `True`):
         
     | 
| 1118 | 
         
            -
                            Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
         
     | 
| 1119 | 
         
            -
                            tuple.
         
     | 
| 1120 | 
         
            -
             
     | 
| 1121 | 
         
            -
                    Returns:
         
     | 
| 1122 | 
         
            -
                        [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
         
     | 
| 1123 | 
         
            -
                            If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
         
     | 
| 1124 | 
         
            -
                            otherwise a `tuple` is returned where the first element is the sample tensor.
         
     | 
| 1125 | 
         
            -
                    """
         
     | 
| 1126 | 
         
            -
                    # By default samples have to be AT least a multiple of the overall upsampling factor.
         
     | 
| 1127 | 
         
            -
                    # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
         
     | 
| 1128 | 
         
            -
                    # However, the upsampling interpolation output size can be forced to fit any upsampling size
         
     | 
| 1129 | 
         
            -
                    # on the fly if necessary.
         
     | 
| 1130 | 
         
            -
                    default_overall_up_factor = 2**self.num_upsamplers
         
     | 
| 1131 | 
         
            -
             
     | 
| 1132 | 
         
            -
                    # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
         
     | 
| 1133 | 
         
            -
                    forward_upsample_size = False
         
     | 
| 1134 | 
         
            -
                    upsample_size = None
         
     | 
| 1135 | 
         
            -
             
     | 
| 1136 | 
         
            -
                    for dim in sample.shape[-2:]:
         
     | 
| 1137 | 
         
            -
                        if dim % default_overall_up_factor != 0:
         
     | 
| 1138 | 
         
            -
                            # Forward upsample size to force interpolation output size.
         
     | 
| 1139 | 
         
            -
                            forward_upsample_size = True
         
     | 
| 1140 | 
         
            -
                            break
         
     | 
| 1141 | 
         
            -
             
     | 
| 1142 | 
         
            -
                    # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
         
     | 
| 1143 | 
         
            -
                    # expects mask of shape:
         
     | 
| 1144 | 
         
            -
                    #   [batch, key_tokens]
         
     | 
| 1145 | 
         
            -
                    # adds singleton query_tokens dimension:
         
     | 
| 1146 | 
         
            -
                    #   [batch,                    1, key_tokens]
         
     | 
| 1147 | 
         
            -
                    # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
         
     | 
| 1148 | 
         
            -
                    #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
         
     | 
| 1149 | 
         
            -
                    #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
         
     | 
| 1150 | 
         
            -
                    if attention_mask is not None:
         
     | 
| 1151 | 
         
            -
                        # assume that mask is expressed as:
         
     | 
| 1152 | 
         
            -
                        #   (1 = keep,      0 = discard)
         
     | 
| 1153 | 
         
            -
                        # convert mask into a bias that can be added to attention scores:
         
     | 
| 1154 | 
         
            -
                        #       (keep = +0,     discard = -10000.0)
         
     | 
| 1155 | 
         
            -
                        attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
         
     | 
| 1156 | 
         
            -
                        attention_mask = attention_mask.unsqueeze(1)
         
     | 
| 1157 | 
         
            -
             
     | 
| 1158 | 
         
            -
                    # convert encoder_attention_mask to a bias the same way we do for attention_mask
         
     | 
| 1159 | 
         
            -
                    if encoder_attention_mask is not None:
         
     | 
| 1160 | 
         
            -
                        encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
         
     | 
| 1161 | 
         
            -
                        encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
         
     | 
| 1162 | 
         
            -
             
     | 
| 1163 | 
         
            -
                    # 0. center input if necessary
         
     | 
| 1164 | 
         
            -
                    if self.config.center_input_sample:
         
     | 
| 1165 | 
         
            -
                        sample = 2 * sample - 1.0
         
     | 
| 1166 | 
         
            -
             
     | 
| 1167 | 
         
            -
                    # 1. time
         
     | 
| 1168 | 
         
            -
                    t_emb = self.get_time_embed(sample=sample, timestep=timestep)
         
     | 
| 1169 | 
         
            -
                    emb = self.time_embedding(t_emb, timestep_cond)
         
     | 
| 1170 | 
         
            -
                    aug_emb = None
         
     | 
| 1171 | 
         
            -
             
     | 
| 1172 | 
         
            -
                    class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
         
     | 
| 1173 | 
         
            -
                    if class_emb is not None:
         
     | 
| 1174 | 
         
            -
                        if self.config.class_embeddings_concat:
         
     | 
| 1175 | 
         
            -
                            emb = torch.cat([emb, class_emb], dim=-1)
         
     | 
| 1176 | 
         
            -
                        else:
         
     | 
| 1177 | 
         
            -
                            emb = emb + class_emb
         
     | 
| 1178 | 
         
            -
             
     | 
| 1179 | 
         
            -
                    aug_emb = self.get_aug_embed(
         
     | 
| 1180 | 
         
            -
                        emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
         
     | 
| 1181 | 
         
            -
                    )
         
     | 
| 1182 | 
         
            -
                    if self.config.addition_embed_type == "image_hint":
         
     | 
| 1183 | 
         
            -
                        aug_emb, hint = aug_emb
         
     | 
| 1184 | 
         
            -
                        sample = torch.cat([sample, hint], dim=1)
         
     | 
| 1185 | 
         
            -
             
     | 
| 1186 | 
         
            -
                    emb = emb + aug_emb if aug_emb is not None else emb
         
     | 
| 1187 | 
         
            -
             
     | 
| 1188 | 
         
            -
                    if self.time_embed_act is not None:
         
     | 
| 1189 | 
         
            -
                        emb = self.time_embed_act(emb)
         
     | 
| 1190 | 
         
            -
             
     | 
| 1191 | 
         
            -
                    encoder_hidden_states = self.process_encoder_hidden_states(
         
     | 
| 1192 | 
         
            -
                        encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
         
     | 
| 1193 | 
         
            -
                    )
         
     | 
| 1194 | 
         
            -
             
     | 
| 1195 | 
         
            -
                    # 2. pre-process
         
     | 
| 1196 | 
         
            -
                    sample = self.conv_in(sample)
         
     | 
| 1197 | 
         
            -
             
     | 
| 1198 | 
         
            -
                    # 2.5 GLIGEN position net
         
     | 
| 1199 | 
         
            -
                    if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
         
     | 
| 1200 | 
         
            -
                        cross_attention_kwargs = cross_attention_kwargs.copy()
         
     | 
| 1201 | 
         
            -
                        gligen_args = cross_attention_kwargs.pop("gligen")
         
     | 
| 1202 | 
         
            -
                        cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
         
     | 
| 1203 | 
         
            -
             
     | 
| 1204 | 
         
            -
                    if cross_attention_kwargs is not None and cross_attention_kwargs.get("kv_drop_idx", None) is not None:
         
     | 
| 1205 | 
         
            -
                        threshold = cross_attention_kwargs.pop("kv_drop_idx")
         
     | 
| 1206 | 
         
            -
                        cross_attention_kwargs["kv_drop_idx"] = timestep<threshold
         
     | 
| 1207 | 
         
            -
             
     | 
| 1208 | 
         
            -
                    # 3. down
         
     | 
| 1209 | 
         
            -
                    # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
         
     | 
| 1210 | 
         
            -
                    # to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
         
     | 
| 1211 | 
         
            -
                    if cross_attention_kwargs is not None:
         
     | 
| 1212 | 
         
            -
                        cross_attention_kwargs = cross_attention_kwargs.copy()
         
     | 
| 1213 | 
         
            -
                        lora_scale = cross_attention_kwargs.pop("scale", 1.0)
         
     | 
| 1214 | 
         
            -
                    else:
         
     | 
| 1215 | 
         
            -
                        lora_scale = 1.0
         
     | 
| 1216 | 
         
            -
             
     | 
| 1217 | 
         
            -
                    if USE_PEFT_BACKEND:
         
     | 
| 1218 | 
         
            -
                        # weight the lora layers by setting `lora_scale` for each PEFT layer
         
     | 
| 1219 | 
         
            -
                        scale_lora_layers(self, lora_scale)
         
     | 
| 1220 | 
         
            -
             
     | 
| 1221 | 
         
            -
                    is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
         
     | 
| 1222 | 
         
            -
                    # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
         
     | 
| 1223 | 
         
            -
                    is_adapter = down_intrablock_additional_residuals is not None
         
     | 
| 1224 | 
         
            -
                    # maintain backward compatibility for legacy usage, where
         
     | 
| 1225 | 
         
            -
                    #       T2I-Adapter and ControlNet both use down_block_additional_residuals arg
         
     | 
| 1226 | 
         
            -
                    #       but can only use one or the other
         
     | 
| 1227 | 
         
            -
                    if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
         
     | 
| 1228 | 
         
            -
                        deprecate(
         
     | 
| 1229 | 
         
            -
                            "T2I should not use down_block_additional_residuals",
         
     | 
| 1230 | 
         
            -
                            "1.3.0",
         
     | 
| 1231 | 
         
            -
                            "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
         
     | 
| 1232 | 
         
            -
                                   and will be removed in diffusers 1.3.0.  `down_block_additional_residuals` should only be used \
         
     | 
| 1233 | 
         
            -
                                   for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
         
     | 
| 1234 | 
         
            -
                            standard_warn=False,
         
     | 
| 1235 | 
         
            -
                        )
         
     | 
| 1236 | 
         
            -
                        down_intrablock_additional_residuals = down_block_additional_residuals
         
     | 
| 1237 | 
         
            -
                        is_adapter = True
         
     | 
| 1238 | 
         
            -
             
     | 
| 1239 | 
         
            -
                    down_block_res_samples = (sample,)
         
     | 
| 1240 | 
         
            -
                    extracted_kvs = {}
         
     | 
| 1241 | 
         
            -
                    for downsample_block in self.down_blocks:
         
     | 
| 1242 | 
         
            -
                        if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
         
     | 
| 1243 | 
         
            -
                            # For t2i-adapter CrossAttnDownBlock2D
         
     | 
| 1244 | 
         
            -
                            additional_residuals = {}
         
     | 
| 1245 | 
         
            -
                            if is_adapter and len(down_intrablock_additional_residuals) > 0:
         
     | 
| 1246 | 
         
            -
                                additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
         
     | 
| 1247 | 
         
            -
             
     | 
| 1248 | 
         
            -
                            sample, res_samples, extracted_kv = downsample_block(
         
     | 
| 1249 | 
         
            -
                                hidden_states=sample,
         
     | 
| 1250 | 
         
            -
                                temb=emb,
         
     | 
| 1251 | 
         
            -
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1252 | 
         
            -
                                attention_mask=attention_mask,
         
     | 
| 1253 | 
         
            -
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 1254 | 
         
            -
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1255 | 
         
            -
                                **additional_residuals,
         
     | 
| 1256 | 
         
            -
                            )
         
     | 
| 1257 | 
         
            -
                            extracted_kvs.update(extracted_kv)
         
     | 
| 1258 | 
         
            -
                        else:
         
     | 
| 1259 | 
         
            -
                            sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
         
     | 
| 1260 | 
         
            -
                            if is_adapter and len(down_intrablock_additional_residuals) > 0:
         
     | 
| 1261 | 
         
            -
                                sample += down_intrablock_additional_residuals.pop(0)
         
     | 
| 1262 | 
         
            -
             
     | 
| 1263 | 
         
            -
                        down_block_res_samples += res_samples
         
     | 
| 1264 | 
         
            -
             
     | 
| 1265 | 
         
            -
                    if is_controlnet:
         
     | 
| 1266 | 
         
            -
                        new_down_block_res_samples = ()
         
     | 
| 1267 | 
         
            -
             
     | 
| 1268 | 
         
            -
                        for down_block_res_sample, down_block_additional_residual in zip(
         
     | 
| 1269 | 
         
            -
                            down_block_res_samples, down_block_additional_residuals
         
     | 
| 1270 | 
         
            -
                        ):
         
     | 
| 1271 | 
         
            -
                            down_block_res_sample = down_block_res_sample + down_block_additional_residual
         
     | 
| 1272 | 
         
            -
                            new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
         
     | 
| 1273 | 
         
            -
             
     | 
| 1274 | 
         
            -
                        down_block_res_samples = new_down_block_res_samples
         
     | 
| 1275 | 
         
            -
             
     | 
| 1276 | 
         
            -
                    # 4. mid
         
     | 
| 1277 | 
         
            -
                    if self.mid_block is not None:
         
     | 
| 1278 | 
         
            -
                        if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
         
     | 
| 1279 | 
         
            -
                            sample, extracted_kv = self.mid_block(
         
     | 
| 1280 | 
         
            -
                                sample,
         
     | 
| 1281 | 
         
            -
                                emb,
         
     | 
| 1282 | 
         
            -
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1283 | 
         
            -
                                attention_mask=attention_mask,
         
     | 
| 1284 | 
         
            -
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 1285 | 
         
            -
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1286 | 
         
            -
                            )
         
     | 
| 1287 | 
         
            -
                            extracted_kvs.update(extracted_kv)
         
     | 
| 1288 | 
         
            -
                        else:
         
     | 
| 1289 | 
         
            -
                            sample = self.mid_block(sample, emb)
         
     | 
| 1290 | 
         
            -
             
     | 
| 1291 | 
         
            -
                        # To support T2I-Adapter-XL
         
     | 
| 1292 | 
         
            -
                        if (
         
     | 
| 1293 | 
         
            -
                            is_adapter
         
     | 
| 1294 | 
         
            -
                            and len(down_intrablock_additional_residuals) > 0
         
     | 
| 1295 | 
         
            -
                            and sample.shape == down_intrablock_additional_residuals[0].shape
         
     | 
| 1296 | 
         
            -
                        ):
         
     | 
| 1297 | 
         
            -
                            sample += down_intrablock_additional_residuals.pop(0)
         
     | 
| 1298 | 
         
            -
             
     | 
| 1299 | 
         
            -
                    if is_controlnet:
         
     | 
| 1300 | 
         
            -
                        sample = sample + mid_block_additional_residual
         
     | 
| 1301 | 
         
            -
             
     | 
| 1302 | 
         
            -
                    # 5. up
         
     | 
| 1303 | 
         
            -
                    for i, upsample_block in enumerate(self.up_blocks):
         
     | 
| 1304 | 
         
            -
                        is_final_block = i == len(self.up_blocks) - 1
         
     | 
| 1305 | 
         
            -
             
     | 
| 1306 | 
         
            -
                        res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
         
     | 
| 1307 | 
         
            -
                        down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
         
     | 
| 1308 | 
         
            -
             
     | 
| 1309 | 
         
            -
                        # if we have not reached the final block and need to forward the
         
     | 
| 1310 | 
         
            -
                        # upsample size, we do it here
         
     | 
| 1311 | 
         
            -
                        if not is_final_block and forward_upsample_size:
         
     | 
| 1312 | 
         
            -
                            upsample_size = down_block_res_samples[-1].shape[2:]
         
     | 
| 1313 | 
         
            -
             
     | 
| 1314 | 
         
            -
                        if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
         
     | 
| 1315 | 
         
            -
                            sample, extract_kv = upsample_block(
         
     | 
| 1316 | 
         
            -
                                hidden_states=sample,
         
     | 
| 1317 | 
         
            -
                                temb=emb,
         
     | 
| 1318 | 
         
            -
                                res_hidden_states_tuple=res_samples,
         
     | 
| 1319 | 
         
            -
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1320 | 
         
            -
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 1321 | 
         
            -
                                upsample_size=upsample_size,
         
     | 
| 1322 | 
         
            -
                                attention_mask=attention_mask,
         
     | 
| 1323 | 
         
            -
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1324 | 
         
            -
                            )
         
     | 
| 1325 | 
         
            -
                            extracted_kvs.update(extract_kv)
         
     | 
| 1326 | 
         
            -
                        else:
         
     | 
| 1327 | 
         
            -
                            sample = upsample_block(
         
     | 
| 1328 | 
         
            -
                                hidden_states=sample,
         
     | 
| 1329 | 
         
            -
                                temb=emb,
         
     | 
| 1330 | 
         
            -
                                res_hidden_states_tuple=res_samples,
         
     | 
| 1331 | 
         
            -
                                upsample_size=upsample_size,
         
     | 
| 1332 | 
         
            -
                            )
         
     | 
| 1333 | 
         
            -
             
     | 
| 1334 | 
         
            -
                    # 6. post-process
         
     | 
| 1335 | 
         
            -
                    if self.conv_norm_out:
         
     | 
| 1336 | 
         
            -
                        sample = self.conv_norm_out(sample)
         
     | 
| 1337 | 
         
            -
                        sample = self.conv_act(sample)
         
     | 
| 1338 | 
         
            -
                    sample = self.conv_out(sample)
         
     | 
| 1339 | 
         
            -
             
     | 
| 1340 | 
         
            -
                    if USE_PEFT_BACKEND:
         
     | 
| 1341 | 
         
            -
                        # remove `lora_scale` from each PEFT layer
         
     | 
| 1342 | 
         
            -
                        unscale_lora_layers(self, lora_scale)
         
     | 
| 1343 | 
         
            -
             
     | 
| 1344 | 
         
            -
                    if not return_dict:
         
     | 
| 1345 | 
         
            -
                        return (sample, extracted_kvs)
         
     | 
| 1346 | 
         
            -
             
     | 
| 1347 | 
         
            -
                    return ExtractKVUNet2DConditionOutput(sample=sample, cached_kvs=extracted_kvs)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        module/unet/unet_2d_extractKV_blocks.py
    DELETED
    
    | 
         @@ -1,1417 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # Copy from diffusers.models.unet.unet_2d_blocks.py
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            # Copyright 2024 The HuggingFace Team. All rights reserved.
         
     | 
| 4 | 
         
            -
            #
         
     | 
| 5 | 
         
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 6 | 
         
            -
            # you may not use this file except in compliance with the License.
         
     | 
| 7 | 
         
            -
            # You may obtain a copy of the License at
         
     | 
| 8 | 
         
            -
            #
         
     | 
| 9 | 
         
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 10 | 
         
            -
            #
         
     | 
| 11 | 
         
            -
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 12 | 
         
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 13 | 
         
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 14 | 
         
            -
            # See the License for the specific language governing permissions and
         
     | 
| 15 | 
         
            -
            # limitations under the License.
         
     | 
| 16 | 
         
            -
            from typing import Any, Dict, Optional, Tuple, Union
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
            import numpy as np
         
     | 
| 19 | 
         
            -
            import torch
         
     | 
| 20 | 
         
            -
            import torch.nn.functional as F
         
     | 
| 21 | 
         
            -
            from torch import nn
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
            from diffusers.utils import deprecate, is_torch_version, logging
         
     | 
| 24 | 
         
            -
            from diffusers.utils.torch_utils import apply_freeu
         
     | 
| 25 | 
         
            -
            from diffusers.models.activations import get_activation
         
     | 
| 26 | 
         
            -
            from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
         
     | 
| 27 | 
         
            -
            from diffusers.models.normalization import AdaGroupNorm
         
     | 
| 28 | 
         
            -
            from diffusers.models.resnet import (
         
     | 
| 29 | 
         
            -
                Downsample2D,
         
     | 
| 30 | 
         
            -
                FirDownsample2D,
         
     | 
| 31 | 
         
            -
                FirUpsample2D,
         
     | 
| 32 | 
         
            -
                KDownsample2D,
         
     | 
| 33 | 
         
            -
                KUpsample2D,
         
     | 
| 34 | 
         
            -
                ResnetBlock2D,
         
     | 
| 35 | 
         
            -
                ResnetBlockCondNorm2D,
         
     | 
| 36 | 
         
            -
                Upsample2D,
         
     | 
| 37 | 
         
            -
            )
         
     | 
| 38 | 
         
            -
            from diffusers.models.transformers.dual_transformer_2d import DualTransformer2DModel
         
     | 
| 39 | 
         
            -
            from diffusers.models.transformers.transformer_2d import Transformer2DModel
         
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
            from module.transformers.transformer_2d_ExtractKV import ExtractKVTransformer2DModel
         
     | 
| 42 | 
         
            -
             
     | 
| 43 | 
         
            -
             
     | 
| 44 | 
         
            -
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
            def get_down_block(
         
     | 
| 48 | 
         
            -
                down_block_type: str,
         
     | 
| 49 | 
         
            -
                num_layers: int,
         
     | 
| 50 | 
         
            -
                in_channels: int,
         
     | 
| 51 | 
         
            -
                out_channels: int,
         
     | 
| 52 | 
         
            -
                temb_channels: int,
         
     | 
| 53 | 
         
            -
                add_downsample: bool,
         
     | 
| 54 | 
         
            -
                resnet_eps: float,
         
     | 
| 55 | 
         
            -
                resnet_act_fn: str,
         
     | 
| 56 | 
         
            -
                transformer_layers_per_block: int = 1,
         
     | 
| 57 | 
         
            -
                num_attention_heads: Optional[int] = None,
         
     | 
| 58 | 
         
            -
                resnet_groups: Optional[int] = None,
         
     | 
| 59 | 
         
            -
                cross_attention_dim: Optional[int] = None,
         
     | 
| 60 | 
         
            -
                downsample_padding: Optional[int] = None,
         
     | 
| 61 | 
         
            -
                dual_cross_attention: bool = False,
         
     | 
| 62 | 
         
            -
                use_linear_projection: bool = False,
         
     | 
| 63 | 
         
            -
                only_cross_attention: bool = False,
         
     | 
| 64 | 
         
            -
                upcast_attention: bool = False,
         
     | 
| 65 | 
         
            -
                resnet_time_scale_shift: str = "default",
         
     | 
| 66 | 
         
            -
                attention_type: str = "default",
         
     | 
| 67 | 
         
            -
                resnet_skip_time_act: bool = False,
         
     | 
| 68 | 
         
            -
                resnet_out_scale_factor: float = 1.0,
         
     | 
| 69 | 
         
            -
                cross_attention_norm: Optional[str] = None,
         
     | 
| 70 | 
         
            -
                attention_head_dim: Optional[int] = None,
         
     | 
| 71 | 
         
            -
                downsample_type: Optional[str] = None,
         
     | 
| 72 | 
         
            -
                dropout: float = 0.0,
         
     | 
| 73 | 
         
            -
                extract_self_attention_kv: bool = False,
         
     | 
| 74 | 
         
            -
                extract_cross_attention_kv: bool = False,
         
     | 
| 75 | 
         
            -
            ):
         
     | 
| 76 | 
         
            -
                # If attn head dim is not defined, we default it to the number of heads
         
     | 
| 77 | 
         
            -
                if attention_head_dim is None:
         
     | 
| 78 | 
         
            -
                    logger.warning(
         
     | 
| 79 | 
         
            -
                        f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
         
     | 
| 80 | 
         
            -
                    )
         
     | 
| 81 | 
         
            -
                    attention_head_dim = num_attention_heads
         
     | 
| 82 | 
         
            -
             
     | 
| 83 | 
         
            -
                down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
         
     | 
| 84 | 
         
            -
                if down_block_type == "DownBlock2D":
         
     | 
| 85 | 
         
            -
                    return DownBlock2D(
         
     | 
| 86 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 87 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 88 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 89 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 90 | 
         
            -
                        dropout=dropout,
         
     | 
| 91 | 
         
            -
                        add_downsample=add_downsample,
         
     | 
| 92 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 93 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 94 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 95 | 
         
            -
                        downsample_padding=downsample_padding,
         
     | 
| 96 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 97 | 
         
            -
                    )
         
     | 
| 98 | 
         
            -
                elif down_block_type == "ResnetDownsampleBlock2D":
         
     | 
| 99 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import ResnetDownsampleBlock2D
         
     | 
| 100 | 
         
            -
                    return ResnetDownsampleBlock2D(
         
     | 
| 101 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 102 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 103 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 104 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 105 | 
         
            -
                        dropout=dropout,
         
     | 
| 106 | 
         
            -
                        add_downsample=add_downsample,
         
     | 
| 107 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 108 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 109 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 110 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 111 | 
         
            -
                        skip_time_act=resnet_skip_time_act,
         
     | 
| 112 | 
         
            -
                        output_scale_factor=resnet_out_scale_factor,
         
     | 
| 113 | 
         
            -
                    )
         
     | 
| 114 | 
         
            -
                elif down_block_type == "AttnDownBlock2D":
         
     | 
| 115 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import AttnDownBlock2D
         
     | 
| 116 | 
         
            -
                    if add_downsample is False:
         
     | 
| 117 | 
         
            -
                        downsample_type = None
         
     | 
| 118 | 
         
            -
                    else:
         
     | 
| 119 | 
         
            -
                        downsample_type = downsample_type or "conv"  # default to 'conv'
         
     | 
| 120 | 
         
            -
                    return AttnDownBlock2D(
         
     | 
| 121 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 122 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 123 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 124 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 125 | 
         
            -
                        dropout=dropout,
         
     | 
| 126 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 127 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 128 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 129 | 
         
            -
                        downsample_padding=downsample_padding,
         
     | 
| 130 | 
         
            -
                        attention_head_dim=attention_head_dim,
         
     | 
| 131 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 132 | 
         
            -
                        downsample_type=downsample_type,
         
     | 
| 133 | 
         
            -
                    )
         
     | 
| 134 | 
         
            -
                elif down_block_type == "ExtractKVCrossAttnDownBlock2D":
         
     | 
| 135 | 
         
            -
                    if cross_attention_dim is None:
         
     | 
| 136 | 
         
            -
                        raise ValueError("cross_attention_dim must be specified for ExtractKVCrossAttnDownBlock2D")
         
     | 
| 137 | 
         
            -
                    return ExtractKVCrossAttnDownBlock2D(
         
     | 
| 138 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 139 | 
         
            -
                        transformer_layers_per_block=transformer_layers_per_block,
         
     | 
| 140 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 141 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 142 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 143 | 
         
            -
                        dropout=dropout,
         
     | 
| 144 | 
         
            -
                        add_downsample=add_downsample,
         
     | 
| 145 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 146 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 147 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 148 | 
         
            -
                        downsample_padding=downsample_padding,
         
     | 
| 149 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 150 | 
         
            -
                        num_attention_heads=num_attention_heads,
         
     | 
| 151 | 
         
            -
                        dual_cross_attention=dual_cross_attention,
         
     | 
| 152 | 
         
            -
                        use_linear_projection=use_linear_projection,
         
     | 
| 153 | 
         
            -
                        only_cross_attention=only_cross_attention,
         
     | 
| 154 | 
         
            -
                        upcast_attention=upcast_attention,
         
     | 
| 155 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 156 | 
         
            -
                        attention_type=attention_type,
         
     | 
| 157 | 
         
            -
                        extract_self_attention_kv=extract_self_attention_kv,
         
     | 
| 158 | 
         
            -
                        extract_cross_attention_kv=extract_cross_attention_kv,
         
     | 
| 159 | 
         
            -
                    )
         
     | 
| 160 | 
         
            -
                elif down_block_type == "CrossAttnDownBlock2D":
         
     | 
| 161 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import CrossAttnDownBlock2D
         
     | 
| 162 | 
         
            -
                    if cross_attention_dim is None:
         
     | 
| 163 | 
         
            -
                        raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
         
     | 
| 164 | 
         
            -
                    return CrossAttnDownBlock2D(
         
     | 
| 165 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 166 | 
         
            -
                        transformer_layers_per_block=transformer_layers_per_block,
         
     | 
| 167 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 168 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 169 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 170 | 
         
            -
                        dropout=dropout,
         
     | 
| 171 | 
         
            -
                        add_downsample=add_downsample,
         
     | 
| 172 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 173 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 174 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 175 | 
         
            -
                        downsample_padding=downsample_padding,
         
     | 
| 176 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 177 | 
         
            -
                        num_attention_heads=num_attention_heads,
         
     | 
| 178 | 
         
            -
                        dual_cross_attention=dual_cross_attention,
         
     | 
| 179 | 
         
            -
                        use_linear_projection=use_linear_projection,
         
     | 
| 180 | 
         
            -
                        only_cross_attention=only_cross_attention,
         
     | 
| 181 | 
         
            -
                        upcast_attention=upcast_attention,
         
     | 
| 182 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 183 | 
         
            -
                        attention_type=attention_type,
         
     | 
| 184 | 
         
            -
                    )
         
     | 
| 185 | 
         
            -
                elif down_block_type == "SimpleCrossAttnDownBlock2D":
         
     | 
| 186 | 
         
            -
                    if cross_attention_dim is None:
         
     | 
| 187 | 
         
            -
                        raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
         
     | 
| 188 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import SimpleCrossAttnDownBlock2D
         
     | 
| 189 | 
         
            -
                    return SimpleCrossAttnDownBlock2D(
         
     | 
| 190 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 191 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 192 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 193 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 194 | 
         
            -
                        dropout=dropout,
         
     | 
| 195 | 
         
            -
                        add_downsample=add_downsample,
         
     | 
| 196 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 197 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 198 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 199 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 200 | 
         
            -
                        attention_head_dim=attention_head_dim,
         
     | 
| 201 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 202 | 
         
            -
                        skip_time_act=resnet_skip_time_act,
         
     | 
| 203 | 
         
            -
                        output_scale_factor=resnet_out_scale_factor,
         
     | 
| 204 | 
         
            -
                        only_cross_attention=only_cross_attention,
         
     | 
| 205 | 
         
            -
                        cross_attention_norm=cross_attention_norm,
         
     | 
| 206 | 
         
            -
                    )
         
     | 
| 207 | 
         
            -
                elif down_block_type == "SkipDownBlock2D":
         
     | 
| 208 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import SkipDownBlock2D
         
     | 
| 209 | 
         
            -
                    return SkipDownBlock2D(
         
     | 
| 210 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 211 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 212 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 213 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 214 | 
         
            -
                        dropout=dropout,
         
     | 
| 215 | 
         
            -
                        add_downsample=add_downsample,
         
     | 
| 216 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 217 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 218 | 
         
            -
                        downsample_padding=downsample_padding,
         
     | 
| 219 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 220 | 
         
            -
                    )
         
     | 
| 221 | 
         
            -
                elif down_block_type == "AttnSkipDownBlock2D":
         
     | 
| 222 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import AttnSkipDownBlock2D
         
     | 
| 223 | 
         
            -
                    return AttnSkipDownBlock2D(
         
     | 
| 224 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 225 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 226 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 227 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 228 | 
         
            -
                        dropout=dropout,
         
     | 
| 229 | 
         
            -
                        add_downsample=add_downsample,
         
     | 
| 230 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 231 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 232 | 
         
            -
                        attention_head_dim=attention_head_dim,
         
     | 
| 233 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 234 | 
         
            -
                    )
         
     | 
| 235 | 
         
            -
                elif down_block_type == "DownEncoderBlock2D":
         
     | 
| 236 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import DownEncoderBlock2D
         
     | 
| 237 | 
         
            -
                    return DownEncoderBlock2D(
         
     | 
| 238 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 239 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 240 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 241 | 
         
            -
                        dropout=dropout,
         
     | 
| 242 | 
         
            -
                        add_downsample=add_downsample,
         
     | 
| 243 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 244 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 245 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 246 | 
         
            -
                        downsample_padding=downsample_padding,
         
     | 
| 247 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 248 | 
         
            -
                    )
         
     | 
| 249 | 
         
            -
                elif down_block_type == "AttnDownEncoderBlock2D":
         
     | 
| 250 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import AttnDownEncoderBlock2D
         
     | 
| 251 | 
         
            -
                    return AttnDownEncoderBlock2D(
         
     | 
| 252 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 253 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 254 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 255 | 
         
            -
                        dropout=dropout,
         
     | 
| 256 | 
         
            -
                        add_downsample=add_downsample,
         
     | 
| 257 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 258 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 259 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 260 | 
         
            -
                        downsample_padding=downsample_padding,
         
     | 
| 261 | 
         
            -
                        attention_head_dim=attention_head_dim,
         
     | 
| 262 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 263 | 
         
            -
                    )
         
     | 
| 264 | 
         
            -
                elif down_block_type == "KDownBlock2D":
         
     | 
| 265 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import KDownBlock2D
         
     | 
| 266 | 
         
            -
                    return KDownBlock2D(
         
     | 
| 267 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 268 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 269 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 270 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 271 | 
         
            -
                        dropout=dropout,
         
     | 
| 272 | 
         
            -
                        add_downsample=add_downsample,
         
     | 
| 273 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 274 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 275 | 
         
            -
                    )
         
     | 
| 276 | 
         
            -
                elif down_block_type == "KCrossAttnDownBlock2D":
         
     | 
| 277 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import KCrossAttnDownBlock2D
         
     | 
| 278 | 
         
            -
                    return KCrossAttnDownBlock2D(
         
     | 
| 279 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 280 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 281 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 282 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 283 | 
         
            -
                        dropout=dropout,
         
     | 
| 284 | 
         
            -
                        add_downsample=add_downsample,
         
     | 
| 285 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 286 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 287 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 288 | 
         
            -
                        attention_head_dim=attention_head_dim,
         
     | 
| 289 | 
         
            -
                        add_self_attention=True if not add_downsample else False,
         
     | 
| 290 | 
         
            -
                    )
         
     | 
| 291 | 
         
            -
                raise ValueError(f"{down_block_type} does not exist.")
         
     | 
| 292 | 
         
            -
             
     | 
| 293 | 
         
            -
             
     | 
| 294 | 
         
            -
            def get_mid_block(
         
     | 
| 295 | 
         
            -
                mid_block_type: str,
         
     | 
| 296 | 
         
            -
                temb_channels: int,
         
     | 
| 297 | 
         
            -
                in_channels: int,
         
     | 
| 298 | 
         
            -
                resnet_eps: float,
         
     | 
| 299 | 
         
            -
                resnet_act_fn: str,
         
     | 
| 300 | 
         
            -
                resnet_groups: int,
         
     | 
| 301 | 
         
            -
                output_scale_factor: float = 1.0,
         
     | 
| 302 | 
         
            -
                transformer_layers_per_block: int = 1,
         
     | 
| 303 | 
         
            -
                num_attention_heads: Optional[int] = None,
         
     | 
| 304 | 
         
            -
                cross_attention_dim: Optional[int] = None,
         
     | 
| 305 | 
         
            -
                dual_cross_attention: bool = False,
         
     | 
| 306 | 
         
            -
                use_linear_projection: bool = False,
         
     | 
| 307 | 
         
            -
                mid_block_only_cross_attention: bool = False,
         
     | 
| 308 | 
         
            -
                upcast_attention: bool = False,
         
     | 
| 309 | 
         
            -
                resnet_time_scale_shift: str = "default",
         
     | 
| 310 | 
         
            -
                attention_type: str = "default",
         
     | 
| 311 | 
         
            -
                resnet_skip_time_act: bool = False,
         
     | 
| 312 | 
         
            -
                cross_attention_norm: Optional[str] = None,
         
     | 
| 313 | 
         
            -
                attention_head_dim: Optional[int] = 1,
         
     | 
| 314 | 
         
            -
                dropout: float = 0.0,
         
     | 
| 315 | 
         
            -
                extract_self_attention_kv: bool = False,
         
     | 
| 316 | 
         
            -
                extract_cross_attention_kv: bool = False,
         
     | 
| 317 | 
         
            -
            ):
         
     | 
| 318 | 
         
            -
                if mid_block_type == "ExtractKVUNetMidBlock2DCrossAttn":
         
     | 
| 319 | 
         
            -
                    return ExtractKVUNetMidBlock2DCrossAttn(
         
     | 
| 320 | 
         
            -
                        transformer_layers_per_block=transformer_layers_per_block,
         
     | 
| 321 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 322 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 323 | 
         
            -
                        dropout=dropout,
         
     | 
| 324 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 325 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 326 | 
         
            -
                        output_scale_factor=output_scale_factor,
         
     | 
| 327 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 328 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 329 | 
         
            -
                        num_attention_heads=num_attention_heads,
         
     | 
| 330 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 331 | 
         
            -
                        dual_cross_attention=dual_cross_attention,
         
     | 
| 332 | 
         
            -
                        use_linear_projection=use_linear_projection,
         
     | 
| 333 | 
         
            -
                        upcast_attention=upcast_attention,
         
     | 
| 334 | 
         
            -
                        attention_type=attention_type,
         
     | 
| 335 | 
         
            -
                        extract_self_attention_kv=extract_self_attention_kv,
         
     | 
| 336 | 
         
            -
                        extract_cross_attention_kv=extract_cross_attention_kv,
         
     | 
| 337 | 
         
            -
                    )
         
     | 
| 338 | 
         
            -
                elif mid_block_type == "UNetMidBlock2DCrossAttn":
         
     | 
| 339 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2DCrossAttn
         
     | 
| 340 | 
         
            -
                    return UNetMidBlock2DCrossAttn(
         
     | 
| 341 | 
         
            -
                        transformer_layers_per_block=transformer_layers_per_block,
         
     | 
| 342 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 343 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 344 | 
         
            -
                        dropout=dropout,
         
     | 
| 345 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 346 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 347 | 
         
            -
                        output_scale_factor=output_scale_factor,
         
     | 
| 348 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 349 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 350 | 
         
            -
                        num_attention_heads=num_attention_heads,
         
     | 
| 351 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 352 | 
         
            -
                        dual_cross_attention=dual_cross_attention,
         
     | 
| 353 | 
         
            -
                        use_linear_projection=use_linear_projection,
         
     | 
| 354 | 
         
            -
                        upcast_attention=upcast_attention,
         
     | 
| 355 | 
         
            -
                        attention_type=attention_type,
         
     | 
| 356 | 
         
            -
                    )
         
     | 
| 357 | 
         
            -
                elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
         
     | 
| 358 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2DSimpleCrossAttn
         
     | 
| 359 | 
         
            -
                    return UNetMidBlock2DSimpleCrossAttn(
         
     | 
| 360 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 361 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 362 | 
         
            -
                        dropout=dropout,
         
     | 
| 363 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 364 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 365 | 
         
            -
                        output_scale_factor=output_scale_factor,
         
     | 
| 366 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 367 | 
         
            -
                        attention_head_dim=attention_head_dim,
         
     | 
| 368 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 369 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 370 | 
         
            -
                        skip_time_act=resnet_skip_time_act,
         
     | 
| 371 | 
         
            -
                        only_cross_attention=mid_block_only_cross_attention,
         
     | 
| 372 | 
         
            -
                        cross_attention_norm=cross_attention_norm,
         
     | 
| 373 | 
         
            -
                    )
         
     | 
| 374 | 
         
            -
                elif mid_block_type == "UNetMidBlock2D":
         
     | 
| 375 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D
         
     | 
| 376 | 
         
            -
                    return UNetMidBlock2D(
         
     | 
| 377 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 378 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 379 | 
         
            -
                        dropout=dropout,
         
     | 
| 380 | 
         
            -
                        num_layers=0,
         
     | 
| 381 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 382 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 383 | 
         
            -
                        output_scale_factor=output_scale_factor,
         
     | 
| 384 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 385 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 386 | 
         
            -
                        add_attention=False,
         
     | 
| 387 | 
         
            -
                    )
         
     | 
| 388 | 
         
            -
                elif mid_block_type is None:
         
     | 
| 389 | 
         
            -
                    return None
         
     | 
| 390 | 
         
            -
                else:
         
     | 
| 391 | 
         
            -
                    raise ValueError(f"unknown mid_block_type : {mid_block_type}")
         
     | 
| 392 | 
         
            -
             
     | 
| 393 | 
         
            -
             
     | 
| 394 | 
         
            -
            def get_up_block(
         
     | 
| 395 | 
         
            -
                up_block_type: str,
         
     | 
| 396 | 
         
            -
                num_layers: int,
         
     | 
| 397 | 
         
            -
                in_channels: int,
         
     | 
| 398 | 
         
            -
                out_channels: int,
         
     | 
| 399 | 
         
            -
                prev_output_channel: int,
         
     | 
| 400 | 
         
            -
                temb_channels: int,
         
     | 
| 401 | 
         
            -
                add_upsample: bool,
         
     | 
| 402 | 
         
            -
                resnet_eps: float,
         
     | 
| 403 | 
         
            -
                resnet_act_fn: str,
         
     | 
| 404 | 
         
            -
                resolution_idx: Optional[int] = None,
         
     | 
| 405 | 
         
            -
                transformer_layers_per_block: int = 1,
         
     | 
| 406 | 
         
            -
                num_attention_heads: Optional[int] = None,
         
     | 
| 407 | 
         
            -
                resnet_groups: Optional[int] = None,
         
     | 
| 408 | 
         
            -
                cross_attention_dim: Optional[int] = None,
         
     | 
| 409 | 
         
            -
                dual_cross_attention: bool = False,
         
     | 
| 410 | 
         
            -
                use_linear_projection: bool = False,
         
     | 
| 411 | 
         
            -
                only_cross_attention: bool = False,
         
     | 
| 412 | 
         
            -
                upcast_attention: bool = False,
         
     | 
| 413 | 
         
            -
                resnet_time_scale_shift: str = "default",
         
     | 
| 414 | 
         
            -
                attention_type: str = "default",
         
     | 
| 415 | 
         
            -
                resnet_skip_time_act: bool = False,
         
     | 
| 416 | 
         
            -
                resnet_out_scale_factor: float = 1.0,
         
     | 
| 417 | 
         
            -
                cross_attention_norm: Optional[str] = None,
         
     | 
| 418 | 
         
            -
                attention_head_dim: Optional[int] = None,
         
     | 
| 419 | 
         
            -
                upsample_type: Optional[str] = None,
         
     | 
| 420 | 
         
            -
                dropout: float = 0.0,
         
     | 
| 421 | 
         
            -
                extract_self_attention_kv: bool = False,
         
     | 
| 422 | 
         
            -
                extract_cross_attention_kv: bool = False,
         
     | 
| 423 | 
         
            -
            ) -> nn.Module:
         
     | 
| 424 | 
         
            -
                # If attn head dim is not defined, we default it to the number of heads
         
     | 
| 425 | 
         
            -
                if attention_head_dim is None:
         
     | 
| 426 | 
         
            -
                    logger.warning(
         
     | 
| 427 | 
         
            -
                        f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
         
     | 
| 428 | 
         
            -
                    )
         
     | 
| 429 | 
         
            -
                    attention_head_dim = num_attention_heads
         
     | 
| 430 | 
         
            -
             
     | 
| 431 | 
         
            -
                up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
         
     | 
| 432 | 
         
            -
                if up_block_type == "UpBlock2D":
         
     | 
| 433 | 
         
            -
                    return UpBlock2D(
         
     | 
| 434 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 435 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 436 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 437 | 
         
            -
                        prev_output_channel=prev_output_channel,
         
     | 
| 438 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 439 | 
         
            -
                        resolution_idx=resolution_idx,
         
     | 
| 440 | 
         
            -
                        dropout=dropout,
         
     | 
| 441 | 
         
            -
                        add_upsample=add_upsample,
         
     | 
| 442 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 443 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 444 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 445 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 446 | 
         
            -
                    )
         
     | 
| 447 | 
         
            -
                elif up_block_type == "ResnetUpsampleBlock2D":
         
     | 
| 448 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import ResnetUpsampleBlock2D
         
     | 
| 449 | 
         
            -
                    return ResnetUpsampleBlock2D(
         
     | 
| 450 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 451 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 452 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 453 | 
         
            -
                        prev_output_channel=prev_output_channel,
         
     | 
| 454 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 455 | 
         
            -
                        resolution_idx=resolution_idx,
         
     | 
| 456 | 
         
            -
                        dropout=dropout,
         
     | 
| 457 | 
         
            -
                        add_upsample=add_upsample,
         
     | 
| 458 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 459 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 460 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 461 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 462 | 
         
            -
                        skip_time_act=resnet_skip_time_act,
         
     | 
| 463 | 
         
            -
                        output_scale_factor=resnet_out_scale_factor,
         
     | 
| 464 | 
         
            -
                    )
         
     | 
| 465 | 
         
            -
                elif up_block_type == "ExtractKVCrossAttnUpBlock2D":
         
     | 
| 466 | 
         
            -
                    if cross_attention_dim is None:
         
     | 
| 467 | 
         
            -
                        raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
         
     | 
| 468 | 
         
            -
                    return ExtractKVCrossAttnUpBlock2D(
         
     | 
| 469 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 470 | 
         
            -
                        transformer_layers_per_block=transformer_layers_per_block,
         
     | 
| 471 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 472 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 473 | 
         
            -
                        prev_output_channel=prev_output_channel,
         
     | 
| 474 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 475 | 
         
            -
                        resolution_idx=resolution_idx,
         
     | 
| 476 | 
         
            -
                        dropout=dropout,
         
     | 
| 477 | 
         
            -
                        add_upsample=add_upsample,
         
     | 
| 478 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 479 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 480 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 481 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 482 | 
         
            -
                        num_attention_heads=num_attention_heads,
         
     | 
| 483 | 
         
            -
                        dual_cross_attention=dual_cross_attention,
         
     | 
| 484 | 
         
            -
                        use_linear_projection=use_linear_projection,
         
     | 
| 485 | 
         
            -
                        only_cross_attention=only_cross_attention,
         
     | 
| 486 | 
         
            -
                        upcast_attention=upcast_attention,
         
     | 
| 487 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 488 | 
         
            -
                        attention_type=attention_type,
         
     | 
| 489 | 
         
            -
                        extract_self_attention_kv=extract_self_attention_kv,
         
     | 
| 490 | 
         
            -
                        extract_cross_attention_kv=extract_cross_attention_kv,
         
     | 
| 491 | 
         
            -
                    )
         
     | 
| 492 | 
         
            -
                elif up_block_type == "CrossAttnUpBlock2D":
         
     | 
| 493 | 
         
            -
                    if cross_attention_dim is None:
         
     | 
| 494 | 
         
            -
                        raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
         
     | 
| 495 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import CrossAttnUpBlock2D
         
     | 
| 496 | 
         
            -
                    return CrossAttnUpBlock2D(
         
     | 
| 497 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 498 | 
         
            -
                        transformer_layers_per_block=transformer_layers_per_block,
         
     | 
| 499 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 500 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 501 | 
         
            -
                        prev_output_channel=prev_output_channel,
         
     | 
| 502 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 503 | 
         
            -
                        resolution_idx=resolution_idx,
         
     | 
| 504 | 
         
            -
                        dropout=dropout,
         
     | 
| 505 | 
         
            -
                        add_upsample=add_upsample,
         
     | 
| 506 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 507 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 508 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 509 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 510 | 
         
            -
                        num_attention_heads=num_attention_heads,
         
     | 
| 511 | 
         
            -
                        dual_cross_attention=dual_cross_attention,
         
     | 
| 512 | 
         
            -
                        use_linear_projection=use_linear_projection,
         
     | 
| 513 | 
         
            -
                        only_cross_attention=only_cross_attention,
         
     | 
| 514 | 
         
            -
                        upcast_attention=upcast_attention,
         
     | 
| 515 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 516 | 
         
            -
                        attention_type=attention_type,
         
     | 
| 517 | 
         
            -
                    )
         
     | 
| 518 | 
         
            -
                elif up_block_type == "SimpleCrossAttnUpBlock2D":
         
     | 
| 519 | 
         
            -
                    if cross_attention_dim is None:
         
     | 
| 520 | 
         
            -
                        raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
         
     | 
| 521 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import SimpleCrossAttnUpBlock2D
         
     | 
| 522 | 
         
            -
                    return SimpleCrossAttnUpBlock2D(
         
     | 
| 523 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 524 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 525 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 526 | 
         
            -
                        prev_output_channel=prev_output_channel,
         
     | 
| 527 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 528 | 
         
            -
                        resolution_idx=resolution_idx,
         
     | 
| 529 | 
         
            -
                        dropout=dropout,
         
     | 
| 530 | 
         
            -
                        add_upsample=add_upsample,
         
     | 
| 531 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 532 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 533 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 534 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 535 | 
         
            -
                        attention_head_dim=attention_head_dim,
         
     | 
| 536 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 537 | 
         
            -
                        skip_time_act=resnet_skip_time_act,
         
     | 
| 538 | 
         
            -
                        output_scale_factor=resnet_out_scale_factor,
         
     | 
| 539 | 
         
            -
                        only_cross_attention=only_cross_attention,
         
     | 
| 540 | 
         
            -
                        cross_attention_norm=cross_attention_norm,
         
     | 
| 541 | 
         
            -
                    )
         
     | 
| 542 | 
         
            -
                elif up_block_type == "AttnUpBlock2D":
         
     | 
| 543 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import AttnUpBlock2D
         
     | 
| 544 | 
         
            -
                    if add_upsample is False:
         
     | 
| 545 | 
         
            -
                        upsample_type = None
         
     | 
| 546 | 
         
            -
                    else:
         
     | 
| 547 | 
         
            -
                        upsample_type = upsample_type or "conv"  # default to 'conv'
         
     | 
| 548 | 
         
            -
             
     | 
| 549 | 
         
            -
                    return AttnUpBlock2D(
         
     | 
| 550 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 551 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 552 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 553 | 
         
            -
                        prev_output_channel=prev_output_channel,
         
     | 
| 554 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 555 | 
         
            -
                        resolution_idx=resolution_idx,
         
     | 
| 556 | 
         
            -
                        dropout=dropout,
         
     | 
| 557 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 558 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 559 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 560 | 
         
            -
                        attention_head_dim=attention_head_dim,
         
     | 
| 561 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 562 | 
         
            -
                        upsample_type=upsample_type,
         
     | 
| 563 | 
         
            -
                    )
         
     | 
| 564 | 
         
            -
                elif up_block_type == "SkipUpBlock2D":
         
     | 
| 565 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import SkipUpBlock2D
         
     | 
| 566 | 
         
            -
                    return SkipUpBlock2D(
         
     | 
| 567 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 568 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 569 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 570 | 
         
            -
                        prev_output_channel=prev_output_channel,
         
     | 
| 571 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 572 | 
         
            -
                        resolution_idx=resolution_idx,
         
     | 
| 573 | 
         
            -
                        dropout=dropout,
         
     | 
| 574 | 
         
            -
                        add_upsample=add_upsample,
         
     | 
| 575 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 576 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 577 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 578 | 
         
            -
                    )
         
     | 
| 579 | 
         
            -
                elif up_block_type == "AttnSkipUpBlock2D":
         
     | 
| 580 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import AttnSkipUpBlock2D
         
     | 
| 581 | 
         
            -
                    return AttnSkipUpBlock2D(
         
     | 
| 582 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 583 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 584 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 585 | 
         
            -
                        prev_output_channel=prev_output_channel,
         
     | 
| 586 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 587 | 
         
            -
                        resolution_idx=resolution_idx,
         
     | 
| 588 | 
         
            -
                        dropout=dropout,
         
     | 
| 589 | 
         
            -
                        add_upsample=add_upsample,
         
     | 
| 590 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 591 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 592 | 
         
            -
                        attention_head_dim=attention_head_dim,
         
     | 
| 593 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 594 | 
         
            -
                    )
         
     | 
| 595 | 
         
            -
                elif up_block_type == "UpDecoderBlock2D":
         
     | 
| 596 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import UpDecoderBlock2D
         
     | 
| 597 | 
         
            -
                    return UpDecoderBlock2D(
         
     | 
| 598 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 599 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 600 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 601 | 
         
            -
                        resolution_idx=resolution_idx,
         
     | 
| 602 | 
         
            -
                        dropout=dropout,
         
     | 
| 603 | 
         
            -
                        add_upsample=add_upsample,
         
     | 
| 604 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 605 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 606 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 607 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 608 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 609 | 
         
            -
                    )
         
     | 
| 610 | 
         
            -
                elif up_block_type == "AttnUpDecoderBlock2D":
         
     | 
| 611 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import AttnUpDecoderBlock2D
         
     | 
| 612 | 
         
            -
                    return AttnUpDecoderBlock2D(
         
     | 
| 613 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 614 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 615 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 616 | 
         
            -
                        resolution_idx=resolution_idx,
         
     | 
| 617 | 
         
            -
                        dropout=dropout,
         
     | 
| 618 | 
         
            -
                        add_upsample=add_upsample,
         
     | 
| 619 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 620 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 621 | 
         
            -
                        resnet_groups=resnet_groups,
         
     | 
| 622 | 
         
            -
                        attention_head_dim=attention_head_dim,
         
     | 
| 623 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 624 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 625 | 
         
            -
                    )
         
     | 
| 626 | 
         
            -
                elif up_block_type == "KUpBlock2D":
         
     | 
| 627 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import KUpBlock2D
         
     | 
| 628 | 
         
            -
                    return KUpBlock2D(
         
     | 
| 629 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 630 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 631 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 632 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 633 | 
         
            -
                        resolution_idx=resolution_idx,
         
     | 
| 634 | 
         
            -
                        dropout=dropout,
         
     | 
| 635 | 
         
            -
                        add_upsample=add_upsample,
         
     | 
| 636 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 637 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 638 | 
         
            -
                    )
         
     | 
| 639 | 
         
            -
                elif up_block_type == "KCrossAttnUpBlock2D":
         
     | 
| 640 | 
         
            -
                    from diffusers.models.unets.unet_2d_blocks import KCrossAttnUpBlock2D
         
     | 
| 641 | 
         
            -
                    return KCrossAttnUpBlock2D(
         
     | 
| 642 | 
         
            -
                        num_layers=num_layers,
         
     | 
| 643 | 
         
            -
                        in_channels=in_channels,
         
     | 
| 644 | 
         
            -
                        out_channels=out_channels,
         
     | 
| 645 | 
         
            -
                        temb_channels=temb_channels,
         
     | 
| 646 | 
         
            -
                        resolution_idx=resolution_idx,
         
     | 
| 647 | 
         
            -
                        dropout=dropout,
         
     | 
| 648 | 
         
            -
                        add_upsample=add_upsample,
         
     | 
| 649 | 
         
            -
                        resnet_eps=resnet_eps,
         
     | 
| 650 | 
         
            -
                        resnet_act_fn=resnet_act_fn,
         
     | 
| 651 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 652 | 
         
            -
                        attention_head_dim=attention_head_dim,
         
     | 
| 653 | 
         
            -
                    )
         
     | 
| 654 | 
         
            -
             
     | 
| 655 | 
         
            -
                raise ValueError(f"{up_block_type} does not exist.")
         
     | 
| 656 | 
         
            -
             
     | 
| 657 | 
         
            -
             
     | 
| 658 | 
         
            -
            class AutoencoderTinyBlock(nn.Module):
         
     | 
| 659 | 
         
            -
                """
         
     | 
| 660 | 
         
            -
                Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
         
     | 
| 661 | 
         
            -
                blocks.
         
     | 
| 662 | 
         
            -
             
     | 
| 663 | 
         
            -
                Args:
         
     | 
| 664 | 
         
            -
                    in_channels (`int`): The number of input channels.
         
     | 
| 665 | 
         
            -
                    out_channels (`int`): The number of output channels.
         
     | 
| 666 | 
         
            -
                    act_fn (`str`):
         
     | 
| 667 | 
         
            -
                        ` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
         
     | 
| 668 | 
         
            -
             
     | 
| 669 | 
         
            -
                Returns:
         
     | 
| 670 | 
         
            -
                    `torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
         
     | 
| 671 | 
         
            -
                    `out_channels`.
         
     | 
| 672 | 
         
            -
                """
         
     | 
| 673 | 
         
            -
             
     | 
| 674 | 
         
            -
                def __init__(self, in_channels: int, out_channels: int, act_fn: str):
         
     | 
| 675 | 
         
            -
                    super().__init__()
         
     | 
| 676 | 
         
            -
                    act_fn = get_activation(act_fn)
         
     | 
| 677 | 
         
            -
                    self.conv = nn.Sequential(
         
     | 
| 678 | 
         
            -
                        nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
         
     | 
| 679 | 
         
            -
                        act_fn,
         
     | 
| 680 | 
         
            -
                        nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
         
     | 
| 681 | 
         
            -
                        act_fn,
         
     | 
| 682 | 
         
            -
                        nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
         
     | 
| 683 | 
         
            -
                    )
         
     | 
| 684 | 
         
            -
                    self.skip = (
         
     | 
| 685 | 
         
            -
                        nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
         
     | 
| 686 | 
         
            -
                        if in_channels != out_channels
         
     | 
| 687 | 
         
            -
                        else nn.Identity()
         
     | 
| 688 | 
         
            -
                    )
         
     | 
| 689 | 
         
            -
                    self.fuse = nn.ReLU()
         
     | 
| 690 | 
         
            -
             
     | 
| 691 | 
         
            -
                def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
         
     | 
| 692 | 
         
            -
                    return self.fuse(self.conv(x) + self.skip(x))
         
     | 
| 693 | 
         
            -
             
     | 
| 694 | 
         
            -
             
     | 
| 695 | 
         
            -
            class ExtractKVUNetMidBlock2DCrossAttn(nn.Module):
         
     | 
| 696 | 
         
            -
                def __init__(
         
     | 
| 697 | 
         
            -
                    self,
         
     | 
| 698 | 
         
            -
                    in_channels: int,
         
     | 
| 699 | 
         
            -
                    temb_channels: int,
         
     | 
| 700 | 
         
            -
                    out_channels: Optional[int] = None,
         
     | 
| 701 | 
         
            -
                    dropout: float = 0.0,
         
     | 
| 702 | 
         
            -
                    num_layers: int = 1,
         
     | 
| 703 | 
         
            -
                    transformer_layers_per_block: Union[int, Tuple[int]] = 1,
         
     | 
| 704 | 
         
            -
                    resnet_eps: float = 1e-6,
         
     | 
| 705 | 
         
            -
                    resnet_time_scale_shift: str = "default",
         
     | 
| 706 | 
         
            -
                    resnet_act_fn: str = "swish",
         
     | 
| 707 | 
         
            -
                    resnet_groups: int = 32,
         
     | 
| 708 | 
         
            -
                    resnet_groups_out: Optional[int] = None,
         
     | 
| 709 | 
         
            -
                    resnet_pre_norm: bool = True,
         
     | 
| 710 | 
         
            -
                    num_attention_heads: int = 1,
         
     | 
| 711 | 
         
            -
                    output_scale_factor: float = 1.0,
         
     | 
| 712 | 
         
            -
                    cross_attention_dim: int = 1280,
         
     | 
| 713 | 
         
            -
                    dual_cross_attention: bool = False,
         
     | 
| 714 | 
         
            -
                    use_linear_projection: bool = False,
         
     | 
| 715 | 
         
            -
                    upcast_attention: bool = False,
         
     | 
| 716 | 
         
            -
                    attention_type: str = "default",
         
     | 
| 717 | 
         
            -
                    extract_self_attention_kv: bool = False,
         
     | 
| 718 | 
         
            -
                    extract_cross_attention_kv: bool = False,
         
     | 
| 719 | 
         
            -
                ):
         
     | 
| 720 | 
         
            -
                    super().__init__()
         
     | 
| 721 | 
         
            -
             
     | 
| 722 | 
         
            -
                    out_channels = out_channels or in_channels
         
     | 
| 723 | 
         
            -
                    self.in_channels = in_channels
         
     | 
| 724 | 
         
            -
                    self.out_channels = out_channels
         
     | 
| 725 | 
         
            -
             
     | 
| 726 | 
         
            -
                    self.has_cross_attention = True
         
     | 
| 727 | 
         
            -
                    self.num_attention_heads = num_attention_heads
         
     | 
| 728 | 
         
            -
                    resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
         
     | 
| 729 | 
         
            -
             
     | 
| 730 | 
         
            -
                    # support for variable transformer layers per block
         
     | 
| 731 | 
         
            -
                    if isinstance(transformer_layers_per_block, int):
         
     | 
| 732 | 
         
            -
                        transformer_layers_per_block = [transformer_layers_per_block] * num_layers
         
     | 
| 733 | 
         
            -
             
     | 
| 734 | 
         
            -
                    resnet_groups_out = resnet_groups_out or resnet_groups
         
     | 
| 735 | 
         
            -
             
     | 
| 736 | 
         
            -
                    # there is always at least one resnet
         
     | 
| 737 | 
         
            -
                    resnets = [
         
     | 
| 738 | 
         
            -
                        ResnetBlock2D(
         
     | 
| 739 | 
         
            -
                            in_channels=in_channels,
         
     | 
| 740 | 
         
            -
                            out_channels=out_channels,
         
     | 
| 741 | 
         
            -
                            temb_channels=temb_channels,
         
     | 
| 742 | 
         
            -
                            eps=resnet_eps,
         
     | 
| 743 | 
         
            -
                            groups=resnet_groups,
         
     | 
| 744 | 
         
            -
                            groups_out=resnet_groups_out,
         
     | 
| 745 | 
         
            -
                            dropout=dropout,
         
     | 
| 746 | 
         
            -
                            time_embedding_norm=resnet_time_scale_shift,
         
     | 
| 747 | 
         
            -
                            non_linearity=resnet_act_fn,
         
     | 
| 748 | 
         
            -
                            output_scale_factor=output_scale_factor,
         
     | 
| 749 | 
         
            -
                            pre_norm=resnet_pre_norm,
         
     | 
| 750 | 
         
            -
                        )
         
     | 
| 751 | 
         
            -
                    ]
         
     | 
| 752 | 
         
            -
                    attentions = []
         
     | 
| 753 | 
         
            -
             
     | 
| 754 | 
         
            -
                    for i in range(num_layers):
         
     | 
| 755 | 
         
            -
                        if not dual_cross_attention:
         
     | 
| 756 | 
         
            -
                            attentions.append(
         
     | 
| 757 | 
         
            -
                                ExtractKVTransformer2DModel(
         
     | 
| 758 | 
         
            -
                                    num_attention_heads,
         
     | 
| 759 | 
         
            -
                                    out_channels // num_attention_heads,
         
     | 
| 760 | 
         
            -
                                    in_channels=out_channels,
         
     | 
| 761 | 
         
            -
                                    num_layers=transformer_layers_per_block[i],
         
     | 
| 762 | 
         
            -
                                    cross_attention_dim=cross_attention_dim,
         
     | 
| 763 | 
         
            -
                                    norm_num_groups=resnet_groups_out,
         
     | 
| 764 | 
         
            -
                                    use_linear_projection=use_linear_projection,
         
     | 
| 765 | 
         
            -
                                    upcast_attention=upcast_attention,
         
     | 
| 766 | 
         
            -
                                    attention_type=attention_type,
         
     | 
| 767 | 
         
            -
                                    extract_self_attention_kv=extract_self_attention_kv,
         
     | 
| 768 | 
         
            -
                                    extract_cross_attention_kv=extract_cross_attention_kv,
         
     | 
| 769 | 
         
            -
                                )
         
     | 
| 770 | 
         
            -
                            )
         
     | 
| 771 | 
         
            -
                        else:
         
     | 
| 772 | 
         
            -
                            attentions.append(
         
     | 
| 773 | 
         
            -
                                DualTransformer2DModel(
         
     | 
| 774 | 
         
            -
                                    num_attention_heads,
         
     | 
| 775 | 
         
            -
                                    out_channels // num_attention_heads,
         
     | 
| 776 | 
         
            -
                                    in_channels=out_channels,
         
     | 
| 777 | 
         
            -
                                    num_layers=1,
         
     | 
| 778 | 
         
            -
                                    cross_attention_dim=cross_attention_dim,
         
     | 
| 779 | 
         
            -
                                    norm_num_groups=resnet_groups,
         
     | 
| 780 | 
         
            -
                                )
         
     | 
| 781 | 
         
            -
                            )
         
     | 
| 782 | 
         
            -
                        resnets.append(
         
     | 
| 783 | 
         
            -
                            ResnetBlock2D(
         
     | 
| 784 | 
         
            -
                                in_channels=out_channels,
         
     | 
| 785 | 
         
            -
                                out_channels=out_channels,
         
     | 
| 786 | 
         
            -
                                temb_channels=temb_channels,
         
     | 
| 787 | 
         
            -
                                eps=resnet_eps,
         
     | 
| 788 | 
         
            -
                                groups=resnet_groups_out,
         
     | 
| 789 | 
         
            -
                                dropout=dropout,
         
     | 
| 790 | 
         
            -
                                time_embedding_norm=resnet_time_scale_shift,
         
     | 
| 791 | 
         
            -
                                non_linearity=resnet_act_fn,
         
     | 
| 792 | 
         
            -
                                output_scale_factor=output_scale_factor,
         
     | 
| 793 | 
         
            -
                                pre_norm=resnet_pre_norm,
         
     | 
| 794 | 
         
            -
                            )
         
     | 
| 795 | 
         
            -
                        )
         
     | 
| 796 | 
         
            -
             
     | 
| 797 | 
         
            -
                    self.attentions = nn.ModuleList(attentions)
         
     | 
| 798 | 
         
            -
                    self.resnets = nn.ModuleList(resnets)
         
     | 
| 799 | 
         
            -
             
     | 
| 800 | 
         
            -
                    self.gradient_checkpointing = False
         
     | 
| 801 | 
         
            -
             
     | 
| 802 | 
         
            -
                def forward(
         
     | 
| 803 | 
         
            -
                    self,
         
     | 
| 804 | 
         
            -
                    hidden_states: torch.FloatTensor,
         
     | 
| 805 | 
         
            -
                    temb: Optional[torch.FloatTensor] = None,
         
     | 
| 806 | 
         
            -
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         
     | 
| 807 | 
         
            -
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 808 | 
         
            -
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 809 | 
         
            -
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 810 | 
         
            -
                ) -> torch.FloatTensor:
         
     | 
| 811 | 
         
            -
                    if cross_attention_kwargs is not None:
         
     | 
| 812 | 
         
            -
                        if cross_attention_kwargs.get("scale", None) is not None:
         
     | 
| 813 | 
         
            -
                            logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
         
     | 
| 814 | 
         
            -
             
     | 
| 815 | 
         
            -
                    hidden_states = self.resnets[0](hidden_states, temb)
         
     | 
| 816 | 
         
            -
                    extracted_kvs = {}
         
     | 
| 817 | 
         
            -
                    for attn, resnet in zip(self.attentions, self.resnets[1:]):
         
     | 
| 818 | 
         
            -
                        if self.training and self.gradient_checkpointing:
         
     | 
| 819 | 
         
            -
             
     | 
| 820 | 
         
            -
                            def create_custom_forward(module, return_dict=None):
         
     | 
| 821 | 
         
            -
                                def custom_forward(*inputs):
         
     | 
| 822 | 
         
            -
                                    if return_dict is not None:
         
     | 
| 823 | 
         
            -
                                        return module(*inputs, return_dict=return_dict)
         
     | 
| 824 | 
         
            -
                                    else:
         
     | 
| 825 | 
         
            -
                                        return module(*inputs)
         
     | 
| 826 | 
         
            -
             
     | 
| 827 | 
         
            -
                                return custom_forward
         
     | 
| 828 | 
         
            -
             
     | 
| 829 | 
         
            -
                            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
         
     | 
| 830 | 
         
            -
                            hidden_states, extracted_kv = attn(
         
     | 
| 831 | 
         
            -
                                hidden_states,
         
     | 
| 832 | 
         
            -
                                timestep=temb,
         
     | 
| 833 | 
         
            -
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 834 | 
         
            -
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 835 | 
         
            -
                                attention_mask=attention_mask,
         
     | 
| 836 | 
         
            -
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 837 | 
         
            -
                                return_dict=False,
         
     | 
| 838 | 
         
            -
                            )
         
     | 
| 839 | 
         
            -
                            hidden_states = torch.utils.checkpoint.checkpoint(
         
     | 
| 840 | 
         
            -
                                create_custom_forward(resnet),
         
     | 
| 841 | 
         
            -
                                hidden_states,
         
     | 
| 842 | 
         
            -
                                temb,
         
     | 
| 843 | 
         
            -
                                **ckpt_kwargs,
         
     | 
| 844 | 
         
            -
                            )
         
     | 
| 845 | 
         
            -
                        else:
         
     | 
| 846 | 
         
            -
                            hidden_states, extracted_kv = attn(
         
     | 
| 847 | 
         
            -
                                hidden_states,
         
     | 
| 848 | 
         
            -
                                timestep=temb,
         
     | 
| 849 | 
         
            -
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 850 | 
         
            -
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 851 | 
         
            -
                                attention_mask=attention_mask,
         
     | 
| 852 | 
         
            -
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 853 | 
         
            -
                                return_dict=False,
         
     | 
| 854 | 
         
            -
                            )
         
     | 
| 855 | 
         
            -
                            hidden_states = resnet(hidden_states, temb)
         
     | 
| 856 | 
         
            -
             
     | 
| 857 | 
         
            -
                        extracted_kvs.update(extracted_kv)
         
     | 
| 858 | 
         
            -
             
     | 
| 859 | 
         
            -
                    return hidden_states, extracted_kvs
         
     | 
| 860 | 
         
            -
             
     | 
| 861 | 
         
            -
                def init_kv_extraction(self):
         
     | 
| 862 | 
         
            -
                    for block in self.attentions:
         
     | 
| 863 | 
         
            -
                        block.init_kv_extraction()
         
     | 
| 864 | 
         
            -
             
     | 
| 865 | 
         
            -
             
     | 
| 866 | 
         
            -
            class ExtractKVCrossAttnDownBlock2D(nn.Module):
         
     | 
| 867 | 
         
            -
                def __init__(
         
     | 
| 868 | 
         
            -
                    self,
         
     | 
| 869 | 
         
            -
                    in_channels: int,
         
     | 
| 870 | 
         
            -
                    out_channels: int,
         
     | 
| 871 | 
         
            -
                    temb_channels: int,
         
     | 
| 872 | 
         
            -
                    dropout: float = 0.0,
         
     | 
| 873 | 
         
            -
                    num_layers: int = 1,            # Originally n_layers
         
     | 
| 874 | 
         
            -
                    transformer_layers_per_block: Union[int, Tuple[int]] = 1,
         
     | 
| 875 | 
         
            -
                    resnet_eps: float = 1e-6,
         
     | 
| 876 | 
         
            -
                    resnet_time_scale_shift: str = "default",
         
     | 
| 877 | 
         
            -
                    resnet_act_fn: str = "swish",
         
     | 
| 878 | 
         
            -
                    resnet_groups: int = 32,
         
     | 
| 879 | 
         
            -
                    resnet_pre_norm: bool = True,
         
     | 
| 880 | 
         
            -
                    num_attention_heads: int = 1,
         
     | 
| 881 | 
         
            -
                    cross_attention_dim: int = 1280,
         
     | 
| 882 | 
         
            -
                    output_scale_factor: float = 1.0,
         
     | 
| 883 | 
         
            -
                    downsample_padding: int = 1,
         
     | 
| 884 | 
         
            -
                    add_downsample: bool = True,
         
     | 
| 885 | 
         
            -
                    dual_cross_attention: bool = False,
         
     | 
| 886 | 
         
            -
                    use_linear_projection: bool = False,
         
     | 
| 887 | 
         
            -
                    only_cross_attention: bool = False,
         
     | 
| 888 | 
         
            -
                    upcast_attention: bool = False,
         
     | 
| 889 | 
         
            -
                    attention_type: str = "default",
         
     | 
| 890 | 
         
            -
                    extract_self_attention_kv: bool = False,
         
     | 
| 891 | 
         
            -
                    extract_cross_attention_kv: bool = False,
         
     | 
| 892 | 
         
            -
                ):
         
     | 
| 893 | 
         
            -
                    super().__init__()
         
     | 
| 894 | 
         
            -
                    resnets = []
         
     | 
| 895 | 
         
            -
                    attentions = []
         
     | 
| 896 | 
         
            -
             
     | 
| 897 | 
         
            -
                    self.has_cross_attention = True
         
     | 
| 898 | 
         
            -
                    self.num_attention_heads = num_attention_heads
         
     | 
| 899 | 
         
            -
                    if isinstance(transformer_layers_per_block, int):
         
     | 
| 900 | 
         
            -
                        transformer_layers_per_block = [transformer_layers_per_block] * num_layers
         
     | 
| 901 | 
         
            -
             
     | 
| 902 | 
         
            -
                    for i in range(num_layers):
         
     | 
| 903 | 
         
            -
                        in_channels = in_channels if i == 0 else out_channels
         
     | 
| 904 | 
         
            -
                        resnets.append(
         
     | 
| 905 | 
         
            -
                            ResnetBlock2D(
         
     | 
| 906 | 
         
            -
                                in_channels=in_channels,
         
     | 
| 907 | 
         
            -
                                out_channels=out_channels,
         
     | 
| 908 | 
         
            -
                                temb_channels=temb_channels,
         
     | 
| 909 | 
         
            -
                                eps=resnet_eps,
         
     | 
| 910 | 
         
            -
                                groups=resnet_groups,
         
     | 
| 911 | 
         
            -
                                dropout=dropout,
         
     | 
| 912 | 
         
            -
                                time_embedding_norm=resnet_time_scale_shift,
         
     | 
| 913 | 
         
            -
                                non_linearity=resnet_act_fn,
         
     | 
| 914 | 
         
            -
                                output_scale_factor=output_scale_factor,
         
     | 
| 915 | 
         
            -
                                pre_norm=resnet_pre_norm,
         
     | 
| 916 | 
         
            -
                            )
         
     | 
| 917 | 
         
            -
                        )
         
     | 
| 918 | 
         
            -
                        if not dual_cross_attention:
         
     | 
| 919 | 
         
            -
                            attentions.append(
         
     | 
| 920 | 
         
            -
                                ExtractKVTransformer2DModel(
         
     | 
| 921 | 
         
            -
                                    num_attention_heads,
         
     | 
| 922 | 
         
            -
                                    out_channels // num_attention_heads,
         
     | 
| 923 | 
         
            -
                                    in_channels=out_channels,
         
     | 
| 924 | 
         
            -
                                    num_layers=transformer_layers_per_block[i],
         
     | 
| 925 | 
         
            -
                                    cross_attention_dim=cross_attention_dim,
         
     | 
| 926 | 
         
            -
                                    norm_num_groups=resnet_groups,
         
     | 
| 927 | 
         
            -
                                    use_linear_projection=use_linear_projection,
         
     | 
| 928 | 
         
            -
                                    only_cross_attention=only_cross_attention,
         
     | 
| 929 | 
         
            -
                                    upcast_attention=upcast_attention,
         
     | 
| 930 | 
         
            -
                                    attention_type=attention_type,
         
     | 
| 931 | 
         
            -
                                    extract_self_attention_kv=extract_self_attention_kv,
         
     | 
| 932 | 
         
            -
                                    extract_cross_attention_kv=extract_cross_attention_kv,
         
     | 
| 933 | 
         
            -
                                )
         
     | 
| 934 | 
         
            -
                            )
         
     | 
| 935 | 
         
            -
                        else:
         
     | 
| 936 | 
         
            -
                            raise ValueError("Dual cross attention is not supported in ExtractKVCrossAttnDownBlock2D")
         
     | 
| 937 | 
         
            -
             
     | 
| 938 | 
         
            -
                    self.attentions = nn.ModuleList(attentions)
         
     | 
| 939 | 
         
            -
                    self.resnets = nn.ModuleList(resnets)
         
     | 
| 940 | 
         
            -
             
     | 
| 941 | 
         
            -
                    if add_downsample:
         
     | 
| 942 | 
         
            -
                        self.downsamplers = nn.ModuleList(
         
     | 
| 943 | 
         
            -
                            [
         
     | 
| 944 | 
         
            -
                                Downsample2D(
         
     | 
| 945 | 
         
            -
                                    out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
         
     | 
| 946 | 
         
            -
                                )
         
     | 
| 947 | 
         
            -
                            ]
         
     | 
| 948 | 
         
            -
                        )
         
     | 
| 949 | 
         
            -
                    else:
         
     | 
| 950 | 
         
            -
                        self.downsamplers = None
         
     | 
| 951 | 
         
            -
             
     | 
| 952 | 
         
            -
                    self.gradient_checkpointing = False
         
     | 
| 953 | 
         
            -
             
     | 
| 954 | 
         
            -
                def forward(
         
     | 
| 955 | 
         
            -
                    self,
         
     | 
| 956 | 
         
            -
                    hidden_states: torch.FloatTensor,
         
     | 
| 957 | 
         
            -
                    temb: Optional[torch.FloatTensor] = None,
         
     | 
| 958 | 
         
            -
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         
     | 
| 959 | 
         
            -
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 960 | 
         
            -
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 961 | 
         
            -
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 962 | 
         
            -
                    additional_residuals: Optional[torch.FloatTensor] = None,
         
     | 
| 963 | 
         
            -
                ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
         
     | 
| 964 | 
         
            -
                    if cross_attention_kwargs is not None:
         
     | 
| 965 | 
         
            -
                        if cross_attention_kwargs.get("scale", None) is not None:
         
     | 
| 966 | 
         
            -
                            logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
         
     | 
| 967 | 
         
            -
             
     | 
| 968 | 
         
            -
                    output_states = ()
         
     | 
| 969 | 
         
            -
                    extracted_kvs = {}
         
     | 
| 970 | 
         
            -
             
     | 
| 971 | 
         
            -
                    blocks = list(zip(self.resnets, self.attentions))
         
     | 
| 972 | 
         
            -
             
     | 
| 973 | 
         
            -
                    for i, (resnet, attn) in enumerate(blocks):
         
     | 
| 974 | 
         
            -
                        if self.training and self.gradient_checkpointing:
         
     | 
| 975 | 
         
            -
             
     | 
| 976 | 
         
            -
                            def create_custom_forward(module, return_dict=None):
         
     | 
| 977 | 
         
            -
                                def custom_forward(*inputs):
         
     | 
| 978 | 
         
            -
                                    if return_dict is not None:
         
     | 
| 979 | 
         
            -
                                        return module(*inputs, return_dict=return_dict)
         
     | 
| 980 | 
         
            -
                                    else:
         
     | 
| 981 | 
         
            -
                                        return module(*inputs)
         
     | 
| 982 | 
         
            -
             
     | 
| 983 | 
         
            -
                                return custom_forward
         
     | 
| 984 | 
         
            -
             
     | 
| 985 | 
         
            -
                            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
         
     | 
| 986 | 
         
            -
                            hidden_states = torch.utils.checkpoint.checkpoint(
         
     | 
| 987 | 
         
            -
                                create_custom_forward(resnet),
         
     | 
| 988 | 
         
            -
                                hidden_states,
         
     | 
| 989 | 
         
            -
                                temb,
         
     | 
| 990 | 
         
            -
                                **ckpt_kwargs,
         
     | 
| 991 | 
         
            -
                            )
         
     | 
| 992 | 
         
            -
                            hidden_states, extracted_kv = attn(
         
     | 
| 993 | 
         
            -
                                hidden_states,
         
     | 
| 994 | 
         
            -
                                timestep=temb,
         
     | 
| 995 | 
         
            -
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 996 | 
         
            -
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 997 | 
         
            -
                                attention_mask=attention_mask,
         
     | 
| 998 | 
         
            -
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 999 | 
         
            -
                                return_dict=False,
         
     | 
| 1000 | 
         
            -
                            )
         
     | 
| 1001 | 
         
            -
                        else:
         
     | 
| 1002 | 
         
            -
                            hidden_states = resnet(hidden_states, temb)
         
     | 
| 1003 | 
         
            -
                            hidden_states, extracted_kv = attn(
         
     | 
| 1004 | 
         
            -
                                hidden_states,
         
     | 
| 1005 | 
         
            -
                                timestep=temb,
         
     | 
| 1006 | 
         
            -
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1007 | 
         
            -
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 1008 | 
         
            -
                                attention_mask=attention_mask,
         
     | 
| 1009 | 
         
            -
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1010 | 
         
            -
                                return_dict=False,
         
     | 
| 1011 | 
         
            -
                            )
         
     | 
| 1012 | 
         
            -
             
     | 
| 1013 | 
         
            -
                        # apply additional residuals to the output of the last pair of resnet and attention blocks
         
     | 
| 1014 | 
         
            -
                        if i == len(blocks) - 1 and additional_residuals is not None:
         
     | 
| 1015 | 
         
            -
                            hidden_states = hidden_states + additional_residuals
         
     | 
| 1016 | 
         
            -
             
     | 
| 1017 | 
         
            -
                        output_states = output_states + (hidden_states,)
         
     | 
| 1018 | 
         
            -
                        extracted_kvs.update(extracted_kv)
         
     | 
| 1019 | 
         
            -
             
     | 
| 1020 | 
         
            -
                    if self.downsamplers is not None:
         
     | 
| 1021 | 
         
            -
                        for downsampler in self.downsamplers:
         
     | 
| 1022 | 
         
            -
                            hidden_states = downsampler(hidden_states)
         
     | 
| 1023 | 
         
            -
             
     | 
| 1024 | 
         
            -
                        output_states = output_states + (hidden_states,)
         
     | 
| 1025 | 
         
            -
             
     | 
| 1026 | 
         
            -
                    return hidden_states, output_states, extracted_kvs
         
     | 
| 1027 | 
         
            -
             
     | 
| 1028 | 
         
            -
                def init_kv_extraction(self):
         
     | 
| 1029 | 
         
            -
                    for block in self.attentions:
         
     | 
| 1030 | 
         
            -
                        block.init_kv_extraction()
         
     | 
| 1031 | 
         
            -
             
     | 
| 1032 | 
         
            -
             
     | 
| 1033 | 
         
            -
            class ExtractKVCrossAttnUpBlock2D(nn.Module):
         
     | 
| 1034 | 
         
            -
                def __init__(
         
     | 
| 1035 | 
         
            -
                    self,
         
     | 
| 1036 | 
         
            -
                    in_channels: int,
         
     | 
| 1037 | 
         
            -
                    out_channels: int,
         
     | 
| 1038 | 
         
            -
                    prev_output_channel: int,
         
     | 
| 1039 | 
         
            -
                    temb_channels: int,
         
     | 
| 1040 | 
         
            -
                    resolution_idx: Optional[int] = None,
         
     | 
| 1041 | 
         
            -
                    dropout: float = 0.0,
         
     | 
| 1042 | 
         
            -
                    num_layers: int = 1,
         
     | 
| 1043 | 
         
            -
                    transformer_layers_per_block: Union[int, Tuple[int]] = 1,
         
     | 
| 1044 | 
         
            -
                    resnet_eps: float = 1e-6,
         
     | 
| 1045 | 
         
            -
                    resnet_time_scale_shift: str = "default",
         
     | 
| 1046 | 
         
            -
                    resnet_act_fn: str = "swish",
         
     | 
| 1047 | 
         
            -
                    resnet_groups: int = 32,
         
     | 
| 1048 | 
         
            -
                    resnet_pre_norm: bool = True,
         
     | 
| 1049 | 
         
            -
                    num_attention_heads: int = 1,
         
     | 
| 1050 | 
         
            -
                    cross_attention_dim: int = 1280,
         
     | 
| 1051 | 
         
            -
                    output_scale_factor: float = 1.0,
         
     | 
| 1052 | 
         
            -
                    add_upsample: bool = True,
         
     | 
| 1053 | 
         
            -
                    dual_cross_attention: bool = False,
         
     | 
| 1054 | 
         
            -
                    use_linear_projection: bool = False,
         
     | 
| 1055 | 
         
            -
                    only_cross_attention: bool = False,
         
     | 
| 1056 | 
         
            -
                    upcast_attention: bool = False,
         
     | 
| 1057 | 
         
            -
                    attention_type: str = "default",
         
     | 
| 1058 | 
         
            -
                    extract_self_attention_kv: bool = False,
         
     | 
| 1059 | 
         
            -
                    extract_cross_attention_kv: bool = False,
         
     | 
| 1060 | 
         
            -
                ):
         
     | 
| 1061 | 
         
            -
                    super().__init__()
         
     | 
| 1062 | 
         
            -
                    resnets = []
         
     | 
| 1063 | 
         
            -
                    attentions = []
         
     | 
| 1064 | 
         
            -
             
     | 
| 1065 | 
         
            -
                    self.has_cross_attention = True
         
     | 
| 1066 | 
         
            -
                    self.num_attention_heads = num_attention_heads
         
     | 
| 1067 | 
         
            -
             
     | 
| 1068 | 
         
            -
                    if isinstance(transformer_layers_per_block, int):
         
     | 
| 1069 | 
         
            -
                        transformer_layers_per_block = [transformer_layers_per_block] * num_layers
         
     | 
| 1070 | 
         
            -
             
     | 
| 1071 | 
         
            -
                    for i in range(num_layers):
         
     | 
| 1072 | 
         
            -
                        res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
         
     | 
| 1073 | 
         
            -
                        resnet_in_channels = prev_output_channel if i == 0 else out_channels
         
     | 
| 1074 | 
         
            -
             
     | 
| 1075 | 
         
            -
                        resnets.append(
         
     | 
| 1076 | 
         
            -
                            ResnetBlock2D(
         
     | 
| 1077 | 
         
            -
                                in_channels=resnet_in_channels + res_skip_channels,
         
     | 
| 1078 | 
         
            -
                                out_channels=out_channels,
         
     | 
| 1079 | 
         
            -
                                temb_channels=temb_channels,
         
     | 
| 1080 | 
         
            -
                                eps=resnet_eps,
         
     | 
| 1081 | 
         
            -
                                groups=resnet_groups,
         
     | 
| 1082 | 
         
            -
                                dropout=dropout,
         
     | 
| 1083 | 
         
            -
                                time_embedding_norm=resnet_time_scale_shift,
         
     | 
| 1084 | 
         
            -
                                non_linearity=resnet_act_fn,
         
     | 
| 1085 | 
         
            -
                                output_scale_factor=output_scale_factor,
         
     | 
| 1086 | 
         
            -
                                pre_norm=resnet_pre_norm,
         
     | 
| 1087 | 
         
            -
                            )
         
     | 
| 1088 | 
         
            -
                        )
         
     | 
| 1089 | 
         
            -
                        if not dual_cross_attention:
         
     | 
| 1090 | 
         
            -
                            attentions.append(
         
     | 
| 1091 | 
         
            -
                                ExtractKVTransformer2DModel(
         
     | 
| 1092 | 
         
            -
                                    num_attention_heads,
         
     | 
| 1093 | 
         
            -
                                    out_channels // num_attention_heads,
         
     | 
| 1094 | 
         
            -
                                    in_channels=out_channels,
         
     | 
| 1095 | 
         
            -
                                    num_layers=transformer_layers_per_block[i],
         
     | 
| 1096 | 
         
            -
                                    cross_attention_dim=cross_attention_dim,
         
     | 
| 1097 | 
         
            -
                                    norm_num_groups=resnet_groups,
         
     | 
| 1098 | 
         
            -
                                    use_linear_projection=use_linear_projection,
         
     | 
| 1099 | 
         
            -
                                    only_cross_attention=only_cross_attention,
         
     | 
| 1100 | 
         
            -
                                    upcast_attention=upcast_attention,
         
     | 
| 1101 | 
         
            -
                                    attention_type=attention_type,
         
     | 
| 1102 | 
         
            -
                                    extract_self_attention_kv=extract_self_attention_kv,
         
     | 
| 1103 | 
         
            -
                                    extract_cross_attention_kv=extract_cross_attention_kv,
         
     | 
| 1104 | 
         
            -
                                )
         
     | 
| 1105 | 
         
            -
                            )
         
     | 
| 1106 | 
         
            -
                        else:
         
     | 
| 1107 | 
         
            -
                            raise ValueError("Dual cross attention is not supported in ExtractKVCrossAttnUpBlock2D")
         
     | 
| 1108 | 
         
            -
                    self.attentions = nn.ModuleList(attentions)
         
     | 
| 1109 | 
         
            -
                    self.resnets = nn.ModuleList(resnets)
         
     | 
| 1110 | 
         
            -
             
     | 
| 1111 | 
         
            -
                    if add_upsample:
         
     | 
| 1112 | 
         
            -
                        self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
         
     | 
| 1113 | 
         
            -
                    else:
         
     | 
| 1114 | 
         
            -
                        self.upsamplers = None
         
     | 
| 1115 | 
         
            -
             
     | 
| 1116 | 
         
            -
                    self.gradient_checkpointing = False
         
     | 
| 1117 | 
         
            -
                    self.resolution_idx = resolution_idx
         
     | 
| 1118 | 
         
            -
             
     | 
| 1119 | 
         
            -
                def forward(
         
     | 
| 1120 | 
         
            -
                    self,
         
     | 
| 1121 | 
         
            -
                    hidden_states: torch.FloatTensor,
         
     | 
| 1122 | 
         
            -
                    res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
         
     | 
| 1123 | 
         
            -
                    temb: Optional[torch.FloatTensor] = None,
         
     | 
| 1124 | 
         
            -
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         
     | 
| 1125 | 
         
            -
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 1126 | 
         
            -
                    upsample_size: Optional[int] = None,
         
     | 
| 1127 | 
         
            -
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1128 | 
         
            -
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1129 | 
         
            -
                ) -> torch.FloatTensor:
         
     | 
| 1130 | 
         
            -
                    if cross_attention_kwargs is not None:
         
     | 
| 1131 | 
         
            -
                        if cross_attention_kwargs.get("scale", None) is not None:
         
     | 
| 1132 | 
         
            -
                            logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
         
     | 
| 1133 | 
         
            -
             
     | 
| 1134 | 
         
            -
                    is_freeu_enabled = (
         
     | 
| 1135 | 
         
            -
                        getattr(self, "s1", None)
         
     | 
| 1136 | 
         
            -
                        and getattr(self, "s2", None)
         
     | 
| 1137 | 
         
            -
                        and getattr(self, "b1", None)
         
     | 
| 1138 | 
         
            -
                        and getattr(self, "b2", None)
         
     | 
| 1139 | 
         
            -
                    )
         
     | 
| 1140 | 
         
            -
             
     | 
| 1141 | 
         
            -
                    extracted_kvs = {}
         
     | 
| 1142 | 
         
            -
                    for resnet, attn in zip(self.resnets, self.attentions):
         
     | 
| 1143 | 
         
            -
                        # pop res hidden states
         
     | 
| 1144 | 
         
            -
                        res_hidden_states = res_hidden_states_tuple[-1]
         
     | 
| 1145 | 
         
            -
                        res_hidden_states_tuple = res_hidden_states_tuple[:-1]
         
     | 
| 1146 | 
         
            -
             
     | 
| 1147 | 
         
            -
                        # FreeU: Only operate on the first two stages
         
     | 
| 1148 | 
         
            -
                        if is_freeu_enabled:
         
     | 
| 1149 | 
         
            -
                            hidden_states, res_hidden_states = apply_freeu(
         
     | 
| 1150 | 
         
            -
                                self.resolution_idx,
         
     | 
| 1151 | 
         
            -
                                hidden_states,
         
     | 
| 1152 | 
         
            -
                                res_hidden_states,
         
     | 
| 1153 | 
         
            -
                                s1=self.s1,
         
     | 
| 1154 | 
         
            -
                                s2=self.s2,
         
     | 
| 1155 | 
         
            -
                                b1=self.b1,
         
     | 
| 1156 | 
         
            -
                                b2=self.b2,
         
     | 
| 1157 | 
         
            -
                            )
         
     | 
| 1158 | 
         
            -
             
     | 
| 1159 | 
         
            -
                        hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
         
     | 
| 1160 | 
         
            -
             
     | 
| 1161 | 
         
            -
                        if self.training and self.gradient_checkpointing:
         
     | 
| 1162 | 
         
            -
             
     | 
| 1163 | 
         
            -
                            def create_custom_forward(module, return_dict=None):
         
     | 
| 1164 | 
         
            -
                                def custom_forward(*inputs):
         
     | 
| 1165 | 
         
            -
                                    if return_dict is not None:
         
     | 
| 1166 | 
         
            -
                                        return module(*inputs, return_dict=return_dict)
         
     | 
| 1167 | 
         
            -
                                    else:
         
     | 
| 1168 | 
         
            -
                                        return module(*inputs)
         
     | 
| 1169 | 
         
            -
             
     | 
| 1170 | 
         
            -
                                return custom_forward
         
     | 
| 1171 | 
         
            -
             
     | 
| 1172 | 
         
            -
                            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
         
     | 
| 1173 | 
         
            -
                            hidden_states = torch.utils.checkpoint.checkpoint(
         
     | 
| 1174 | 
         
            -
                                create_custom_forward(resnet),
         
     | 
| 1175 | 
         
            -
                                hidden_states,
         
     | 
| 1176 | 
         
            -
                                temb,
         
     | 
| 1177 | 
         
            -
                                **ckpt_kwargs,
         
     | 
| 1178 | 
         
            -
                            )
         
     | 
| 1179 | 
         
            -
                            hidden_states, extracted_kv = attn(
         
     | 
| 1180 | 
         
            -
                                hidden_states,
         
     | 
| 1181 | 
         
            -
                                timestep=temb,
         
     | 
| 1182 | 
         
            -
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1183 | 
         
            -
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 1184 | 
         
            -
                                attention_mask=attention_mask,
         
     | 
| 1185 | 
         
            -
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1186 | 
         
            -
                                return_dict=False,
         
     | 
| 1187 | 
         
            -
                            )
         
     | 
| 1188 | 
         
            -
                        else:
         
     | 
| 1189 | 
         
            -
                            hidden_states = resnet(hidden_states, temb)
         
     | 
| 1190 | 
         
            -
                            hidden_states, extracted_kv = attn(
         
     | 
| 1191 | 
         
            -
                                hidden_states,
         
     | 
| 1192 | 
         
            -
                                timestep=temb,
         
     | 
| 1193 | 
         
            -
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1194 | 
         
            -
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 1195 | 
         
            -
                                attention_mask=attention_mask,
         
     | 
| 1196 | 
         
            -
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1197 | 
         
            -
                                return_dict=False,
         
     | 
| 1198 | 
         
            -
                            )
         
     | 
| 1199 | 
         
            -
             
     | 
| 1200 | 
         
            -
                        extracted_kvs.update(extracted_kv)
         
     | 
| 1201 | 
         
            -
             
     | 
| 1202 | 
         
            -
                    if self.upsamplers is not None:
         
     | 
| 1203 | 
         
            -
                        for upsampler in self.upsamplers:
         
     | 
| 1204 | 
         
            -
                            hidden_states = upsampler(hidden_states, upsample_size)
         
     | 
| 1205 | 
         
            -
             
     | 
| 1206 | 
         
            -
                    return hidden_states, extracted_kvs
         
     | 
| 1207 | 
         
            -
             
     | 
| 1208 | 
         
            -
                def init_kv_extraction(self):
         
     | 
| 1209 | 
         
            -
                    for block in self.attentions:
         
     | 
| 1210 | 
         
            -
                        block.init_kv_extraction()
         
     | 
| 1211 | 
         
            -
             
     | 
| 1212 | 
         
            -
             
     | 
| 1213 | 
         
            -
            class DownBlock2D(nn.Module):
         
     | 
| 1214 | 
         
            -
                def __init__(
         
     | 
| 1215 | 
         
            -
                    self,
         
     | 
| 1216 | 
         
            -
                    in_channels: int,
         
     | 
| 1217 | 
         
            -
                    out_channels: int,
         
     | 
| 1218 | 
         
            -
                    temb_channels: int,
         
     | 
| 1219 | 
         
            -
                    dropout: float = 0.0,
         
     | 
| 1220 | 
         
            -
                    num_layers: int = 1,
         
     | 
| 1221 | 
         
            -
                    resnet_eps: float = 1e-6,
         
     | 
| 1222 | 
         
            -
                    resnet_time_scale_shift: str = "default",
         
     | 
| 1223 | 
         
            -
                    resnet_act_fn: str = "swish",
         
     | 
| 1224 | 
         
            -
                    resnet_groups: int = 32,
         
     | 
| 1225 | 
         
            -
                    resnet_pre_norm: bool = True,
         
     | 
| 1226 | 
         
            -
                    output_scale_factor: float = 1.0,
         
     | 
| 1227 | 
         
            -
                    add_downsample: bool = True,
         
     | 
| 1228 | 
         
            -
                    downsample_padding: int = 1,
         
     | 
| 1229 | 
         
            -
                ):
         
     | 
| 1230 | 
         
            -
                    super().__init__()
         
     | 
| 1231 | 
         
            -
                    resnets = []
         
     | 
| 1232 | 
         
            -
             
     | 
| 1233 | 
         
            -
                    for i in range(num_layers):
         
     | 
| 1234 | 
         
            -
                        in_channels = in_channels if i == 0 else out_channels
         
     | 
| 1235 | 
         
            -
                        resnets.append(
         
     | 
| 1236 | 
         
            -
                            ResnetBlock2D(
         
     | 
| 1237 | 
         
            -
                                in_channels=in_channels,
         
     | 
| 1238 | 
         
            -
                                out_channels=out_channels,
         
     | 
| 1239 | 
         
            -
                                temb_channels=temb_channels,
         
     | 
| 1240 | 
         
            -
                                eps=resnet_eps,
         
     | 
| 1241 | 
         
            -
                                groups=resnet_groups,
         
     | 
| 1242 | 
         
            -
                                dropout=dropout,
         
     | 
| 1243 | 
         
            -
                                time_embedding_norm=resnet_time_scale_shift,
         
     | 
| 1244 | 
         
            -
                                non_linearity=resnet_act_fn,
         
     | 
| 1245 | 
         
            -
                                output_scale_factor=output_scale_factor,
         
     | 
| 1246 | 
         
            -
                                pre_norm=resnet_pre_norm,
         
     | 
| 1247 | 
         
            -
                            )
         
     | 
| 1248 | 
         
            -
                        )
         
     | 
| 1249 | 
         
            -
             
     | 
| 1250 | 
         
            -
                    self.resnets = nn.ModuleList(resnets)
         
     | 
| 1251 | 
         
            -
             
     | 
| 1252 | 
         
            -
                    if add_downsample:
         
     | 
| 1253 | 
         
            -
                        self.downsamplers = nn.ModuleList(
         
     | 
| 1254 | 
         
            -
                            [
         
     | 
| 1255 | 
         
            -
                                Downsample2D(
         
     | 
| 1256 | 
         
            -
                                    out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
         
     | 
| 1257 | 
         
            -
                                )
         
     | 
| 1258 | 
         
            -
                            ]
         
     | 
| 1259 | 
         
            -
                        )
         
     | 
| 1260 | 
         
            -
                    else:
         
     | 
| 1261 | 
         
            -
                        self.downsamplers = None
         
     | 
| 1262 | 
         
            -
             
     | 
| 1263 | 
         
            -
                    self.gradient_checkpointing = False
         
     | 
| 1264 | 
         
            -
             
     | 
| 1265 | 
         
            -
                def forward(
         
     | 
| 1266 | 
         
            -
                    self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, *args, **kwargs
         
     | 
| 1267 | 
         
            -
                ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
         
     | 
| 1268 | 
         
            -
                    if len(args) > 0 or kwargs.get("scale", None) is not None:
         
     | 
| 1269 | 
         
            -
                        deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
         
     | 
| 1270 | 
         
            -
                        deprecate("scale", "1.0.0", deprecation_message)
         
     | 
| 1271 | 
         
            -
             
     | 
| 1272 | 
         
            -
                    output_states = ()
         
     | 
| 1273 | 
         
            -
             
     | 
| 1274 | 
         
            -
                    for resnet in self.resnets:
         
     | 
| 1275 | 
         
            -
                        if self.training and self.gradient_checkpointing:
         
     | 
| 1276 | 
         
            -
             
     | 
| 1277 | 
         
            -
                            def create_custom_forward(module):
         
     | 
| 1278 | 
         
            -
                                def custom_forward(*inputs):
         
     | 
| 1279 | 
         
            -
                                    return module(*inputs)
         
     | 
| 1280 | 
         
            -
             
     | 
| 1281 | 
         
            -
                                return custom_forward
         
     | 
| 1282 | 
         
            -
             
     | 
| 1283 | 
         
            -
                            if is_torch_version(">=", "1.11.0"):
         
     | 
| 1284 | 
         
            -
                                hidden_states = torch.utils.checkpoint.checkpoint(
         
     | 
| 1285 | 
         
            -
                                    create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
         
     | 
| 1286 | 
         
            -
                                )
         
     | 
| 1287 | 
         
            -
                            else:
         
     | 
| 1288 | 
         
            -
                                hidden_states = torch.utils.checkpoint.checkpoint(
         
     | 
| 1289 | 
         
            -
                                    create_custom_forward(resnet), hidden_states, temb
         
     | 
| 1290 | 
         
            -
                                )
         
     | 
| 1291 | 
         
            -
                        else:
         
     | 
| 1292 | 
         
            -
                            hidden_states = resnet(hidden_states, temb)
         
     | 
| 1293 | 
         
            -
             
     | 
| 1294 | 
         
            -
                        output_states = output_states + (hidden_states,)
         
     | 
| 1295 | 
         
            -
             
     | 
| 1296 | 
         
            -
                    if self.downsamplers is not None:
         
     | 
| 1297 | 
         
            -
                        for downsampler in self.downsamplers:
         
     | 
| 1298 | 
         
            -
                            hidden_states = downsampler(hidden_states)
         
     | 
| 1299 | 
         
            -
             
     | 
| 1300 | 
         
            -
                        output_states = output_states + (hidden_states,)
         
     | 
| 1301 | 
         
            -
             
     | 
| 1302 | 
         
            -
                    return hidden_states, output_states
         
     | 
| 1303 | 
         
            -
             
     | 
| 1304 | 
         
            -
             
     | 
| 1305 | 
         
            -
            class UpBlock2D(nn.Module):
         
     | 
| 1306 | 
         
            -
                def __init__(
         
     | 
| 1307 | 
         
            -
                    self,
         
     | 
| 1308 | 
         
            -
                    in_channels: int,
         
     | 
| 1309 | 
         
            -
                    prev_output_channel: int,
         
     | 
| 1310 | 
         
            -
                    out_channels: int,
         
     | 
| 1311 | 
         
            -
                    temb_channels: int,
         
     | 
| 1312 | 
         
            -
                    resolution_idx: Optional[int] = None,
         
     | 
| 1313 | 
         
            -
                    dropout: float = 0.0,
         
     | 
| 1314 | 
         
            -
                    num_layers: int = 1,
         
     | 
| 1315 | 
         
            -
                    resnet_eps: float = 1e-6,
         
     | 
| 1316 | 
         
            -
                    resnet_time_scale_shift: str = "default",
         
     | 
| 1317 | 
         
            -
                    resnet_act_fn: str = "swish",
         
     | 
| 1318 | 
         
            -
                    resnet_groups: int = 32,
         
     | 
| 1319 | 
         
            -
                    resnet_pre_norm: bool = True,
         
     | 
| 1320 | 
         
            -
                    output_scale_factor: float = 1.0,
         
     | 
| 1321 | 
         
            -
                    add_upsample: bool = True,
         
     | 
| 1322 | 
         
            -
                ):
         
     | 
| 1323 | 
         
            -
                    super().__init__()
         
     | 
| 1324 | 
         
            -
                    resnets = []
         
     | 
| 1325 | 
         
            -
             
     | 
| 1326 | 
         
            -
                    for i in range(num_layers):
         
     | 
| 1327 | 
         
            -
                        res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
         
     | 
| 1328 | 
         
            -
                        resnet_in_channels = prev_output_channel if i == 0 else out_channels
         
     | 
| 1329 | 
         
            -
             
     | 
| 1330 | 
         
            -
                        resnets.append(
         
     | 
| 1331 | 
         
            -
                            ResnetBlock2D(
         
     | 
| 1332 | 
         
            -
                                in_channels=resnet_in_channels + res_skip_channels,
         
     | 
| 1333 | 
         
            -
                                out_channels=out_channels,
         
     | 
| 1334 | 
         
            -
                                temb_channels=temb_channels,
         
     | 
| 1335 | 
         
            -
                                eps=resnet_eps,
         
     | 
| 1336 | 
         
            -
                                groups=resnet_groups,
         
     | 
| 1337 | 
         
            -
                                dropout=dropout,
         
     | 
| 1338 | 
         
            -
                                time_embedding_norm=resnet_time_scale_shift,
         
     | 
| 1339 | 
         
            -
                                non_linearity=resnet_act_fn,
         
     | 
| 1340 | 
         
            -
                                output_scale_factor=output_scale_factor,
         
     | 
| 1341 | 
         
            -
                                pre_norm=resnet_pre_norm,
         
     | 
| 1342 | 
         
            -
                            )
         
     | 
| 1343 | 
         
            -
                        )
         
     | 
| 1344 | 
         
            -
             
     | 
| 1345 | 
         
            -
                    self.resnets = nn.ModuleList(resnets)
         
     | 
| 1346 | 
         
            -
             
     | 
| 1347 | 
         
            -
                    if add_upsample:
         
     | 
| 1348 | 
         
            -
                        self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
         
     | 
| 1349 | 
         
            -
                    else:
         
     | 
| 1350 | 
         
            -
                        self.upsamplers = None
         
     | 
| 1351 | 
         
            -
             
     | 
| 1352 | 
         
            -
                    self.gradient_checkpointing = False
         
     | 
| 1353 | 
         
            -
                    self.resolution_idx = resolution_idx
         
     | 
| 1354 | 
         
            -
             
     | 
| 1355 | 
         
            -
                def forward(
         
     | 
| 1356 | 
         
            -
                    self,
         
     | 
| 1357 | 
         
            -
                    hidden_states: torch.FloatTensor,
         
     | 
| 1358 | 
         
            -
                    res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
         
     | 
| 1359 | 
         
            -
                    temb: Optional[torch.FloatTensor] = None,
         
     | 
| 1360 | 
         
            -
                    upsample_size: Optional[int] = None,
         
     | 
| 1361 | 
         
            -
                    *args,
         
     | 
| 1362 | 
         
            -
                    **kwargs,
         
     | 
| 1363 | 
         
            -
                ) -> torch.FloatTensor:
         
     | 
| 1364 | 
         
            -
                    if len(args) > 0 or kwargs.get("scale", None) is not None:
         
     | 
| 1365 | 
         
            -
                        deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
         
     | 
| 1366 | 
         
            -
                        deprecate("scale", "1.0.0", deprecation_message)
         
     | 
| 1367 | 
         
            -
             
     | 
| 1368 | 
         
            -
                    is_freeu_enabled = (
         
     | 
| 1369 | 
         
            -
                        getattr(self, "s1", None)
         
     | 
| 1370 | 
         
            -
                        and getattr(self, "s2", None)
         
     | 
| 1371 | 
         
            -
                        and getattr(self, "b1", None)
         
     | 
| 1372 | 
         
            -
                        and getattr(self, "b2", None)
         
     | 
| 1373 | 
         
            -
                    )
         
     | 
| 1374 | 
         
            -
             
     | 
| 1375 | 
         
            -
                    for resnet in self.resnets:
         
     | 
| 1376 | 
         
            -
                        # pop res hidden states
         
     | 
| 1377 | 
         
            -
                        res_hidden_states = res_hidden_states_tuple[-1]
         
     | 
| 1378 | 
         
            -
                        res_hidden_states_tuple = res_hidden_states_tuple[:-1]
         
     | 
| 1379 | 
         
            -
             
     | 
| 1380 | 
         
            -
                        # FreeU: Only operate on the first two stages
         
     | 
| 1381 | 
         
            -
                        if is_freeu_enabled:
         
     | 
| 1382 | 
         
            -
                            hidden_states, res_hidden_states = apply_freeu(
         
     | 
| 1383 | 
         
            -
                                self.resolution_idx,
         
     | 
| 1384 | 
         
            -
                                hidden_states,
         
     | 
| 1385 | 
         
            -
                                res_hidden_states,
         
     | 
| 1386 | 
         
            -
                                s1=self.s1,
         
     | 
| 1387 | 
         
            -
                                s2=self.s2,
         
     | 
| 1388 | 
         
            -
                                b1=self.b1,
         
     | 
| 1389 | 
         
            -
                                b2=self.b2,
         
     | 
| 1390 | 
         
            -
                            )
         
     | 
| 1391 | 
         
            -
             
     | 
| 1392 | 
         
            -
                        hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
         
     | 
| 1393 | 
         
            -
             
     | 
| 1394 | 
         
            -
                        if self.training and self.gradient_checkpointing:
         
     | 
| 1395 | 
         
            -
             
     | 
| 1396 | 
         
            -
                            def create_custom_forward(module):
         
     | 
| 1397 | 
         
            -
                                def custom_forward(*inputs):
         
     | 
| 1398 | 
         
            -
                                    return module(*inputs)
         
     | 
| 1399 | 
         
            -
             
     | 
| 1400 | 
         
            -
                                return custom_forward
         
     | 
| 1401 | 
         
            -
             
     | 
| 1402 | 
         
            -
                            if is_torch_version(">=", "1.11.0"):
         
     | 
| 1403 | 
         
            -
                                hidden_states = torch.utils.checkpoint.checkpoint(
         
     | 
| 1404 | 
         
            -
                                    create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
         
     | 
| 1405 | 
         
            -
                                )
         
     | 
| 1406 | 
         
            -
                            else:
         
     | 
| 1407 | 
         
            -
                                hidden_states = torch.utils.checkpoint.checkpoint(
         
     | 
| 1408 | 
         
            -
                                    create_custom_forward(resnet), hidden_states, temb
         
     | 
| 1409 | 
         
            -
                                )
         
     | 
| 1410 | 
         
            -
                        else:
         
     | 
| 1411 | 
         
            -
                            hidden_states = resnet(hidden_states, temb)
         
     | 
| 1412 | 
         
            -
             
     | 
| 1413 | 
         
            -
                    if self.upsamplers is not None:
         
     | 
| 1414 | 
         
            -
                        for upsampler in self.upsamplers:
         
     | 
| 1415 | 
         
            -
                            hidden_states = upsampler(hidden_states, upsample_size)
         
     | 
| 1416 | 
         
            -
             
     | 
| 1417 | 
         
            -
                    return hidden_states
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        module/unet/unet_2d_extractKV_res.py
    DELETED
    
    | 
         @@ -1,1589 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # Copy from diffusers.models.unets.unet_2d_condition.py
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            # Copyright 2024 The HuggingFace Team. All rights reserved.
         
     | 
| 4 | 
         
            -
            #
         
     | 
| 5 | 
         
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 6 | 
         
            -
            # you may not use this file except in compliance with the License.
         
     | 
| 7 | 
         
            -
            # You may obtain a copy of the License at
         
     | 
| 8 | 
         
            -
            #
         
     | 
| 9 | 
         
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 10 | 
         
            -
            #
         
     | 
| 11 | 
         
            -
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 12 | 
         
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 13 | 
         
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 14 | 
         
            -
            # See the License for the specific language governing permissions and
         
     | 
| 15 | 
         
            -
            # limitations under the License.
         
     | 
| 16 | 
         
            -
            from dataclasses import dataclass
         
     | 
| 17 | 
         
            -
            from typing import Any, Dict, List, Optional, Tuple, Union
         
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
            import torch
         
     | 
| 20 | 
         
            -
            import torch.nn as nn
         
     | 
| 21 | 
         
            -
            import torch.utils.checkpoint
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         
     | 
| 24 | 
         
            -
            from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
         
     | 
| 25 | 
         
            -
            from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
         
     | 
| 26 | 
         
            -
            from diffusers.models.activations import get_activation
         
     | 
| 27 | 
         
            -
            from diffusers.models.attention_processor import (
         
     | 
| 28 | 
         
            -
                ADDED_KV_ATTENTION_PROCESSORS,
         
     | 
| 29 | 
         
            -
                CROSS_ATTENTION_PROCESSORS,
         
     | 
| 30 | 
         
            -
                Attention,
         
     | 
| 31 | 
         
            -
                AttentionProcessor,
         
     | 
| 32 | 
         
            -
                AttnAddedKVProcessor,
         
     | 
| 33 | 
         
            -
                AttnProcessor,
         
     | 
| 34 | 
         
            -
            )
         
     | 
| 35 | 
         
            -
            from diffusers.models.embeddings import (
         
     | 
| 36 | 
         
            -
                GaussianFourierProjection,
         
     | 
| 37 | 
         
            -
                GLIGENTextBoundingboxProjection,
         
     | 
| 38 | 
         
            -
                ImageHintTimeEmbedding,
         
     | 
| 39 | 
         
            -
                ImageProjection,
         
     | 
| 40 | 
         
            -
                ImageTimeEmbedding,
         
     | 
| 41 | 
         
            -
                TextImageProjection,
         
     | 
| 42 | 
         
            -
                TextImageTimeEmbedding,
         
     | 
| 43 | 
         
            -
                TextTimeEmbedding,
         
     | 
| 44 | 
         
            -
                TimestepEmbedding,
         
     | 
| 45 | 
         
            -
                Timesteps,
         
     | 
| 46 | 
         
            -
            )
         
     | 
| 47 | 
         
            -
            from diffusers.models.modeling_utils import ModelMixin
         
     | 
| 48 | 
         
            -
            from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
         
     | 
| 49 | 
         
            -
            from .unet_2d_extractKV_blocks import (
         
     | 
| 50 | 
         
            -
                get_down_block,
         
     | 
| 51 | 
         
            -
                get_mid_block,
         
     | 
| 52 | 
         
            -
                get_up_block,
         
     | 
| 53 | 
         
            -
            )
         
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
             
     | 
| 56 | 
         
            -
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         
     | 
| 57 | 
         
            -
             
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
            @dataclass
         
     | 
| 60 | 
         
            -
            class ExtractKVUNet2DConditionOutput(BaseOutput):
         
     | 
| 61 | 
         
            -
                """
         
     | 
| 62 | 
         
            -
                The output of [`UNet2DConditionModel`].
         
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
                Args:
         
     | 
| 65 | 
         
            -
                    sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
         
     | 
| 66 | 
         
            -
                        The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
         
     | 
| 67 | 
         
            -
                """
         
     | 
| 68 | 
         
            -
             
     | 
| 69 | 
         
            -
                sample: torch.FloatTensor = None
         
     | 
| 70 | 
         
            -
                cached_kvs: Dict[str, Any] = None
         
     | 
| 71 | 
         
            -
                down_block_res_samples: Tuple[torch.Tensor] = None
         
     | 
| 72 | 
         
            -
                mid_block_res_sample: torch.Tensor = None
         
     | 
| 73 | 
         
            -
             
     | 
| 74 | 
         
            -
             
     | 
| 75 | 
         
            -
            def zero_module(module):
         
     | 
| 76 | 
         
            -
                for p in module.parameters():
         
     | 
| 77 | 
         
            -
                    nn.init.zeros_(p)
         
     | 
| 78 | 
         
            -
                return module
         
     | 
| 79 | 
         
            -
             
     | 
| 80 | 
         
            -
             
     | 
| 81 | 
         
            -
            class ControlNetConditioningEmbedding(nn.Module):
         
     | 
| 82 | 
         
            -
                """
         
     | 
| 83 | 
         
            -
                Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
         
     | 
| 84 | 
         
            -
                [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
         
     | 
| 85 | 
         
            -
                training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
         
     | 
| 86 | 
         
            -
                convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
         
     | 
| 87 | 
         
            -
                (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
         
     | 
| 88 | 
         
            -
                model) to encode image-space conditions ... into feature maps ..."
         
     | 
| 89 | 
         
            -
                """
         
     | 
| 90 | 
         
            -
             
     | 
| 91 | 
         
            -
                def __init__(
         
     | 
| 92 | 
         
            -
                    self,
         
     | 
| 93 | 
         
            -
                    conditioning_embedding_channels: int,
         
     | 
| 94 | 
         
            -
                    conditioning_channels: int = 3,
         
     | 
| 95 | 
         
            -
                    block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
         
     | 
| 96 | 
         
            -
                ):
         
     | 
| 97 | 
         
            -
                    super().__init__()
         
     | 
| 98 | 
         
            -
             
     | 
| 99 | 
         
            -
                    self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
         
     | 
| 100 | 
         
            -
             
     | 
| 101 | 
         
            -
                    self.blocks = nn.ModuleList([])
         
     | 
| 102 | 
         
            -
             
     | 
| 103 | 
         
            -
                    for i in range(len(block_out_channels) - 1):
         
     | 
| 104 | 
         
            -
                        channel_in = block_out_channels[i]
         
     | 
| 105 | 
         
            -
                        channel_out = block_out_channels[i + 1]
         
     | 
| 106 | 
         
            -
                        self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
         
     | 
| 107 | 
         
            -
                        self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
         
     | 
| 108 | 
         
            -
             
     | 
| 109 | 
         
            -
                    self.conv_out = zero_module(
         
     | 
| 110 | 
         
            -
                        nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
         
     | 
| 111 | 
         
            -
                    )
         
     | 
| 112 | 
         
            -
             
     | 
| 113 | 
         
            -
                def forward(self, conditioning):
         
     | 
| 114 | 
         
            -
                    embedding = self.conv_in(conditioning)
         
     | 
| 115 | 
         
            -
                    embedding = F.silu(embedding)
         
     | 
| 116 | 
         
            -
             
     | 
| 117 | 
         
            -
                    for block in self.blocks:
         
     | 
| 118 | 
         
            -
                        embedding = block(embedding)
         
     | 
| 119 | 
         
            -
                        embedding = F.silu(embedding)
         
     | 
| 120 | 
         
            -
             
     | 
| 121 | 
         
            -
                    embedding = self.conv_out(embedding)
         
     | 
| 122 | 
         
            -
             
     | 
| 123 | 
         
            -
                    return embedding
         
     | 
| 124 | 
         
            -
             
     | 
| 125 | 
         
            -
             
     | 
| 126 | 
         
            -
            class ExtractKVUNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
         
     | 
| 127 | 
         
            -
                r"""
         
     | 
| 128 | 
         
            -
                A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
         
     | 
| 129 | 
         
            -
                shaped output.
         
     | 
| 130 | 
         
            -
             
     | 
| 131 | 
         
            -
                This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
         
     | 
| 132 | 
         
            -
                for all models (such as downloading or saving).
         
     | 
| 133 | 
         
            -
             
     | 
| 134 | 
         
            -
                Parameters:
         
     | 
| 135 | 
         
            -
                    sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
         
     | 
| 136 | 
         
            -
                        Height and width of input/output sample.
         
     | 
| 137 | 
         
            -
                    in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
         
     | 
| 138 | 
         
            -
                    out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
         
     | 
| 139 | 
         
            -
                    center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
         
     | 
| 140 | 
         
            -
                    flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
         
     | 
| 141 | 
         
            -
                        Whether to flip the sin to cos in the time embedding.
         
     | 
| 142 | 
         
            -
                    freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
         
     | 
| 143 | 
         
            -
                    down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
         
     | 
| 144 | 
         
            -
                        The tuple of downsample blocks to use.
         
     | 
| 145 | 
         
            -
                    mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
         
     | 
| 146 | 
         
            -
                        Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
         
     | 
| 147 | 
         
            -
                        `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
         
     | 
| 148 | 
         
            -
                    up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
         
     | 
| 149 | 
         
            -
                        The tuple of upsample blocks to use.
         
     | 
| 150 | 
         
            -
                    only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
         
     | 
| 151 | 
         
            -
                        Whether to include self-attention in the basic transformer blocks, see
         
     | 
| 152 | 
         
            -
                        [`~models.attention.BasicTransformerBlock`].
         
     | 
| 153 | 
         
            -
                    block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
         
     | 
| 154 | 
         
            -
                        The tuple of output channels for each block.
         
     | 
| 155 | 
         
            -
                    layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
         
     | 
| 156 | 
         
            -
                    downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
         
     | 
| 157 | 
         
            -
                    mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
         
     | 
| 158 | 
         
            -
                    dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
         
     | 
| 159 | 
         
            -
                    act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
         
     | 
| 160 | 
         
            -
                    norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
         
     | 
| 161 | 
         
            -
                        If `None`, normalization and activation layers is skipped in post-processing.
         
     | 
| 162 | 
         
            -
                    norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
         
     | 
| 163 | 
         
            -
                    cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
         
     | 
| 164 | 
         
            -
                        The dimension of the cross attention features.
         
     | 
| 165 | 
         
            -
                    transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
         
     | 
| 166 | 
         
            -
                        The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
         
     | 
| 167 | 
         
            -
                        [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
         
     | 
| 168 | 
         
            -
                        [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
         
     | 
| 169 | 
         
            -
                    reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
         
     | 
| 170 | 
         
            -
                        The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
         
     | 
| 171 | 
         
            -
                        blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
         
     | 
| 172 | 
         
            -
                        [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
         
     | 
| 173 | 
         
            -
                        [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
         
     | 
| 174 | 
         
            -
                    encoder_hid_dim (`int`, *optional*, defaults to None):
         
     | 
| 175 | 
         
            -
                        If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
         
     | 
| 176 | 
         
            -
                        dimension to `cross_attention_dim`.
         
     | 
| 177 | 
         
            -
                    encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
         
     | 
| 178 | 
         
            -
                        If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
         
     | 
| 179 | 
         
            -
                        embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
         
     | 
| 180 | 
         
            -
                    attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
         
     | 
| 181 | 
         
            -
                    num_attention_heads (`int`, *optional*):
         
     | 
| 182 | 
         
            -
                        The number of attention heads. If not defined, defaults to `attention_head_dim`
         
     | 
| 183 | 
         
            -
                    resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
         
     | 
| 184 | 
         
            -
                        for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
         
     | 
| 185 | 
         
            -
                    class_embed_type (`str`, *optional*, defaults to `None`):
         
     | 
| 186 | 
         
            -
                        The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
         
     | 
| 187 | 
         
            -
                        `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
         
     | 
| 188 | 
         
            -
                    addition_embed_type (`str`, *optional*, defaults to `None`):
         
     | 
| 189 | 
         
            -
                        Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
         
     | 
| 190 | 
         
            -
                        "text". "text" will use the `TextTimeEmbedding` layer.
         
     | 
| 191 | 
         
            -
                    addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
         
     | 
| 192 | 
         
            -
                        Dimension for the timestep embeddings.
         
     | 
| 193 | 
         
            -
                    num_class_embeds (`int`, *optional*, defaults to `None`):
         
     | 
| 194 | 
         
            -
                        Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
         
     | 
| 195 | 
         
            -
                        class conditioning with `class_embed_type` equal to `None`.
         
     | 
| 196 | 
         
            -
                    time_embedding_type (`str`, *optional*, defaults to `positional`):
         
     | 
| 197 | 
         
            -
                        The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
         
     | 
| 198 | 
         
            -
                    time_embedding_dim (`int`, *optional*, defaults to `None`):
         
     | 
| 199 | 
         
            -
                        An optional override for the dimension of the projected time embedding.
         
     | 
| 200 | 
         
            -
                    time_embedding_act_fn (`str`, *optional*, defaults to `None`):
         
     | 
| 201 | 
         
            -
                        Optional activation function to use only once on the time embeddings before they are passed to the rest of
         
     | 
| 202 | 
         
            -
                        the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
         
     | 
| 203 | 
         
            -
                    timestep_post_act (`str`, *optional*, defaults to `None`):
         
     | 
| 204 | 
         
            -
                        The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
         
     | 
| 205 | 
         
            -
                    time_cond_proj_dim (`int`, *optional*, defaults to `None`):
         
     | 
| 206 | 
         
            -
                        The dimension of `cond_proj` layer in the timestep embedding.
         
     | 
| 207 | 
         
            -
                    conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
         
     | 
| 208 | 
         
            -
                    conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
         
     | 
| 209 | 
         
            -
                    projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
         
     | 
| 210 | 
         
            -
                        `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
         
     | 
| 211 | 
         
            -
                    class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
         
     | 
| 212 | 
         
            -
                        embeddings with the class embeddings.
         
     | 
| 213 | 
         
            -
                    mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
         
     | 
| 214 | 
         
            -
                        Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
         
     | 
| 215 | 
         
            -
                        `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
         
     | 
| 216 | 
         
            -
                        `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
         
     | 
| 217 | 
         
            -
                        otherwise.
         
     | 
| 218 | 
         
            -
                """
         
     | 
| 219 | 
         
            -
             
     | 
| 220 | 
         
            -
                _supports_gradient_checkpointing = True
         
     | 
| 221 | 
         
            -
                _no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
         
     | 
| 222 | 
         
            -
             
     | 
| 223 | 
         
            -
                @register_to_config
         
     | 
| 224 | 
         
            -
                def __init__(
         
     | 
| 225 | 
         
            -
                    self,
         
     | 
| 226 | 
         
            -
                    sample_size: Optional[int] = None,
         
     | 
| 227 | 
         
            -
                    in_channels: int = 4,
         
     | 
| 228 | 
         
            -
                    out_channels: int = 4,
         
     | 
| 229 | 
         
            -
                    conditioning_channels: int = 3,
         
     | 
| 230 | 
         
            -
                    center_input_sample: bool = False,
         
     | 
| 231 | 
         
            -
                    flip_sin_to_cos: bool = True,
         
     | 
| 232 | 
         
            -
                    freq_shift: int = 0,
         
     | 
| 233 | 
         
            -
                    down_block_types: Tuple[str] = (
         
     | 
| 234 | 
         
            -
                        "CrossAttnDownBlock2D",
         
     | 
| 235 | 
         
            -
                        "CrossAttnDownBlock2D",
         
     | 
| 236 | 
         
            -
                        "CrossAttnDownBlock2D",
         
     | 
| 237 | 
         
            -
                        "DownBlock2D",
         
     | 
| 238 | 
         
            -
                    ),
         
     | 
| 239 | 
         
            -
                    mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
         
     | 
| 240 | 
         
            -
                    up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
         
     | 
| 241 | 
         
            -
                    only_cross_attention: Union[bool, Tuple[bool]] = False,
         
     | 
| 242 | 
         
            -
                    block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
         
     | 
| 243 | 
         
            -
                    layers_per_block: Union[int, Tuple[int]] = 2,
         
     | 
| 244 | 
         
            -
                    downsample_padding: int = 1,
         
     | 
| 245 | 
         
            -
                    mid_block_scale_factor: float = 1,
         
     | 
| 246 | 
         
            -
                    dropout: float = 0.0,
         
     | 
| 247 | 
         
            -
                    act_fn: str = "silu",
         
     | 
| 248 | 
         
            -
                    norm_num_groups: Optional[int] = 32,
         
     | 
| 249 | 
         
            -
                    norm_eps: float = 1e-5,
         
     | 
| 250 | 
         
            -
                    cross_attention_dim: Union[int, Tuple[int]] = 1280,
         
     | 
| 251 | 
         
            -
                    transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
         
     | 
| 252 | 
         
            -
                    reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
         
     | 
| 253 | 
         
            -
                    encoder_hid_dim: Optional[int] = None,
         
     | 
| 254 | 
         
            -
                    encoder_hid_dim_type: Optional[str] = None,
         
     | 
| 255 | 
         
            -
                    attention_head_dim: Union[int, Tuple[int]] = 8,
         
     | 
| 256 | 
         
            -
                    num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
         
     | 
| 257 | 
         
            -
                    dual_cross_attention: bool = False,
         
     | 
| 258 | 
         
            -
                    use_linear_projection: bool = False,
         
     | 
| 259 | 
         
            -
                    class_embed_type: Optional[str] = None,
         
     | 
| 260 | 
         
            -
                    addition_embed_type: Optional[str] = None,
         
     | 
| 261 | 
         
            -
                    addition_time_embed_dim: Optional[int] = None,
         
     | 
| 262 | 
         
            -
                    num_class_embeds: Optional[int] = None,
         
     | 
| 263 | 
         
            -
                    upcast_attention: bool = False,
         
     | 
| 264 | 
         
            -
                    resnet_time_scale_shift: str = "default",
         
     | 
| 265 | 
         
            -
                    resnet_skip_time_act: bool = False,
         
     | 
| 266 | 
         
            -
                    resnet_out_scale_factor: float = 1.0,
         
     | 
| 267 | 
         
            -
                    time_embedding_type: str = "positional",
         
     | 
| 268 | 
         
            -
                    time_embedding_dim: Optional[int] = None,
         
     | 
| 269 | 
         
            -
                    time_embedding_act_fn: Optional[str] = None,
         
     | 
| 270 | 
         
            -
                    timestep_post_act: Optional[str] = None,
         
     | 
| 271 | 
         
            -
                    time_cond_proj_dim: Optional[int] = None,
         
     | 
| 272 | 
         
            -
                    conv_in_kernel: int = 3,
         
     | 
| 273 | 
         
            -
                    conv_out_kernel: int = 3,
         
     | 
| 274 | 
         
            -
                    projection_class_embeddings_input_dim: Optional[int] = None,
         
     | 
| 275 | 
         
            -
                    controlnet_conditioning_channel_order: str = "rgb",
         
     | 
| 276 | 
         
            -
                    conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
         
     | 
| 277 | 
         
            -
                    attention_type: str = "default",
         
     | 
| 278 | 
         
            -
                    class_embeddings_concat: bool = False,
         
     | 
| 279 | 
         
            -
                    mid_block_only_cross_attention: Optional[bool] = None,
         
     | 
| 280 | 
         
            -
                    cross_attention_norm: Optional[str] = None,
         
     | 
| 281 | 
         
            -
                    addition_embed_type_num_heads: int = 64,
         
     | 
| 282 | 
         
            -
                    extract_self_attention_kv: bool = True,
         
     | 
| 283 | 
         
            -
                    extract_cross_attention_kv: bool = True,
         
     | 
| 284 | 
         
            -
                ):
         
     | 
| 285 | 
         
            -
                    super().__init__()
         
     | 
| 286 | 
         
            -
             
     | 
| 287 | 
         
            -
                    self.sample_size = sample_size
         
     | 
| 288 | 
         
            -
             
     | 
| 289 | 
         
            -
                    if num_attention_heads is not None:
         
     | 
| 290 | 
         
            -
                        raise ValueError(
         
     | 
| 291 | 
         
            -
                            "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
         
     | 
| 292 | 
         
            -
                        )
         
     | 
| 293 | 
         
            -
             
     | 
| 294 | 
         
            -
                    # If `num_attention_heads` is not defined (which is the case for most models)
         
     | 
| 295 | 
         
            -
                    # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
         
     | 
| 296 | 
         
            -
                    # The reason for this behavior is to correct for incorrectly named variables that were introduced
         
     | 
| 297 | 
         
            -
                    # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
         
     | 
| 298 | 
         
            -
                    # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
         
     | 
| 299 | 
         
            -
                    # which is why we correct for the naming here.
         
     | 
| 300 | 
         
            -
                    num_attention_heads = num_attention_heads or attention_head_dim
         
     | 
| 301 | 
         
            -
             
     | 
| 302 | 
         
            -
                    # Check inputs
         
     | 
| 303 | 
         
            -
                    self._check_config(
         
     | 
| 304 | 
         
            -
                        down_block_types=down_block_types,
         
     | 
| 305 | 
         
            -
                        up_block_types=up_block_types,
         
     | 
| 306 | 
         
            -
                        only_cross_attention=only_cross_attention,
         
     | 
| 307 | 
         
            -
                        block_out_channels=block_out_channels,
         
     | 
| 308 | 
         
            -
                        layers_per_block=layers_per_block,
         
     | 
| 309 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 310 | 
         
            -
                        transformer_layers_per_block=transformer_layers_per_block,
         
     | 
| 311 | 
         
            -
                        reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
         
     | 
| 312 | 
         
            -
                        attention_head_dim=attention_head_dim,
         
     | 
| 313 | 
         
            -
                        num_attention_heads=num_attention_heads,
         
     | 
| 314 | 
         
            -
                    )
         
     | 
| 315 | 
         
            -
             
     | 
| 316 | 
         
            -
                    # input
         
     | 
| 317 | 
         
            -
                    conv_in_padding = (conv_in_kernel - 1) // 2
         
     | 
| 318 | 
         
            -
                    self.conv_in = nn.Conv2d(
         
     | 
| 319 | 
         
            -
                        in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
         
     | 
| 320 | 
         
            -
                    )
         
     | 
| 321 | 
         
            -
             
     | 
| 322 | 
         
            -
                    # time
         
     | 
| 323 | 
         
            -
                    time_embed_dim, timestep_input_dim = self._set_time_proj(
         
     | 
| 324 | 
         
            -
                        time_embedding_type,
         
     | 
| 325 | 
         
            -
                        block_out_channels=block_out_channels,
         
     | 
| 326 | 
         
            -
                        flip_sin_to_cos=flip_sin_to_cos,
         
     | 
| 327 | 
         
            -
                        freq_shift=freq_shift,
         
     | 
| 328 | 
         
            -
                        time_embedding_dim=time_embedding_dim,
         
     | 
| 329 | 
         
            -
                    )
         
     | 
| 330 | 
         
            -
             
     | 
| 331 | 
         
            -
                    self.time_embedding = TimestepEmbedding(
         
     | 
| 332 | 
         
            -
                        timestep_input_dim,
         
     | 
| 333 | 
         
            -
                        time_embed_dim,
         
     | 
| 334 | 
         
            -
                        act_fn=act_fn,
         
     | 
| 335 | 
         
            -
                        post_act_fn=timestep_post_act,
         
     | 
| 336 | 
         
            -
                        cond_proj_dim=time_cond_proj_dim,
         
     | 
| 337 | 
         
            -
                    )
         
     | 
| 338 | 
         
            -
             
     | 
| 339 | 
         
            -
                    self._set_encoder_hid_proj(
         
     | 
| 340 | 
         
            -
                        encoder_hid_dim_type,
         
     | 
| 341 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 342 | 
         
            -
                        encoder_hid_dim=encoder_hid_dim,
         
     | 
| 343 | 
         
            -
                    )
         
     | 
| 344 | 
         
            -
             
     | 
| 345 | 
         
            -
                    # class embedding
         
     | 
| 346 | 
         
            -
                    self._set_class_embedding(
         
     | 
| 347 | 
         
            -
                        class_embed_type,
         
     | 
| 348 | 
         
            -
                        act_fn=act_fn,
         
     | 
| 349 | 
         
            -
                        num_class_embeds=num_class_embeds,
         
     | 
| 350 | 
         
            -
                        projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
         
     | 
| 351 | 
         
            -
                        time_embed_dim=time_embed_dim,
         
     | 
| 352 | 
         
            -
                        timestep_input_dim=timestep_input_dim,
         
     | 
| 353 | 
         
            -
                    )
         
     | 
| 354 | 
         
            -
             
     | 
| 355 | 
         
            -
                    self._set_add_embedding(
         
     | 
| 356 | 
         
            -
                        addition_embed_type,
         
     | 
| 357 | 
         
            -
                        addition_embed_type_num_heads=addition_embed_type_num_heads,
         
     | 
| 358 | 
         
            -
                        addition_time_embed_dim=addition_time_embed_dim,
         
     | 
| 359 | 
         
            -
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 360 | 
         
            -
                        encoder_hid_dim=encoder_hid_dim,
         
     | 
| 361 | 
         
            -
                        flip_sin_to_cos=flip_sin_to_cos,
         
     | 
| 362 | 
         
            -
                        freq_shift=freq_shift,
         
     | 
| 363 | 
         
            -
                        projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
         
     | 
| 364 | 
         
            -
                        time_embed_dim=time_embed_dim,
         
     | 
| 365 | 
         
            -
                    )
         
     | 
| 366 | 
         
            -
             
     | 
| 367 | 
         
            -
                    if time_embedding_act_fn is None:
         
     | 
| 368 | 
         
            -
                        self.time_embed_act = None
         
     | 
| 369 | 
         
            -
                    else:
         
     | 
| 370 | 
         
            -
                        self.time_embed_act = get_activation(time_embedding_act_fn)
         
     | 
| 371 | 
         
            -
             
     | 
| 372 | 
         
            -
                    # control net conditioning embedding
         
     | 
| 373 | 
         
            -
                    self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
         
     | 
| 374 | 
         
            -
                        conditioning_embedding_channels=block_out_channels[0],
         
     | 
| 375 | 
         
            -
                        block_out_channels=conditioning_embedding_out_channels,
         
     | 
| 376 | 
         
            -
                        conditioning_channels=conditioning_channels,
         
     | 
| 377 | 
         
            -
                    )
         
     | 
| 378 | 
         
            -
             
     | 
| 379 | 
         
            -
                    self.down_blocks = nn.ModuleList([])
         
     | 
| 380 | 
         
            -
                    self.controlnet_down_blocks = nn.ModuleList([])
         
     | 
| 381 | 
         
            -
                    self.up_blocks = nn.ModuleList([])
         
     | 
| 382 | 
         
            -
                    # self.controlnet_up_blocks = nn.ModuleList([])
         
     | 
| 383 | 
         
            -
             
     | 
| 384 | 
         
            -
                    if isinstance(only_cross_attention, bool):
         
     | 
| 385 | 
         
            -
                        if mid_block_only_cross_attention is None:
         
     | 
| 386 | 
         
            -
                            mid_block_only_cross_attention = only_cross_attention
         
     | 
| 387 | 
         
            -
             
     | 
| 388 | 
         
            -
                        only_cross_attention = [only_cross_attention] * len(down_block_types)
         
     | 
| 389 | 
         
            -
             
     | 
| 390 | 
         
            -
                    if mid_block_only_cross_attention is None:
         
     | 
| 391 | 
         
            -
                        mid_block_only_cross_attention = False
         
     | 
| 392 | 
         
            -
             
     | 
| 393 | 
         
            -
                    if isinstance(num_attention_heads, int):
         
     | 
| 394 | 
         
            -
                        num_attention_heads = (num_attention_heads,) * len(down_block_types)
         
     | 
| 395 | 
         
            -
             
     | 
| 396 | 
         
            -
                    if isinstance(attention_head_dim, int):
         
     | 
| 397 | 
         
            -
                        attention_head_dim = (attention_head_dim,) * len(down_block_types)
         
     | 
| 398 | 
         
            -
             
     | 
| 399 | 
         
            -
                    if isinstance(cross_attention_dim, int):
         
     | 
| 400 | 
         
            -
                        cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
         
     | 
| 401 | 
         
            -
             
     | 
| 402 | 
         
            -
                    if isinstance(layers_per_block, int):
         
     | 
| 403 | 
         
            -
                        layers_per_block = [layers_per_block] * len(down_block_types)
         
     | 
| 404 | 
         
            -
             
     | 
| 405 | 
         
            -
                    if isinstance(transformer_layers_per_block, int):
         
     | 
| 406 | 
         
            -
                        transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
         
     | 
| 407 | 
         
            -
             
     | 
| 408 | 
         
            -
                    if class_embeddings_concat:
         
     | 
| 409 | 
         
            -
                        # The time embeddings are concatenated with the class embeddings. The dimension of the
         
     | 
| 410 | 
         
            -
                        # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
         
     | 
| 411 | 
         
            -
                        # regular time embeddings
         
     | 
| 412 | 
         
            -
                        blocks_time_embed_dim = time_embed_dim * 2
         
     | 
| 413 | 
         
            -
                    else:
         
     | 
| 414 | 
         
            -
                        blocks_time_embed_dim = time_embed_dim
         
     | 
| 415 | 
         
            -
             
     | 
| 416 | 
         
            -
                    # down
         
     | 
| 417 | 
         
            -
                    output_channel = block_out_channels[0]
         
     | 
| 418 | 
         
            -
             
     | 
| 419 | 
         
            -
                    controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
         
     | 
| 420 | 
         
            -
                    controlnet_block = zero_module(controlnet_block)
         
     | 
| 421 | 
         
            -
                    self.controlnet_down_blocks.append(controlnet_block)
         
     | 
| 422 | 
         
            -
             
     | 
| 423 | 
         
            -
                    for i, down_block_type in enumerate(down_block_types):
         
     | 
| 424 | 
         
            -
                        input_channel = output_channel
         
     | 
| 425 | 
         
            -
                        output_channel = block_out_channels[i]
         
     | 
| 426 | 
         
            -
                        is_final_block = i == len(block_out_channels) - 1
         
     | 
| 427 | 
         
            -
             
     | 
| 428 | 
         
            -
                        down_block = get_down_block(
         
     | 
| 429 | 
         
            -
                            down_block_type,
         
     | 
| 430 | 
         
            -
                            num_layers=layers_per_block[i],
         
     | 
| 431 | 
         
            -
                            transformer_layers_per_block=transformer_layers_per_block[i],
         
     | 
| 432 | 
         
            -
                            in_channels=input_channel,
         
     | 
| 433 | 
         
            -
                            out_channels=output_channel,
         
     | 
| 434 | 
         
            -
                            temb_channels=blocks_time_embed_dim,
         
     | 
| 435 | 
         
            -
                            add_downsample=not is_final_block,
         
     | 
| 436 | 
         
            -
                            resnet_eps=norm_eps,
         
     | 
| 437 | 
         
            -
                            resnet_act_fn=act_fn,
         
     | 
| 438 | 
         
            -
                            resnet_groups=norm_num_groups,
         
     | 
| 439 | 
         
            -
                            cross_attention_dim=cross_attention_dim[i],
         
     | 
| 440 | 
         
            -
                            num_attention_heads=num_attention_heads[i],
         
     | 
| 441 | 
         
            -
                            downsample_padding=downsample_padding,
         
     | 
| 442 | 
         
            -
                            dual_cross_attention=dual_cross_attention,
         
     | 
| 443 | 
         
            -
                            use_linear_projection=use_linear_projection,
         
     | 
| 444 | 
         
            -
                            only_cross_attention=only_cross_attention[i],
         
     | 
| 445 | 
         
            -
                            upcast_attention=upcast_attention,
         
     | 
| 446 | 
         
            -
                            resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 447 | 
         
            -
                            attention_type=attention_type,
         
     | 
| 448 | 
         
            -
                            resnet_skip_time_act=resnet_skip_time_act,
         
     | 
| 449 | 
         
            -
                            resnet_out_scale_factor=resnet_out_scale_factor,
         
     | 
| 450 | 
         
            -
                            cross_attention_norm=cross_attention_norm,
         
     | 
| 451 | 
         
            -
                            attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
         
     | 
| 452 | 
         
            -
                            dropout=dropout,
         
     | 
| 453 | 
         
            -
                            extract_self_attention_kv=extract_self_attention_kv,
         
     | 
| 454 | 
         
            -
                            extract_cross_attention_kv=extract_cross_attention_kv,
         
     | 
| 455 | 
         
            -
                        )
         
     | 
| 456 | 
         
            -
                        self.down_blocks.append(down_block)
         
     | 
| 457 | 
         
            -
             
     | 
| 458 | 
         
            -
                        for _ in range(layers_per_block):
         
     | 
| 459 | 
         
            -
                            controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
         
     | 
| 460 | 
         
            -
                            controlnet_block = zero_module(controlnet_block)
         
     | 
| 461 | 
         
            -
                            self.controlnet_down_blocks.append(controlnet_block)
         
     | 
| 462 | 
         
            -
             
     | 
| 463 | 
         
            -
                        if not is_final_block:
         
     | 
| 464 | 
         
            -
                            controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
         
     | 
| 465 | 
         
            -
                            controlnet_block = zero_module(controlnet_block)
         
     | 
| 466 | 
         
            -
                            self.controlnet_down_blocks.append(controlnet_block)
         
     | 
| 467 | 
         
            -
             
     | 
| 468 | 
         
            -
                    # mid
         
     | 
| 469 | 
         
            -
                    mid_block_channel = block_out_channels[-1]
         
     | 
| 470 | 
         
            -
             
     | 
| 471 | 
         
            -
                    controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
         
     | 
| 472 | 
         
            -
                    controlnet_block = zero_module(controlnet_block)
         
     | 
| 473 | 
         
            -
                    self.controlnet_mid_block = controlnet_block
         
     | 
| 474 | 
         
            -
             
     | 
| 475 | 
         
            -
                    self.mid_block = get_mid_block(
         
     | 
| 476 | 
         
            -
                        mid_block_type,
         
     | 
| 477 | 
         
            -
                        temb_channels=blocks_time_embed_dim,
         
     | 
| 478 | 
         
            -
                        in_channels=block_out_channels[-1],
         
     | 
| 479 | 
         
            -
                        resnet_eps=norm_eps,
         
     | 
| 480 | 
         
            -
                        resnet_act_fn=act_fn,
         
     | 
| 481 | 
         
            -
                        resnet_groups=norm_num_groups,
         
     | 
| 482 | 
         
            -
                        output_scale_factor=mid_block_scale_factor,
         
     | 
| 483 | 
         
            -
                        transformer_layers_per_block=transformer_layers_per_block[-1],
         
     | 
| 484 | 
         
            -
                        num_attention_heads=num_attention_heads[-1],
         
     | 
| 485 | 
         
            -
                        cross_attention_dim=cross_attention_dim[-1],
         
     | 
| 486 | 
         
            -
                        dual_cross_attention=dual_cross_attention,
         
     | 
| 487 | 
         
            -
                        use_linear_projection=use_linear_projection,
         
     | 
| 488 | 
         
            -
                        mid_block_only_cross_attention=mid_block_only_cross_attention,
         
     | 
| 489 | 
         
            -
                        upcast_attention=upcast_attention,
         
     | 
| 490 | 
         
            -
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 491 | 
         
            -
                        attention_type=attention_type,
         
     | 
| 492 | 
         
            -
                        resnet_skip_time_act=resnet_skip_time_act,
         
     | 
| 493 | 
         
            -
                        cross_attention_norm=cross_attention_norm,
         
     | 
| 494 | 
         
            -
                        attention_head_dim=attention_head_dim[-1],
         
     | 
| 495 | 
         
            -
                        dropout=dropout,
         
     | 
| 496 | 
         
            -
                        extract_self_attention_kv=extract_self_attention_kv,
         
     | 
| 497 | 
         
            -
                        extract_cross_attention_kv=extract_cross_attention_kv,
         
     | 
| 498 | 
         
            -
                    )
         
     | 
| 499 | 
         
            -
             
     | 
| 500 | 
         
            -
                    # count how many layers upsample the images
         
     | 
| 501 | 
         
            -
                    self.num_upsamplers = 0
         
     | 
| 502 | 
         
            -
             
     | 
| 503 | 
         
            -
                    # up
         
     | 
| 504 | 
         
            -
                    reversed_block_out_channels = list(reversed(block_out_channels))
         
     | 
| 505 | 
         
            -
                    reversed_num_attention_heads = list(reversed(num_attention_heads))
         
     | 
| 506 | 
         
            -
                    reversed_layers_per_block = list(reversed(layers_per_block))
         
     | 
| 507 | 
         
            -
                    reversed_cross_attention_dim = list(reversed(cross_attention_dim))
         
     | 
| 508 | 
         
            -
                    reversed_transformer_layers_per_block = (
         
     | 
| 509 | 
         
            -
                        list(reversed(transformer_layers_per_block))
         
     | 
| 510 | 
         
            -
                        if reverse_transformer_layers_per_block is None
         
     | 
| 511 | 
         
            -
                        else reverse_transformer_layers_per_block
         
     | 
| 512 | 
         
            -
                    )
         
     | 
| 513 | 
         
            -
                    only_cross_attention = list(reversed(only_cross_attention))
         
     | 
| 514 | 
         
            -
             
     | 
| 515 | 
         
            -
                    output_channel = reversed_block_out_channels[0]
         
     | 
| 516 | 
         
            -
                    for i, up_block_type in enumerate(up_block_types):
         
     | 
| 517 | 
         
            -
                        is_final_block = i == len(block_out_channels) - 1
         
     | 
| 518 | 
         
            -
             
     | 
| 519 | 
         
            -
                        prev_output_channel = output_channel
         
     | 
| 520 | 
         
            -
                        output_channel = reversed_block_out_channels[i]
         
     | 
| 521 | 
         
            -
                        input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
         
     | 
| 522 | 
         
            -
             
     | 
| 523 | 
         
            -
                        # add upsample block for all BUT final layer
         
     | 
| 524 | 
         
            -
                        if not is_final_block:
         
     | 
| 525 | 
         
            -
                            add_upsample = True
         
     | 
| 526 | 
         
            -
                            self.num_upsamplers += 1
         
     | 
| 527 | 
         
            -
                        else:
         
     | 
| 528 | 
         
            -
                            add_upsample = False
         
     | 
| 529 | 
         
            -
             
     | 
| 530 | 
         
            -
                        up_block = get_up_block(
         
     | 
| 531 | 
         
            -
                            up_block_type,
         
     | 
| 532 | 
         
            -
                            num_layers=reversed_layers_per_block[i] + 1,
         
     | 
| 533 | 
         
            -
                            transformer_layers_per_block=reversed_transformer_layers_per_block[i],
         
     | 
| 534 | 
         
            -
                            in_channels=input_channel,
         
     | 
| 535 | 
         
            -
                            out_channels=output_channel,
         
     | 
| 536 | 
         
            -
                            prev_output_channel=prev_output_channel,
         
     | 
| 537 | 
         
            -
                            temb_channels=blocks_time_embed_dim,
         
     | 
| 538 | 
         
            -
                            add_upsample=add_upsample,
         
     | 
| 539 | 
         
            -
                            resnet_eps=norm_eps,
         
     | 
| 540 | 
         
            -
                            resnet_act_fn=act_fn,
         
     | 
| 541 | 
         
            -
                            resolution_idx=i,
         
     | 
| 542 | 
         
            -
                            resnet_groups=norm_num_groups,
         
     | 
| 543 | 
         
            -
                            cross_attention_dim=reversed_cross_attention_dim[i],
         
     | 
| 544 | 
         
            -
                            num_attention_heads=reversed_num_attention_heads[i],
         
     | 
| 545 | 
         
            -
                            dual_cross_attention=dual_cross_attention,
         
     | 
| 546 | 
         
            -
                            use_linear_projection=use_linear_projection,
         
     | 
| 547 | 
         
            -
                            only_cross_attention=only_cross_attention[i],
         
     | 
| 548 | 
         
            -
                            upcast_attention=upcast_attention,
         
     | 
| 549 | 
         
            -
                            resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 550 | 
         
            -
                            attention_type=attention_type,
         
     | 
| 551 | 
         
            -
                            resnet_skip_time_act=resnet_skip_time_act,
         
     | 
| 552 | 
         
            -
                            resnet_out_scale_factor=resnet_out_scale_factor,
         
     | 
| 553 | 
         
            -
                            cross_attention_norm=cross_attention_norm,
         
     | 
| 554 | 
         
            -
                            attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
         
     | 
| 555 | 
         
            -
                            dropout=dropout,
         
     | 
| 556 | 
         
            -
                            extract_self_attention_kv=extract_self_attention_kv,
         
     | 
| 557 | 
         
            -
                            extract_cross_attention_kv=extract_cross_attention_kv,
         
     | 
| 558 | 
         
            -
                        )
         
     | 
| 559 | 
         
            -
                        self.up_blocks.append(up_block)
         
     | 
| 560 | 
         
            -
                        prev_output_channel = output_channel
         
     | 
| 561 | 
         
            -
             
     | 
| 562 | 
         
            -
                        # for _ in range(layers_per_block):
         
     | 
| 563 | 
         
            -
                        #     controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
         
     | 
| 564 | 
         
            -
                        #     controlnet_block = zero_module(controlnet_block)
         
     | 
| 565 | 
         
            -
                        #     self.controlnet_up_blocks.append(controlnet_block)
         
     | 
| 566 | 
         
            -
             
     | 
| 567 | 
         
            -
                        # if not is_final_block:
         
     | 
| 568 | 
         
            -
                        #     controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
         
     | 
| 569 | 
         
            -
                        #     controlnet_block = zero_module(controlnet_block)
         
     | 
| 570 | 
         
            -
                        #     self.controlnet_up_blocks.append(controlnet_block)
         
     | 
| 571 | 
         
            -
             
     | 
| 572 | 
         
            -
                    # out
         
     | 
| 573 | 
         
            -
                    if norm_num_groups is not None:
         
     | 
| 574 | 
         
            -
                        self.conv_norm_out = nn.GroupNorm(
         
     | 
| 575 | 
         
            -
                            num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
         
     | 
| 576 | 
         
            -
                        )
         
     | 
| 577 | 
         
            -
             
     | 
| 578 | 
         
            -
                        self.conv_act = get_activation(act_fn)
         
     | 
| 579 | 
         
            -
             
     | 
| 580 | 
         
            -
                    else:
         
     | 
| 581 | 
         
            -
                        self.conv_norm_out = None
         
     | 
| 582 | 
         
            -
                        self.conv_act = None
         
     | 
| 583 | 
         
            -
             
     | 
| 584 | 
         
            -
                    conv_out_padding = (conv_out_kernel - 1) // 2
         
     | 
| 585 | 
         
            -
                    self.conv_out = nn.Conv2d(
         
     | 
| 586 | 
         
            -
                        block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
         
     | 
| 587 | 
         
            -
                    )
         
     | 
| 588 | 
         
            -
             
     | 
| 589 | 
         
            -
                    self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
         
     | 
| 590 | 
         
            -
             
     | 
| 591 | 
         
            -
                @classmethod
         
     | 
| 592 | 
         
            -
                def from_unet(
         
     | 
| 593 | 
         
            -
                    cls,
         
     | 
| 594 | 
         
            -
                    unet: UNet2DConditionModel,
         
     | 
| 595 | 
         
            -
                    controlnet_conditioning_channel_order: str = "rgb",
         
     | 
| 596 | 
         
            -
                    conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
         
     | 
| 597 | 
         
            -
                    load_weights_from_unet: bool = True,
         
     | 
| 598 | 
         
            -
                    conditioning_channels: int = 3,
         
     | 
| 599 | 
         
            -
                    extract_self_attention_kv: bool = True,
         
     | 
| 600 | 
         
            -
                    extract_cross_attention_kv: bool = True,
         
     | 
| 601 | 
         
            -
                ):
         
     | 
| 602 | 
         
            -
                    r"""
         
     | 
| 603 | 
         
            -
                    Instantiate a [`ExtractKVUNet2DConditionModel`] from [`UNet2DConditionModel`].
         
     | 
| 604 | 
         
            -
             
     | 
| 605 | 
         
            -
                    Parameters:
         
     | 
| 606 | 
         
            -
                        unet (`UNet2DConditionModel`):
         
     | 
| 607 | 
         
            -
                            The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
         
     | 
| 608 | 
         
            -
                            where applicable.
         
     | 
| 609 | 
         
            -
                    """
         
     | 
| 610 | 
         
            -
                    transformer_layers_per_block = (
         
     | 
| 611 | 
         
            -
                        unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
         
     | 
| 612 | 
         
            -
                    )
         
     | 
| 613 | 
         
            -
                    encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
         
     | 
| 614 | 
         
            -
                    encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
         
     | 
| 615 | 
         
            -
                    addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
         
     | 
| 616 | 
         
            -
                    addition_time_embed_dim = (
         
     | 
| 617 | 
         
            -
                        unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
         
     | 
| 618 | 
         
            -
                    )
         
     | 
| 619 | 
         
            -
                    down_block_types = (
         
     | 
| 620 | 
         
            -
                        'DownBlock2D', 'ExtractKVCrossAttnDownBlock2D', 'ExtractKVCrossAttnDownBlock2D'
         
     | 
| 621 | 
         
            -
                    )
         
     | 
| 622 | 
         
            -
                    mid_block_type = 'ExtractKVUNetMidBlock2DCrossAttn'
         
     | 
| 623 | 
         
            -
                    up_block_types = (
         
     | 
| 624 | 
         
            -
                        'ExtractKVCrossAttnUpBlock2D', 'ExtractKVCrossAttnUpBlock2D', 'UpBlock2D'
         
     | 
| 625 | 
         
            -
                    )
         
     | 
| 626 | 
         
            -
             
     | 
| 627 | 
         
            -
                    refnet = cls(
         
     | 
| 628 | 
         
            -
                        down_block_types=down_block_types,
         
     | 
| 629 | 
         
            -
                        up_block_types=up_block_types,
         
     | 
| 630 | 
         
            -
                        mid_block_type=mid_block_type,
         
     | 
| 631 | 
         
            -
                        encoder_hid_dim=encoder_hid_dim,
         
     | 
| 632 | 
         
            -
                        encoder_hid_dim_type=encoder_hid_dim_type,
         
     | 
| 633 | 
         
            -
                        addition_embed_type=addition_embed_type,
         
     | 
| 634 | 
         
            -
                        addition_time_embed_dim=addition_time_embed_dim,
         
     | 
| 635 | 
         
            -
                        transformer_layers_per_block=transformer_layers_per_block,
         
     | 
| 636 | 
         
            -
                        in_channels=unet.config.in_channels,
         
     | 
| 637 | 
         
            -
                        flip_sin_to_cos=unet.config.flip_sin_to_cos,
         
     | 
| 638 | 
         
            -
                        freq_shift=unet.config.freq_shift,
         
     | 
| 639 | 
         
            -
                        only_cross_attention=unet.config.only_cross_attention,
         
     | 
| 640 | 
         
            -
                        block_out_channels=unet.config.block_out_channels,
         
     | 
| 641 | 
         
            -
                        layers_per_block=unet.config.layers_per_block,
         
     | 
| 642 | 
         
            -
                        downsample_padding=unet.config.downsample_padding,
         
     | 
| 643 | 
         
            -
                        mid_block_scale_factor=unet.config.mid_block_scale_factor,
         
     | 
| 644 | 
         
            -
                        act_fn=unet.config.act_fn,
         
     | 
| 645 | 
         
            -
                        norm_num_groups=unet.config.norm_num_groups,
         
     | 
| 646 | 
         
            -
                        norm_eps=unet.config.norm_eps,
         
     | 
| 647 | 
         
            -
                        cross_attention_dim=unet.config.cross_attention_dim,
         
     | 
| 648 | 
         
            -
                        attention_head_dim=unet.config.attention_head_dim,
         
     | 
| 649 | 
         
            -
                        num_attention_heads=unet.config.num_attention_heads,
         
     | 
| 650 | 
         
            -
                        use_linear_projection=unet.config.use_linear_projection,
         
     | 
| 651 | 
         
            -
                        class_embed_type=unet.config.class_embed_type,
         
     | 
| 652 | 
         
            -
                        num_class_embeds=unet.config.num_class_embeds,
         
     | 
| 653 | 
         
            -
                        upcast_attention=unet.config.upcast_attention,
         
     | 
| 654 | 
         
            -
                        resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
         
     | 
| 655 | 
         
            -
                        projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
         
     | 
| 656 | 
         
            -
                        mid_block_type=unet.config.mid_block_type,
         
     | 
| 657 | 
         
            -
                        controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
         
     | 
| 658 | 
         
            -
                        conditioning_embedding_out_channels=conditioning_embedding_out_channels,
         
     | 
| 659 | 
         
            -
                        conditioning_channels=conditioning_channels,
         
     | 
| 660 | 
         
            -
                        extract_self_attention_kv=extract_self_attention_kv,
         
     | 
| 661 | 
         
            -
                        extract_cross_attention_kv=extract_cross_attention_kv,
         
     | 
| 662 | 
         
            -
                    )
         
     | 
| 663 | 
         
            -
             
     | 
| 664 | 
         
            -
                    if load_weights_from_unet:
         
     | 
| 665 | 
         
            -
                        def verify_load(missing_keys, unexpected_keys):
         
     | 
| 666 | 
         
            -
                            if len(unexpected_keys) > 0:
         
     | 
| 667 | 
         
            -
                                raise RuntimeError(f"Found unexpected keys in state dict while loading the encoder:\n{unexpected_keys}")
         
     | 
| 668 | 
         
            -
                            
         
     | 
| 669 | 
         
            -
                            filtered_missing = [key for key in missing_keys if not "extract_kv" in key]
         
     | 
| 670 | 
         
            -
                            if len(filtered_missing) > 0:
         
     | 
| 671 | 
         
            -
                                raise RuntimeError(f"Missing keys in state dict while loading the encoder:\n{filtered_missing}")
         
     | 
| 672 | 
         
            -
                        refnet.conv_in.load_state_dict(unet.conv_in.state_dict())
         
     | 
| 673 | 
         
            -
                        refnet.time_proj.load_state_dict(unet.time_proj.state_dict())
         
     | 
| 674 | 
         
            -
                        refnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
         
     | 
| 675 | 
         
            -
             
     | 
| 676 | 
         
            -
                        if refnet.class_embedding:
         
     | 
| 677 | 
         
            -
                            refnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
         
     | 
| 678 | 
         
            -
             
     | 
| 679 | 
         
            -
                        if hasattr(refnet, "add_embedding"):
         
     | 
| 680 | 
         
            -
                            refnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
         
     | 
| 681 | 
         
            -
             
     | 
| 682 | 
         
            -
                        missing_keys, unexpected_keys = refnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False)
         
     | 
| 683 | 
         
            -
                        verify_load(missing_keys, unexpected_keys)
         
     | 
| 684 | 
         
            -
                        missing_keys, unexpected_keys = refnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False)
         
     | 
| 685 | 
         
            -
                        verify_load(missing_keys, unexpected_keys)
         
     | 
| 686 | 
         
            -
                        missing_keys, unexpected_keys = refnet.up_blocks.load_state_dict(unet.up_blocks.state_dict(), strict=False)
         
     | 
| 687 | 
         
            -
                        verify_load(missing_keys, unexpected_keys)
         
     | 
| 688 | 
         
            -
             
     | 
| 689 | 
         
            -
                    return refnet
         
     | 
| 690 | 
         
            -
                
         
     | 
| 691 | 
         
            -
                def _check_config(
         
     | 
| 692 | 
         
            -
                    self,
         
     | 
| 693 | 
         
            -
                    down_block_types: Tuple[str],
         
     | 
| 694 | 
         
            -
                    up_block_types: Tuple[str],
         
     | 
| 695 | 
         
            -
                    only_cross_attention: Union[bool, Tuple[bool]],
         
     | 
| 696 | 
         
            -
                    block_out_channels: Tuple[int],
         
     | 
| 697 | 
         
            -
                    layers_per_block: Union[int, Tuple[int]],
         
     | 
| 698 | 
         
            -
                    cross_attention_dim: Union[int, Tuple[int]],
         
     | 
| 699 | 
         
            -
                    transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
         
     | 
| 700 | 
         
            -
                    reverse_transformer_layers_per_block: bool,
         
     | 
| 701 | 
         
            -
                    attention_head_dim: int,
         
     | 
| 702 | 
         
            -
                    num_attention_heads: Optional[Union[int, Tuple[int]]],
         
     | 
| 703 | 
         
            -
                ):
         
     | 
| 704 | 
         
            -
                    assert "ExtractKVCrossAttnDownBlock2D" in down_block_types, "ExtractKVUNet must have ExtractKVCrossAttnDownBlock2D."
         
     | 
| 705 | 
         
            -
                    assert "ExtractKVCrossAttnUpBlock2D" in up_block_types, "ExtractKVUNet must have ExtractKVCrossAttnUpBlock2D."
         
     | 
| 706 | 
         
            -
             
     | 
| 707 | 
         
            -
                    if len(down_block_types) != len(up_block_types):
         
     | 
| 708 | 
         
            -
                        raise ValueError(
         
     | 
| 709 | 
         
            -
                            f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
         
     | 
| 710 | 
         
            -
                        )
         
     | 
| 711 | 
         
            -
             
     | 
| 712 | 
         
            -
                    if len(block_out_channels) != len(down_block_types):
         
     | 
| 713 | 
         
            -
                        raise ValueError(
         
     | 
| 714 | 
         
            -
                            f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
         
     | 
| 715 | 
         
            -
                        )
         
     | 
| 716 | 
         
            -
             
     | 
| 717 | 
         
            -
                    if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
         
     | 
| 718 | 
         
            -
                        raise ValueError(
         
     | 
| 719 | 
         
            -
                            f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
         
     | 
| 720 | 
         
            -
                        )
         
     | 
| 721 | 
         
            -
             
     | 
| 722 | 
         
            -
                    if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
         
     | 
| 723 | 
         
            -
                        raise ValueError(
         
     | 
| 724 | 
         
            -
                            f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
         
     | 
| 725 | 
         
            -
                        )
         
     | 
| 726 | 
         
            -
             
     | 
| 727 | 
         
            -
                    if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
         
     | 
| 728 | 
         
            -
                        raise ValueError(
         
     | 
| 729 | 
         
            -
                            f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
         
     | 
| 730 | 
         
            -
                        )
         
     | 
| 731 | 
         
            -
             
     | 
| 732 | 
         
            -
                    if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
         
     | 
| 733 | 
         
            -
                        raise ValueError(
         
     | 
| 734 | 
         
            -
                            f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
         
     | 
| 735 | 
         
            -
                        )
         
     | 
| 736 | 
         
            -
             
     | 
| 737 | 
         
            -
                    if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
         
     | 
| 738 | 
         
            -
                        raise ValueError(
         
     | 
| 739 | 
         
            -
                            f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
         
     | 
| 740 | 
         
            -
                        )
         
     | 
| 741 | 
         
            -
                    if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
         
     | 
| 742 | 
         
            -
                        for layer_number_per_block in transformer_layers_per_block:
         
     | 
| 743 | 
         
            -
                            if isinstance(layer_number_per_block, list):
         
     | 
| 744 | 
         
            -
                                raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
         
     | 
| 745 | 
         
            -
             
     | 
| 746 | 
         
            -
                def _set_time_proj(
         
     | 
| 747 | 
         
            -
                    self,
         
     | 
| 748 | 
         
            -
                    time_embedding_type: str,
         
     | 
| 749 | 
         
            -
                    block_out_channels: int,
         
     | 
| 750 | 
         
            -
                    flip_sin_to_cos: bool,
         
     | 
| 751 | 
         
            -
                    freq_shift: float,
         
     | 
| 752 | 
         
            -
                    time_embedding_dim: int,
         
     | 
| 753 | 
         
            -
                ) -> Tuple[int, int]:
         
     | 
| 754 | 
         
            -
                    if time_embedding_type == "fourier":
         
     | 
| 755 | 
         
            -
                        time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
         
     | 
| 756 | 
         
            -
                        if time_embed_dim % 2 != 0:
         
     | 
| 757 | 
         
            -
                            raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
         
     | 
| 758 | 
         
            -
                        self.time_proj = GaussianFourierProjection(
         
     | 
| 759 | 
         
            -
                            time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
         
     | 
| 760 | 
         
            -
                        )
         
     | 
| 761 | 
         
            -
                        timestep_input_dim = time_embed_dim
         
     | 
| 762 | 
         
            -
                    elif time_embedding_type == "positional":
         
     | 
| 763 | 
         
            -
                        time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
         
     | 
| 764 | 
         
            -
             
     | 
| 765 | 
         
            -
                        self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
         
     | 
| 766 | 
         
            -
                        timestep_input_dim = block_out_channels[0]
         
     | 
| 767 | 
         
            -
                    else:
         
     | 
| 768 | 
         
            -
                        raise ValueError(
         
     | 
| 769 | 
         
            -
                            f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
         
     | 
| 770 | 
         
            -
                        )
         
     | 
| 771 | 
         
            -
             
     | 
| 772 | 
         
            -
                    return time_embed_dim, timestep_input_dim
         
     | 
| 773 | 
         
            -
             
     | 
| 774 | 
         
            -
                def _set_encoder_hid_proj(
         
     | 
| 775 | 
         
            -
                    self,
         
     | 
| 776 | 
         
            -
                    encoder_hid_dim_type: Optional[str],
         
     | 
| 777 | 
         
            -
                    cross_attention_dim: Union[int, Tuple[int]],
         
     | 
| 778 | 
         
            -
                    encoder_hid_dim: Optional[int],
         
     | 
| 779 | 
         
            -
                ):
         
     | 
| 780 | 
         
            -
                    if encoder_hid_dim_type is None and encoder_hid_dim is not None:
         
     | 
| 781 | 
         
            -
                        encoder_hid_dim_type = "text_proj"
         
     | 
| 782 | 
         
            -
                        self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
         
     | 
| 783 | 
         
            -
                        logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
         
     | 
| 784 | 
         
            -
             
     | 
| 785 | 
         
            -
                    if encoder_hid_dim is None and encoder_hid_dim_type is not None:
         
     | 
| 786 | 
         
            -
                        raise ValueError(
         
     | 
| 787 | 
         
            -
                            f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
         
     | 
| 788 | 
         
            -
                        )
         
     | 
| 789 | 
         
            -
             
     | 
| 790 | 
         
            -
                    if encoder_hid_dim_type == "text_proj":
         
     | 
| 791 | 
         
            -
                        self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
         
     | 
| 792 | 
         
            -
                    elif encoder_hid_dim_type == "text_image_proj":
         
     | 
| 793 | 
         
            -
                        # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
         
     | 
| 794 | 
         
            -
                        # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
         
     | 
| 795 | 
         
            -
                        # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
         
     | 
| 796 | 
         
            -
                        self.encoder_hid_proj = TextImageProjection(
         
     | 
| 797 | 
         
            -
                            text_embed_dim=encoder_hid_dim,
         
     | 
| 798 | 
         
            -
                            image_embed_dim=cross_attention_dim,
         
     | 
| 799 | 
         
            -
                            cross_attention_dim=cross_attention_dim,
         
     | 
| 800 | 
         
            -
                        )
         
     | 
| 801 | 
         
            -
                    elif encoder_hid_dim_type == "image_proj":
         
     | 
| 802 | 
         
            -
                        # Kandinsky 2.2
         
     | 
| 803 | 
         
            -
                        self.encoder_hid_proj = ImageProjection(
         
     | 
| 804 | 
         
            -
                            image_embed_dim=encoder_hid_dim,
         
     | 
| 805 | 
         
            -
                            cross_attention_dim=cross_attention_dim,
         
     | 
| 806 | 
         
            -
                        )
         
     | 
| 807 | 
         
            -
                    elif encoder_hid_dim_type is not None:
         
     | 
| 808 | 
         
            -
                        raise ValueError(
         
     | 
| 809 | 
         
            -
                            f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
         
     | 
| 810 | 
         
            -
                        )
         
     | 
| 811 | 
         
            -
                    else:
         
     | 
| 812 | 
         
            -
                        self.encoder_hid_proj = None
         
     | 
| 813 | 
         
            -
             
     | 
| 814 | 
         
            -
                def _set_class_embedding(
         
     | 
| 815 | 
         
            -
                    self,
         
     | 
| 816 | 
         
            -
                    class_embed_type: Optional[str],
         
     | 
| 817 | 
         
            -
                    act_fn: str,
         
     | 
| 818 | 
         
            -
                    num_class_embeds: Optional[int],
         
     | 
| 819 | 
         
            -
                    projection_class_embeddings_input_dim: Optional[int],
         
     | 
| 820 | 
         
            -
                    time_embed_dim: int,
         
     | 
| 821 | 
         
            -
                    timestep_input_dim: int,
         
     | 
| 822 | 
         
            -
                ):
         
     | 
| 823 | 
         
            -
                    if class_embed_type is None and num_class_embeds is not None:
         
     | 
| 824 | 
         
            -
                        self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
         
     | 
| 825 | 
         
            -
                    elif class_embed_type == "timestep":
         
     | 
| 826 | 
         
            -
                        self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
         
     | 
| 827 | 
         
            -
                    elif class_embed_type == "identity":
         
     | 
| 828 | 
         
            -
                        self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
         
     | 
| 829 | 
         
            -
                    elif class_embed_type == "projection":
         
     | 
| 830 | 
         
            -
                        if projection_class_embeddings_input_dim is None:
         
     | 
| 831 | 
         
            -
                            raise ValueError(
         
     | 
| 832 | 
         
            -
                                "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
         
     | 
| 833 | 
         
            -
                            )
         
     | 
| 834 | 
         
            -
                        # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
         
     | 
| 835 | 
         
            -
                        # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
         
     | 
| 836 | 
         
            -
                        # 2. it projects from an arbitrary input dimension.
         
     | 
| 837 | 
         
            -
                        #
         
     | 
| 838 | 
         
            -
                        # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
         
     | 
| 839 | 
         
            -
                        # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
         
     | 
| 840 | 
         
            -
                        # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
         
     | 
| 841 | 
         
            -
                        self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         
     | 
| 842 | 
         
            -
                    elif class_embed_type == "simple_projection":
         
     | 
| 843 | 
         
            -
                        if projection_class_embeddings_input_dim is None:
         
     | 
| 844 | 
         
            -
                            raise ValueError(
         
     | 
| 845 | 
         
            -
                                "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
         
     | 
| 846 | 
         
            -
                            )
         
     | 
| 847 | 
         
            -
                        self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
         
     | 
| 848 | 
         
            -
                    else:
         
     | 
| 849 | 
         
            -
                        self.class_embedding = None
         
     | 
| 850 | 
         
            -
             
     | 
| 851 | 
         
            -
                def _set_add_embedding(
         
     | 
| 852 | 
         
            -
                    self,
         
     | 
| 853 | 
         
            -
                    addition_embed_type: str,
         
     | 
| 854 | 
         
            -
                    addition_embed_type_num_heads: int,
         
     | 
| 855 | 
         
            -
                    addition_time_embed_dim: Optional[int],
         
     | 
| 856 | 
         
            -
                    flip_sin_to_cos: bool,
         
     | 
| 857 | 
         
            -
                    freq_shift: float,
         
     | 
| 858 | 
         
            -
                    cross_attention_dim: Optional[int],
         
     | 
| 859 | 
         
            -
                    encoder_hid_dim: Optional[int],
         
     | 
| 860 | 
         
            -
                    projection_class_embeddings_input_dim: Optional[int],
         
     | 
| 861 | 
         
            -
                    time_embed_dim: int,
         
     | 
| 862 | 
         
            -
                ):
         
     | 
| 863 | 
         
            -
                    if addition_embed_type == "text":
         
     | 
| 864 | 
         
            -
                        if encoder_hid_dim is not None:
         
     | 
| 865 | 
         
            -
                            text_time_embedding_from_dim = encoder_hid_dim
         
     | 
| 866 | 
         
            -
                        else:
         
     | 
| 867 | 
         
            -
                            text_time_embedding_from_dim = cross_attention_dim
         
     | 
| 868 | 
         
            -
             
     | 
| 869 | 
         
            -
                        self.add_embedding = TextTimeEmbedding(
         
     | 
| 870 | 
         
            -
                            text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
         
     | 
| 871 | 
         
            -
                        )
         
     | 
| 872 | 
         
            -
                    elif addition_embed_type == "text_image":
         
     | 
| 873 | 
         
            -
                        # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
         
     | 
| 874 | 
         
            -
                        # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
         
     | 
| 875 | 
         
            -
                        # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
         
     | 
| 876 | 
         
            -
                        self.add_embedding = TextImageTimeEmbedding(
         
     | 
| 877 | 
         
            -
                            text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
         
     | 
| 878 | 
         
            -
                        )
         
     | 
| 879 | 
         
            -
                    elif addition_embed_type == "text_time":
         
     | 
| 880 | 
         
            -
                        self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
         
     | 
| 881 | 
         
            -
                        self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         
     | 
| 882 | 
         
            -
                    elif addition_embed_type == "image":
         
     | 
| 883 | 
         
            -
                        # Kandinsky 2.2
         
     | 
| 884 | 
         
            -
                        self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
         
     | 
| 885 | 
         
            -
                    elif addition_embed_type == "image_hint":
         
     | 
| 886 | 
         
            -
                        # Kandinsky 2.2 ControlNet
         
     | 
| 887 | 
         
            -
                        self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
         
     | 
| 888 | 
         
            -
                    elif addition_embed_type is not None:
         
     | 
| 889 | 
         
            -
                        raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
         
     | 
| 890 | 
         
            -
             
     | 
| 891 | 
         
            -
                def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
         
     | 
| 892 | 
         
            -
                    if attention_type in ["gated", "gated-text-image"]:
         
     | 
| 893 | 
         
            -
                        positive_len = 768
         
     | 
| 894 | 
         
            -
                        if isinstance(cross_attention_dim, int):
         
     | 
| 895 | 
         
            -
                            positive_len = cross_attention_dim
         
     | 
| 896 | 
         
            -
                        elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
         
     | 
| 897 | 
         
            -
                            positive_len = cross_attention_dim[0]
         
     | 
| 898 | 
         
            -
             
     | 
| 899 | 
         
            -
                        feature_type = "text-only" if attention_type == "gated" else "text-image"
         
     | 
| 900 | 
         
            -
                        self.position_net = GLIGENTextBoundingboxProjection(
         
     | 
| 901 | 
         
            -
                            positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
         
     | 
| 902 | 
         
            -
                        )
         
     | 
| 903 | 
         
            -
             
     | 
| 904 | 
         
            -
                @property
         
     | 
| 905 | 
         
            -
                def attn_processors(self) -> Dict[str, AttentionProcessor]:
         
     | 
| 906 | 
         
            -
                    r"""
         
     | 
| 907 | 
         
            -
                    Returns:
         
     | 
| 908 | 
         
            -
                        `dict` of attention processors: A dictionary containing all attention processors used in the model with
         
     | 
| 909 | 
         
            -
                        indexed by its weight name.
         
     | 
| 910 | 
         
            -
                    """
         
     | 
| 911 | 
         
            -
                    # set recursively
         
     | 
| 912 | 
         
            -
                    processors = {}
         
     | 
| 913 | 
         
            -
             
     | 
| 914 | 
         
            -
                    def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
         
     | 
| 915 | 
         
            -
                        if hasattr(module, "get_processor"):
         
     | 
| 916 | 
         
            -
                            processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
         
     | 
| 917 | 
         
            -
             
     | 
| 918 | 
         
            -
                        for sub_name, child in module.named_children():
         
     | 
| 919 | 
         
            -
                            fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
         
     | 
| 920 | 
         
            -
             
     | 
| 921 | 
         
            -
                        return processors
         
     | 
| 922 | 
         
            -
             
     | 
| 923 | 
         
            -
                    for name, module in self.named_children():
         
     | 
| 924 | 
         
            -
                        fn_recursive_add_processors(name, module, processors)
         
     | 
| 925 | 
         
            -
             
     | 
| 926 | 
         
            -
                    return processors
         
     | 
| 927 | 
         
            -
             
     | 
| 928 | 
         
            -
                def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
         
     | 
| 929 | 
         
            -
                    r"""
         
     | 
| 930 | 
         
            -
                    Sets the attention processor to use to compute attention.
         
     | 
| 931 | 
         
            -
             
     | 
| 932 | 
         
            -
                    Parameters:
         
     | 
| 933 | 
         
            -
                        processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
         
     | 
| 934 | 
         
            -
                            The instantiated processor class or a dictionary of processor classes that will be set as the processor
         
     | 
| 935 | 
         
            -
                            for **all** `Attention` layers.
         
     | 
| 936 | 
         
            -
             
     | 
| 937 | 
         
            -
                            If `processor` is a dict, the key needs to define the path to the corresponding cross attention
         
     | 
| 938 | 
         
            -
                            processor. This is strongly recommended when setting trainable attention processors.
         
     | 
| 939 | 
         
            -
             
     | 
| 940 | 
         
            -
                    """
         
     | 
| 941 | 
         
            -
                    count = len(self.attn_processors.keys())
         
     | 
| 942 | 
         
            -
             
     | 
| 943 | 
         
            -
                    if isinstance(processor, dict) and len(processor) != count:
         
     | 
| 944 | 
         
            -
                        raise ValueError(
         
     | 
| 945 | 
         
            -
                            f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
         
     | 
| 946 | 
         
            -
                            f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
         
     | 
| 947 | 
         
            -
                        )
         
     | 
| 948 | 
         
            -
             
     | 
| 949 | 
         
            -
                    def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
         
     | 
| 950 | 
         
            -
                        if hasattr(module, "set_processor"):
         
     | 
| 951 | 
         
            -
                            if not isinstance(processor, dict):
         
     | 
| 952 | 
         
            -
                                module.set_processor(processor)
         
     | 
| 953 | 
         
            -
                            else:
         
     | 
| 954 | 
         
            -
                                module.set_processor(processor.pop(f"{name}.processor"))
         
     | 
| 955 | 
         
            -
             
     | 
| 956 | 
         
            -
                        for sub_name, child in module.named_children():
         
     | 
| 957 | 
         
            -
                            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
         
     | 
| 958 | 
         
            -
             
     | 
| 959 | 
         
            -
                    for name, module in self.named_children():
         
     | 
| 960 | 
         
            -
                        fn_recursive_attn_processor(name, module, processor)
         
     | 
| 961 | 
         
            -
             
     | 
| 962 | 
         
            -
                def set_default_attn_processor(self):
         
     | 
| 963 | 
         
            -
                    """
         
     | 
| 964 | 
         
            -
                    Disables custom attention processors and sets the default attention implementation.
         
     | 
| 965 | 
         
            -
                    """
         
     | 
| 966 | 
         
            -
                    if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
         
     | 
| 967 | 
         
            -
                        processor = AttnAddedKVProcessor()
         
     | 
| 968 | 
         
            -
                    elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
         
     | 
| 969 | 
         
            -
                        processor = AttnProcessor()
         
     | 
| 970 | 
         
            -
                    else:
         
     | 
| 971 | 
         
            -
                        raise ValueError(
         
     | 
| 972 | 
         
            -
                            f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
         
     | 
| 973 | 
         
            -
                        )
         
     | 
| 974 | 
         
            -
             
     | 
| 975 | 
         
            -
                    self.set_attn_processor(processor)
         
     | 
| 976 | 
         
            -
             
     | 
| 977 | 
         
            -
                def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
         
     | 
| 978 | 
         
            -
                    r"""
         
     | 
| 979 | 
         
            -
                    Enable sliced attention computation.
         
     | 
| 980 | 
         
            -
             
     | 
| 981 | 
         
            -
                    When this option is enabled, the attention module splits the input tensor in slices to compute attention in
         
     | 
| 982 | 
         
            -
                    several steps. This is useful for saving some memory in exchange for a small decrease in speed.
         
     | 
| 983 | 
         
            -
             
     | 
| 984 | 
         
            -
                    Args:
         
     | 
| 985 | 
         
            -
                        slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
         
     | 
| 986 | 
         
            -
                            When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
         
     | 
| 987 | 
         
            -
                            `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
         
     | 
| 988 | 
         
            -
                            provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
         
     | 
| 989 | 
         
            -
                            must be a multiple of `slice_size`.
         
     | 
| 990 | 
         
            -
                    """
         
     | 
| 991 | 
         
            -
                    sliceable_head_dims = []
         
     | 
| 992 | 
         
            -
             
     | 
| 993 | 
         
            -
                    def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
         
     | 
| 994 | 
         
            -
                        if hasattr(module, "set_attention_slice"):
         
     | 
| 995 | 
         
            -
                            sliceable_head_dims.append(module.sliceable_head_dim)
         
     | 
| 996 | 
         
            -
             
     | 
| 997 | 
         
            -
                        for child in module.children():
         
     | 
| 998 | 
         
            -
                            fn_recursive_retrieve_sliceable_dims(child)
         
     | 
| 999 | 
         
            -
             
     | 
| 1000 | 
         
            -
                    # retrieve number of attention layers
         
     | 
| 1001 | 
         
            -
                    for module in self.children():
         
     | 
| 1002 | 
         
            -
                        fn_recursive_retrieve_sliceable_dims(module)
         
     | 
| 1003 | 
         
            -
             
     | 
| 1004 | 
         
            -
                    num_sliceable_layers = len(sliceable_head_dims)
         
     | 
| 1005 | 
         
            -
             
     | 
| 1006 | 
         
            -
                    if slice_size == "auto":
         
     | 
| 1007 | 
         
            -
                        # half the attention head size is usually a good trade-off between
         
     | 
| 1008 | 
         
            -
                        # speed and memory
         
     | 
| 1009 | 
         
            -
                        slice_size = [dim // 2 for dim in sliceable_head_dims]
         
     | 
| 1010 | 
         
            -
                    elif slice_size == "max":
         
     | 
| 1011 | 
         
            -
                        # make smallest slice possible
         
     | 
| 1012 | 
         
            -
                        slice_size = num_sliceable_layers * [1]
         
     | 
| 1013 | 
         
            -
             
     | 
| 1014 | 
         
            -
                    slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
         
     | 
| 1015 | 
         
            -
             
     | 
| 1016 | 
         
            -
                    if len(slice_size) != len(sliceable_head_dims):
         
     | 
| 1017 | 
         
            -
                        raise ValueError(
         
     | 
| 1018 | 
         
            -
                            f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
         
     | 
| 1019 | 
         
            -
                            f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
         
     | 
| 1020 | 
         
            -
                        )
         
     | 
| 1021 | 
         
            -
             
     | 
| 1022 | 
         
            -
                    for i in range(len(slice_size)):
         
     | 
| 1023 | 
         
            -
                        size = slice_size[i]
         
     | 
| 1024 | 
         
            -
                        dim = sliceable_head_dims[i]
         
     | 
| 1025 | 
         
            -
                        if size is not None and size > dim:
         
     | 
| 1026 | 
         
            -
                            raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
         
     | 
| 1027 | 
         
            -
             
     | 
| 1028 | 
         
            -
                    # Recursively walk through all the children.
         
     | 
| 1029 | 
         
            -
                    # Any children which exposes the set_attention_slice method
         
     | 
| 1030 | 
         
            -
                    # gets the message
         
     | 
| 1031 | 
         
            -
                    def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
         
     | 
| 1032 | 
         
            -
                        if hasattr(module, "set_attention_slice"):
         
     | 
| 1033 | 
         
            -
                            module.set_attention_slice(slice_size.pop())
         
     | 
| 1034 | 
         
            -
             
     | 
| 1035 | 
         
            -
                        for child in module.children():
         
     | 
| 1036 | 
         
            -
                            fn_recursive_set_attention_slice(child, slice_size)
         
     | 
| 1037 | 
         
            -
             
     | 
| 1038 | 
         
            -
                    reversed_slice_size = list(reversed(slice_size))
         
     | 
| 1039 | 
         
            -
                    for module in self.children():
         
     | 
| 1040 | 
         
            -
                        fn_recursive_set_attention_slice(module, reversed_slice_size)
         
     | 
| 1041 | 
         
            -
             
     | 
| 1042 | 
         
            -
                def _set_gradient_checkpointing(self, module, value=False):
         
     | 
| 1043 | 
         
            -
                    if hasattr(module, "gradient_checkpointing"):
         
     | 
| 1044 | 
         
            -
                        module.gradient_checkpointing = value
         
     | 
| 1045 | 
         
            -
             
     | 
| 1046 | 
         
            -
                def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
         
     | 
| 1047 | 
         
            -
                    r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
         
     | 
| 1048 | 
         
            -
             
     | 
| 1049 | 
         
            -
                    The suffixes after the scaling factors represent the stage blocks where they are being applied.
         
     | 
| 1050 | 
         
            -
             
     | 
| 1051 | 
         
            -
                    Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
         
     | 
| 1052 | 
         
            -
                    are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
         
     | 
| 1053 | 
         
            -
             
     | 
| 1054 | 
         
            -
                    Args:
         
     | 
| 1055 | 
         
            -
                        s1 (`float`):
         
     | 
| 1056 | 
         
            -
                            Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
         
     | 
| 1057 | 
         
            -
                            mitigate the "oversmoothing effect" in the enhanced denoising process.
         
     | 
| 1058 | 
         
            -
                        s2 (`float`):
         
     | 
| 1059 | 
         
            -
                            Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
         
     | 
| 1060 | 
         
            -
                            mitigate the "oversmoothing effect" in the enhanced denoising process.
         
     | 
| 1061 | 
         
            -
                        b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
         
     | 
| 1062 | 
         
            -
                        b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
         
     | 
| 1063 | 
         
            -
                    """
         
     | 
| 1064 | 
         
            -
                    for i, upsample_block in enumerate(self.up_blocks):
         
     | 
| 1065 | 
         
            -
                        setattr(upsample_block, "s1", s1)
         
     | 
| 1066 | 
         
            -
                        setattr(upsample_block, "s2", s2)
         
     | 
| 1067 | 
         
            -
                        setattr(upsample_block, "b1", b1)
         
     | 
| 1068 | 
         
            -
                        setattr(upsample_block, "b2", b2)
         
     | 
| 1069 | 
         
            -
             
     | 
| 1070 | 
         
            -
                def disable_freeu(self):
         
     | 
| 1071 | 
         
            -
                    """Disables the FreeU mechanism."""
         
     | 
| 1072 | 
         
            -
                    freeu_keys = {"s1", "s2", "b1", "b2"}
         
     | 
| 1073 | 
         
            -
                    for i, upsample_block in enumerate(self.up_blocks):
         
     | 
| 1074 | 
         
            -
                        for k in freeu_keys:
         
     | 
| 1075 | 
         
            -
                            if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
         
     | 
| 1076 | 
         
            -
                                setattr(upsample_block, k, None)
         
     | 
| 1077 | 
         
            -
             
     | 
| 1078 | 
         
            -
                def fuse_qkv_projections(self):
         
     | 
| 1079 | 
         
            -
                    """
         
     | 
| 1080 | 
         
            -
                    Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
         
     | 
| 1081 | 
         
            -
                    are fused. For cross-attention modules, key and value projection matrices are fused.
         
     | 
| 1082 | 
         
            -
             
     | 
| 1083 | 
         
            -
                    <Tip warning={true}>
         
     | 
| 1084 | 
         
            -
             
     | 
| 1085 | 
         
            -
                    This API is 🧪 experimental.
         
     | 
| 1086 | 
         
            -
             
     | 
| 1087 | 
         
            -
                    </Tip>
         
     | 
| 1088 | 
         
            -
                    """
         
     | 
| 1089 | 
         
            -
                    self.original_attn_processors = None
         
     | 
| 1090 | 
         
            -
             
     | 
| 1091 | 
         
            -
                    for _, attn_processor in self.attn_processors.items():
         
     | 
| 1092 | 
         
            -
                        if "Added" in str(attn_processor.__class__.__name__):
         
     | 
| 1093 | 
         
            -
                            raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
         
     | 
| 1094 | 
         
            -
             
     | 
| 1095 | 
         
            -
                    self.original_attn_processors = self.attn_processors
         
     | 
| 1096 | 
         
            -
             
     | 
| 1097 | 
         
            -
                    for module in self.modules():
         
     | 
| 1098 | 
         
            -
                        if isinstance(module, Attention):
         
     | 
| 1099 | 
         
            -
                            module.fuse_projections(fuse=True)
         
     | 
| 1100 | 
         
            -
             
     | 
| 1101 | 
         
            -
                def unfuse_qkv_projections(self):
         
     | 
| 1102 | 
         
            -
                    """Disables the fused QKV projection if enabled.
         
     | 
| 1103 | 
         
            -
             
     | 
| 1104 | 
         
            -
                    <Tip warning={true}>
         
     | 
| 1105 | 
         
            -
             
     | 
| 1106 | 
         
            -
                    This API is 🧪 experimental.
         
     | 
| 1107 | 
         
            -
             
     | 
| 1108 | 
         
            -
                    </Tip>
         
     | 
| 1109 | 
         
            -
             
     | 
| 1110 | 
         
            -
                    """
         
     | 
| 1111 | 
         
            -
                    if self.original_attn_processors is not None:
         
     | 
| 1112 | 
         
            -
                        self.set_attn_processor(self.original_attn_processors)
         
     | 
| 1113 | 
         
            -
             
     | 
| 1114 | 
         
            -
                def unload_lora(self):
         
     | 
| 1115 | 
         
            -
                    """Unloads LoRA weights."""
         
     | 
| 1116 | 
         
            -
                    deprecate(
         
     | 
| 1117 | 
         
            -
                        "unload_lora",
         
     | 
| 1118 | 
         
            -
                        "0.28.0",
         
     | 
| 1119 | 
         
            -
                        "Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().",
         
     | 
| 1120 | 
         
            -
                    )
         
     | 
| 1121 | 
         
            -
                    for module in self.modules():
         
     | 
| 1122 | 
         
            -
                        if hasattr(module, "set_lora_layer"):
         
     | 
| 1123 | 
         
            -
                            module.set_lora_layer(None)
         
     | 
| 1124 | 
         
            -
             
     | 
| 1125 | 
         
            -
                def get_time_embed(
         
     | 
| 1126 | 
         
            -
                    self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
         
     | 
| 1127 | 
         
            -
                ) -> Optional[torch.Tensor]:
         
     | 
| 1128 | 
         
            -
                    timesteps = timestep
         
     | 
| 1129 | 
         
            -
                    if not torch.is_tensor(timesteps):
         
     | 
| 1130 | 
         
            -
                        # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
         
     | 
| 1131 | 
         
            -
                        # This would be a good case for the `match` statement (Python 3.10+)
         
     | 
| 1132 | 
         
            -
                        is_mps = sample.device.type == "mps"
         
     | 
| 1133 | 
         
            -
                        if isinstance(timestep, float):
         
     | 
| 1134 | 
         
            -
                            dtype = torch.float32 if is_mps else torch.float64
         
     | 
| 1135 | 
         
            -
                        else:
         
     | 
| 1136 | 
         
            -
                            dtype = torch.int32 if is_mps else torch.int64
         
     | 
| 1137 | 
         
            -
                        timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
         
     | 
| 1138 | 
         
            -
                    elif len(timesteps.shape) == 0:
         
     | 
| 1139 | 
         
            -
                        timesteps = timesteps[None].to(sample.device)
         
     | 
| 1140 | 
         
            -
             
     | 
| 1141 | 
         
            -
                    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         
     | 
| 1142 | 
         
            -
                    timesteps = timesteps.expand(sample.shape[0])
         
     | 
| 1143 | 
         
            -
             
     | 
| 1144 | 
         
            -
                    t_emb = self.time_proj(timesteps)
         
     | 
| 1145 | 
         
            -
                    # `Timesteps` does not contain any weights and will always return f32 tensors
         
     | 
| 1146 | 
         
            -
                    # but time_embedding might actually be running in fp16. so we need to cast here.
         
     | 
| 1147 | 
         
            -
                    # there might be better ways to encapsulate this.
         
     | 
| 1148 | 
         
            -
                    t_emb = t_emb.to(dtype=sample.dtype)
         
     | 
| 1149 | 
         
            -
                    return t_emb
         
     | 
| 1150 | 
         
            -
             
     | 
| 1151 | 
         
            -
                def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
         
     | 
| 1152 | 
         
            -
                    class_emb = None
         
     | 
| 1153 | 
         
            -
                    if self.class_embedding is not None:
         
     | 
| 1154 | 
         
            -
                        if class_labels is None:
         
     | 
| 1155 | 
         
            -
                            raise ValueError("class_labels should be provided when num_class_embeds > 0")
         
     | 
| 1156 | 
         
            -
             
     | 
| 1157 | 
         
            -
                        if self.config.class_embed_type == "timestep":
         
     | 
| 1158 | 
         
            -
                            class_labels = self.time_proj(class_labels)
         
     | 
| 1159 | 
         
            -
             
     | 
| 1160 | 
         
            -
                            # `Timesteps` does not contain any weights and will always return f32 tensors
         
     | 
| 1161 | 
         
            -
                            # there might be better ways to encapsulate this.
         
     | 
| 1162 | 
         
            -
                            class_labels = class_labels.to(dtype=sample.dtype)
         
     | 
| 1163 | 
         
            -
             
     | 
| 1164 | 
         
            -
                        class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
         
     | 
| 1165 | 
         
            -
                    return class_emb
         
     | 
| 1166 | 
         
            -
             
     | 
| 1167 | 
         
            -
                def get_aug_embed(
         
     | 
| 1168 | 
         
            -
                    self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
         
     | 
| 1169 | 
         
            -
                ) -> Optional[torch.Tensor]:
         
     | 
| 1170 | 
         
            -
                    aug_emb = None
         
     | 
| 1171 | 
         
            -
                    if self.config.addition_embed_type == "text":
         
     | 
| 1172 | 
         
            -
                        aug_emb = self.add_embedding(encoder_hidden_states)
         
     | 
| 1173 | 
         
            -
                    elif self.config.addition_embed_type == "text_image":
         
     | 
| 1174 | 
         
            -
                        # Kandinsky 2.1 - style
         
     | 
| 1175 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 1176 | 
         
            -
                            raise ValueError(
         
     | 
| 1177 | 
         
            -
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
         
     | 
| 1178 | 
         
            -
                            )
         
     | 
| 1179 | 
         
            -
             
     | 
| 1180 | 
         
            -
                        image_embs = added_cond_kwargs.get("image_embeds")
         
     | 
| 1181 | 
         
            -
                        text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
         
     | 
| 1182 | 
         
            -
                        aug_emb = self.add_embedding(text_embs, image_embs)
         
     | 
| 1183 | 
         
            -
                    elif self.config.addition_embed_type == "text_time":
         
     | 
| 1184 | 
         
            -
                        # SDXL - style
         
     | 
| 1185 | 
         
            -
                        if "text_embeds" not in added_cond_kwargs:
         
     | 
| 1186 | 
         
            -
                            raise ValueError(
         
     | 
| 1187 | 
         
            -
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
         
     | 
| 1188 | 
         
            -
                            )
         
     | 
| 1189 | 
         
            -
                        text_embeds = added_cond_kwargs.get("text_embeds")
         
     | 
| 1190 | 
         
            -
                        if "time_ids" not in added_cond_kwargs:
         
     | 
| 1191 | 
         
            -
                            raise ValueError(
         
     | 
| 1192 | 
         
            -
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
         
     | 
| 1193 | 
         
            -
                            )
         
     | 
| 1194 | 
         
            -
                        time_ids = added_cond_kwargs.get("time_ids")
         
     | 
| 1195 | 
         
            -
                        time_embeds = self.add_time_proj(time_ids.flatten())
         
     | 
| 1196 | 
         
            -
                        time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
         
     | 
| 1197 | 
         
            -
                        add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
         
     | 
| 1198 | 
         
            -
                        add_embeds = add_embeds.to(emb.dtype)
         
     | 
| 1199 | 
         
            -
                        aug_emb = self.add_embedding(add_embeds)
         
     | 
| 1200 | 
         
            -
                    elif self.config.addition_embed_type == "image":
         
     | 
| 1201 | 
         
            -
                        # Kandinsky 2.2 - style
         
     | 
| 1202 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 1203 | 
         
            -
                            raise ValueError(
         
     | 
| 1204 | 
         
            -
                                f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
         
     | 
| 1205 | 
         
            -
                            )
         
     | 
| 1206 | 
         
            -
                        image_embs = added_cond_kwargs.get("image_embeds")
         
     | 
| 1207 | 
         
            -
                        aug_emb = self.add_embedding(image_embs)
         
     | 
| 1208 | 
         
            -
                    elif self.config.addition_embed_type == "image_hint":
         
     | 
| 1209 | 
         
            -
                        # Kandinsky 2.2 - style
         
     | 
| 1210 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
         
     | 
| 1211 | 
         
            -
                            raise ValueError(
         
     | 
| 1212 | 
         
            -
                                f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
         
     | 
| 1213 | 
         
            -
                            )
         
     | 
| 1214 | 
         
            -
                        image_embs = added_cond_kwargs.get("image_embeds")
         
     | 
| 1215 | 
         
            -
                        hint = added_cond_kwargs.get("hint")
         
     | 
| 1216 | 
         
            -
                        aug_emb = self.add_embedding(image_embs, hint)
         
     | 
| 1217 | 
         
            -
                    return aug_emb
         
     | 
| 1218 | 
         
            -
             
     | 
| 1219 | 
         
            -
                def process_encoder_hidden_states(
         
     | 
| 1220 | 
         
            -
                    self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
         
     | 
| 1221 | 
         
            -
                ) -> torch.Tensor:
         
     | 
| 1222 | 
         
            -
                    if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
         
     | 
| 1223 | 
         
            -
                        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
         
     | 
| 1224 | 
         
            -
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
         
     | 
| 1225 | 
         
            -
                        # Kandinsky 2.1 - style
         
     | 
| 1226 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 1227 | 
         
            -
                            raise ValueError(
         
     | 
| 1228 | 
         
            -
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         
     | 
| 1229 | 
         
            -
                            )
         
     | 
| 1230 | 
         
            -
             
     | 
| 1231 | 
         
            -
                        image_embeds = added_cond_kwargs.get("image_embeds")
         
     | 
| 1232 | 
         
            -
                        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
         
     | 
| 1233 | 
         
            -
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
         
     | 
| 1234 | 
         
            -
                        # Kandinsky 2.2 - style
         
     | 
| 1235 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 1236 | 
         
            -
                            raise ValueError(
         
     | 
| 1237 | 
         
            -
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         
     | 
| 1238 | 
         
            -
                            )
         
     | 
| 1239 | 
         
            -
                        image_embeds = added_cond_kwargs.get("image_embeds")
         
     | 
| 1240 | 
         
            -
                        encoder_hidden_states = self.encoder_hid_proj(image_embeds)
         
     | 
| 1241 | 
         
            -
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
         
     | 
| 1242 | 
         
            -
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 1243 | 
         
            -
                            raise ValueError(
         
     | 
| 1244 | 
         
            -
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         
     | 
| 1245 | 
         
            -
                            )
         
     | 
| 1246 | 
         
            -
                        image_embeds = added_cond_kwargs.get("image_embeds")
         
     | 
| 1247 | 
         
            -
                        image_embeds = self.encoder_hid_proj(image_embeds)
         
     | 
| 1248 | 
         
            -
                        encoder_hidden_states = (encoder_hidden_states, image_embeds)
         
     | 
| 1249 | 
         
            -
                    return encoder_hidden_states
         
     | 
| 1250 | 
         
            -
             
     | 
| 1251 | 
         
            -
                def init_kv_extraction(self):
         
     | 
| 1252 | 
         
            -
                    for block in self.down_blocks:
         
     | 
| 1253 | 
         
            -
                        if hasattr(block, "has_cross_attention") and block.has_cross_attention:
         
     | 
| 1254 | 
         
            -
                            block.init_kv_extraction()
         
     | 
| 1255 | 
         
            -
             
     | 
| 1256 | 
         
            -
                    for block in self.up_blocks:
         
     | 
| 1257 | 
         
            -
                        if hasattr(block, "has_cross_attention") and block.has_cross_attention:
         
     | 
| 1258 | 
         
            -
                            block.init_kv_extraction()
         
     | 
| 1259 | 
         
            -
             
     | 
| 1260 | 
         
            -
                    if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
         
     | 
| 1261 | 
         
            -
                        self.mid_block.init_kv_extraction()
         
     | 
| 1262 | 
         
            -
             
     | 
| 1263 | 
         
            -
                def forward(
         
     | 
| 1264 | 
         
            -
                    self,
         
     | 
| 1265 | 
         
            -
                    sample: torch.FloatTensor,
         
     | 
| 1266 | 
         
            -
                    timestep: Union[torch.Tensor, float, int],
         
     | 
| 1267 | 
         
            -
                    encoder_hidden_states: torch.Tensor,
         
     | 
| 1268 | 
         
            -
                    controlnet_cond: torch.FloatTensor,
         
     | 
| 1269 | 
         
            -
                    conditioning_scale: float = 1.0,
         
     | 
| 1270 | 
         
            -
                    class_labels: Optional[torch.Tensor] = None,
         
     | 
| 1271 | 
         
            -
                    timestep_cond: Optional[torch.Tensor] = None,
         
     | 
| 1272 | 
         
            -
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1273 | 
         
            -
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 1274 | 
         
            -
                    added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
         
     | 
| 1275 | 
         
            -
                    down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
         
     | 
| 1276 | 
         
            -
                    mid_block_additional_residual: Optional[torch.Tensor] = None,
         
     | 
| 1277 | 
         
            -
                    down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
         
     | 
| 1278 | 
         
            -
                    encoder_attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1279 | 
         
            -
                    guess_mode: bool = False,
         
     | 
| 1280 | 
         
            -
                    return_dict: bool = True,
         
     | 
| 1281 | 
         
            -
                ) -> Union[ExtractKVUNet2DConditionOutput, Tuple]:
         
     | 
| 1282 | 
         
            -
                    r"""
         
     | 
| 1283 | 
         
            -
                    The [`ExtractKVUNet2DConditionModel`] forward method.
         
     | 
| 1284 | 
         
            -
             
     | 
| 1285 | 
         
            -
                    Args:
         
     | 
| 1286 | 
         
            -
                        sample (`torch.FloatTensor`):
         
     | 
| 1287 | 
         
            -
                            The noisy input tensor with the following shape `(batch, channel, height, width)`.
         
     | 
| 1288 | 
         
            -
                        timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
         
     | 
| 1289 | 
         
            -
                        encoder_hidden_states (`torch.FloatTensor`):
         
     | 
| 1290 | 
         
            -
                            The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
         
     | 
| 1291 | 
         
            -
                        class_labels (`torch.Tensor`, *optional*, defaults to `None`):
         
     | 
| 1292 | 
         
            -
                            Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
         
     | 
| 1293 | 
         
            -
                        timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
         
     | 
| 1294 | 
         
            -
                            Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
         
     | 
| 1295 | 
         
            -
                            through the `self.time_embedding` layer to obtain the timestep embeddings.
         
     | 
| 1296 | 
         
            -
                        attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
         
     | 
| 1297 | 
         
            -
                            An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
         
     | 
| 1298 | 
         
            -
                            is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
         
     | 
| 1299 | 
         
            -
                            negative values to the attention scores corresponding to "discard" tokens.
         
     | 
| 1300 | 
         
            -
                        cross_attention_kwargs (`dict`, *optional*):
         
     | 
| 1301 | 
         
            -
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         
     | 
| 1302 | 
         
            -
                            `self.processor` in
         
     | 
| 1303 | 
         
            -
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         
     | 
| 1304 | 
         
            -
                        added_cond_kwargs: (`dict`, *optional*):
         
     | 
| 1305 | 
         
            -
                            A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
         
     | 
| 1306 | 
         
            -
                            are passed along to the UNet blocks.
         
     | 
| 1307 | 
         
            -
                        down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
         
     | 
| 1308 | 
         
            -
                            A tuple of tensors that if specified are added to the residuals of down unet blocks.
         
     | 
| 1309 | 
         
            -
                        mid_block_additional_residual: (`torch.Tensor`, *optional*):
         
     | 
| 1310 | 
         
            -
                            A tensor that if specified is added to the residual of the middle unet block.
         
     | 
| 1311 | 
         
            -
                        down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
         
     | 
| 1312 | 
         
            -
                            additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
         
     | 
| 1313 | 
         
            -
                        encoder_attention_mask (`torch.Tensor`):
         
     | 
| 1314 | 
         
            -
                            A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
         
     | 
| 1315 | 
         
            -
                            `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
         
     | 
| 1316 | 
         
            -
                            which adds large negative values to the attention scores corresponding to "discard" tokens.
         
     | 
| 1317 | 
         
            -
                        return_dict (`bool`, *optional*, defaults to `True`):
         
     | 
| 1318 | 
         
            -
                            Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
         
     | 
| 1319 | 
         
            -
                            tuple.
         
     | 
| 1320 | 
         
            -
             
     | 
| 1321 | 
         
            -
                    Returns:
         
     | 
| 1322 | 
         
            -
                        [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
         
     | 
| 1323 | 
         
            -
                            If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
         
     | 
| 1324 | 
         
            -
                            otherwise a `tuple` is returned where the first element is the sample tensor.
         
     | 
| 1325 | 
         
            -
                    """
         
     | 
| 1326 | 
         
            -
                    # check channel order
         
     | 
| 1327 | 
         
            -
                    channel_order = self.config.controlnet_conditioning_channel_order
         
     | 
| 1328 | 
         
            -
             
     | 
| 1329 | 
         
            -
                    if channel_order == "rgb":
         
     | 
| 1330 | 
         
            -
                        # in rgb order by default
         
     | 
| 1331 | 
         
            -
                        ...
         
     | 
| 1332 | 
         
            -
                    elif channel_order == "bgr":
         
     | 
| 1333 | 
         
            -
                        controlnet_cond = torch.flip(controlnet_cond, dims=[1])
         
     | 
| 1334 | 
         
            -
                    else:
         
     | 
| 1335 | 
         
            -
                        raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
         
     | 
| 1336 | 
         
            -
             
     | 
| 1337 | 
         
            -
                    # By default samples have to be AT least a multiple of the overall upsampling factor.
         
     | 
| 1338 | 
         
            -
                    # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
         
     | 
| 1339 | 
         
            -
                    # However, the upsampling interpolation output size can be forced to fit any upsampling size
         
     | 
| 1340 | 
         
            -
                    # on the fly if necessary.
         
     | 
| 1341 | 
         
            -
                    default_overall_up_factor = 2**self.num_upsamplers
         
     | 
| 1342 | 
         
            -
             
     | 
| 1343 | 
         
            -
                    # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
         
     | 
| 1344 | 
         
            -
                    forward_upsample_size = False
         
     | 
| 1345 | 
         
            -
                    upsample_size = None
         
     | 
| 1346 | 
         
            -
             
     | 
| 1347 | 
         
            -
                    for dim in sample.shape[-2:]:
         
     | 
| 1348 | 
         
            -
                        if dim % default_overall_up_factor != 0:
         
     | 
| 1349 | 
         
            -
                            # Forward upsample size to force interpolation output size.
         
     | 
| 1350 | 
         
            -
                            forward_upsample_size = True
         
     | 
| 1351 | 
         
            -
                            break
         
     | 
| 1352 | 
         
            -
             
     | 
| 1353 | 
         
            -
                    # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
         
     | 
| 1354 | 
         
            -
                    # expects mask of shape:
         
     | 
| 1355 | 
         
            -
                    #   [batch, key_tokens]
         
     | 
| 1356 | 
         
            -
                    # adds singleton query_tokens dimension:
         
     | 
| 1357 | 
         
            -
                    #   [batch,                    1, key_tokens]
         
     | 
| 1358 | 
         
            -
                    # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
         
     | 
| 1359 | 
         
            -
                    #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
         
     | 
| 1360 | 
         
            -
                    #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
         
     | 
| 1361 | 
         
            -
                    if attention_mask is not None:
         
     | 
| 1362 | 
         
            -
                        # assume that mask is expressed as:
         
     | 
| 1363 | 
         
            -
                        #   (1 = keep,      0 = discard)
         
     | 
| 1364 | 
         
            -
                        # convert mask into a bias that can be added to attention scores:
         
     | 
| 1365 | 
         
            -
                        #       (keep = +0,     discard = -10000.0)
         
     | 
| 1366 | 
         
            -
                        attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
         
     | 
| 1367 | 
         
            -
                        attention_mask = attention_mask.unsqueeze(1)
         
     | 
| 1368 | 
         
            -
             
     | 
| 1369 | 
         
            -
                    # convert encoder_attention_mask to a bias the same way we do for attention_mask
         
     | 
| 1370 | 
         
            -
                    if encoder_attention_mask is not None:
         
     | 
| 1371 | 
         
            -
                        encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
         
     | 
| 1372 | 
         
            -
                        encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
         
     | 
| 1373 | 
         
            -
             
     | 
| 1374 | 
         
            -
                    # 0. center input if necessary
         
     | 
| 1375 | 
         
            -
                    if self.config.center_input_sample:
         
     | 
| 1376 | 
         
            -
                        sample = 2 * sample - 1.0
         
     | 
| 1377 | 
         
            -
             
     | 
| 1378 | 
         
            -
                    # 1. time
         
     | 
| 1379 | 
         
            -
                    t_emb = self.get_time_embed(sample=sample, timestep=timestep)
         
     | 
| 1380 | 
         
            -
                    emb = self.time_embedding(t_emb, timestep_cond)
         
     | 
| 1381 | 
         
            -
                    aug_emb = None
         
     | 
| 1382 | 
         
            -
             
     | 
| 1383 | 
         
            -
                    class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
         
     | 
| 1384 | 
         
            -
                    if class_emb is not None:
         
     | 
| 1385 | 
         
            -
                        if self.config.class_embeddings_concat:
         
     | 
| 1386 | 
         
            -
                            emb = torch.cat([emb, class_emb], dim=-1)
         
     | 
| 1387 | 
         
            -
                        else:
         
     | 
| 1388 | 
         
            -
                            emb = emb + class_emb
         
     | 
| 1389 | 
         
            -
             
     | 
| 1390 | 
         
            -
                    aug_emb = self.get_aug_embed(
         
     | 
| 1391 | 
         
            -
                        emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
         
     | 
| 1392 | 
         
            -
                    )
         
     | 
| 1393 | 
         
            -
                    if self.config.addition_embed_type == "image_hint":
         
     | 
| 1394 | 
         
            -
                        aug_emb, hint = aug_emb
         
     | 
| 1395 | 
         
            -
                        sample = torch.cat([sample, hint], dim=1)
         
     | 
| 1396 | 
         
            -
             
     | 
| 1397 | 
         
            -
                    emb = emb + aug_emb if aug_emb is not None else emb
         
     | 
| 1398 | 
         
            -
             
     | 
| 1399 | 
         
            -
                    if self.time_embed_act is not None:
         
     | 
| 1400 | 
         
            -
                        emb = self.time_embed_act(emb)
         
     | 
| 1401 | 
         
            -
             
     | 
| 1402 | 
         
            -
                    encoder_hidden_states = self.process_encoder_hidden_states(
         
     | 
| 1403 | 
         
            -
                        encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
         
     | 
| 1404 | 
         
            -
                    )
         
     | 
| 1405 | 
         
            -
             
     | 
| 1406 | 
         
            -
                    # 2. pre-process
         
     | 
| 1407 | 
         
            -
                    sample = self.conv_in(sample)
         
     | 
| 1408 | 
         
            -
                    controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
         
     | 
| 1409 | 
         
            -
                    sample = sample + controlnet_cond
         
     | 
| 1410 | 
         
            -
             
     | 
| 1411 | 
         
            -
                    # 2.5 GLIGEN position net
         
     | 
| 1412 | 
         
            -
                    if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
         
     | 
| 1413 | 
         
            -
                        cross_attention_kwargs = cross_attention_kwargs.copy()
         
     | 
| 1414 | 
         
            -
                        gligen_args = cross_attention_kwargs.pop("gligen")
         
     | 
| 1415 | 
         
            -
                        cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
         
     | 
| 1416 | 
         
            -
             
     | 
| 1417 | 
         
            -
                    if cross_attention_kwargs is not None and cross_attention_kwargs.get("kv_drop_idx", None) is not None:
         
     | 
| 1418 | 
         
            -
                        threshold = cross_attention_kwargs.pop("kv_drop_idx")
         
     | 
| 1419 | 
         
            -
                        cross_attention_kwargs["kv_drop_idx"] = timestep<threshold
         
     | 
| 1420 | 
         
            -
             
     | 
| 1421 | 
         
            -
                    # 3. down
         
     | 
| 1422 | 
         
            -
                    # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
         
     | 
| 1423 | 
         
            -
                    # to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
         
     | 
| 1424 | 
         
            -
                    if cross_attention_kwargs is not None:
         
     | 
| 1425 | 
         
            -
                        cross_attention_kwargs = cross_attention_kwargs.copy()
         
     | 
| 1426 | 
         
            -
                        lora_scale = cross_attention_kwargs.pop("scale", 1.0)
         
     | 
| 1427 | 
         
            -
                    else:
         
     | 
| 1428 | 
         
            -
                        lora_scale = 1.0
         
     | 
| 1429 | 
         
            -
             
     | 
| 1430 | 
         
            -
                    if USE_PEFT_BACKEND:
         
     | 
| 1431 | 
         
            -
                        # weight the lora layers by setting `lora_scale` for each PEFT layer
         
     | 
| 1432 | 
         
            -
                        scale_lora_layers(self, lora_scale)
         
     | 
| 1433 | 
         
            -
             
     | 
| 1434 | 
         
            -
                    is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
         
     | 
| 1435 | 
         
            -
                    # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
         
     | 
| 1436 | 
         
            -
                    is_adapter = down_intrablock_additional_residuals is not None
         
     | 
| 1437 | 
         
            -
                    # maintain backward compatibility for legacy usage, where
         
     | 
| 1438 | 
         
            -
                    #       T2I-Adapter and ControlNet both use down_block_additional_residuals arg
         
     | 
| 1439 | 
         
            -
                    #       but can only use one or the other
         
     | 
| 1440 | 
         
            -
                    if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
         
     | 
| 1441 | 
         
            -
                        deprecate(
         
     | 
| 1442 | 
         
            -
                            "T2I should not use down_block_additional_residuals",
         
     | 
| 1443 | 
         
            -
                            "1.3.0",
         
     | 
| 1444 | 
         
            -
                            "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
         
     | 
| 1445 | 
         
            -
                                   and will be removed in diffusers 1.3.0.  `down_block_additional_residuals` should only be used \
         
     | 
| 1446 | 
         
            -
                                   for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
         
     | 
| 1447 | 
         
            -
                            standard_warn=False,
         
     | 
| 1448 | 
         
            -
                        )
         
     | 
| 1449 | 
         
            -
                        down_intrablock_additional_residuals = down_block_additional_residuals
         
     | 
| 1450 | 
         
            -
                        is_adapter = True
         
     | 
| 1451 | 
         
            -
             
     | 
| 1452 | 
         
            -
                    down_block_res_samples = (sample,)
         
     | 
| 1453 | 
         
            -
                    extracted_kvs = {}
         
     | 
| 1454 | 
         
            -
                    for downsample_block in self.down_blocks:
         
     | 
| 1455 | 
         
            -
                        if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
         
     | 
| 1456 | 
         
            -
                            # For t2i-adapter CrossAttnDownBlock2D
         
     | 
| 1457 | 
         
            -
                            additional_residuals = {}
         
     | 
| 1458 | 
         
            -
                            if is_adapter and len(down_intrablock_additional_residuals) > 0:
         
     | 
| 1459 | 
         
            -
                                additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
         
     | 
| 1460 | 
         
            -
             
     | 
| 1461 | 
         
            -
                            sample, res_samples, extracted_kv = downsample_block(
         
     | 
| 1462 | 
         
            -
                                hidden_states=sample,
         
     | 
| 1463 | 
         
            -
                                temb=emb,
         
     | 
| 1464 | 
         
            -
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1465 | 
         
            -
                                attention_mask=attention_mask,
         
     | 
| 1466 | 
         
            -
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 1467 | 
         
            -
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1468 | 
         
            -
                                **additional_residuals,
         
     | 
| 1469 | 
         
            -
                            )
         
     | 
| 1470 | 
         
            -
                            extracted_kvs.update(extracted_kv)
         
     | 
| 1471 | 
         
            -
                        else:
         
     | 
| 1472 | 
         
            -
                            sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
         
     | 
| 1473 | 
         
            -
                            if is_adapter and len(down_intrablock_additional_residuals) > 0:
         
     | 
| 1474 | 
         
            -
                                sample += down_intrablock_additional_residuals.pop(0)
         
     | 
| 1475 | 
         
            -
             
     | 
| 1476 | 
         
            -
                        down_block_res_samples += res_samples
         
     | 
| 1477 | 
         
            -
             
     | 
| 1478 | 
         
            -
                    if is_controlnet:
         
     | 
| 1479 | 
         
            -
                        new_down_block_res_samples = ()
         
     | 
| 1480 | 
         
            -
             
     | 
| 1481 | 
         
            -
                        for down_block_res_sample, down_block_additional_residual in zip(
         
     | 
| 1482 | 
         
            -
                            down_block_res_samples, down_block_additional_residuals
         
     | 
| 1483 | 
         
            -
                        ):
         
     | 
| 1484 | 
         
            -
                            down_block_res_sample = down_block_res_sample + down_block_additional_residual
         
     | 
| 1485 | 
         
            -
                            new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
         
     | 
| 1486 | 
         
            -
             
     | 
| 1487 | 
         
            -
                        down_block_res_samples = new_down_block_res_samples
         
     | 
| 1488 | 
         
            -
             
     | 
| 1489 | 
         
            -
                    # 4. mid
         
     | 
| 1490 | 
         
            -
                    if self.mid_block is not None:
         
     | 
| 1491 | 
         
            -
                        if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
         
     | 
| 1492 | 
         
            -
                            sample, extracted_kv = self.mid_block(
         
     | 
| 1493 | 
         
            -
                                sample,
         
     | 
| 1494 | 
         
            -
                                emb,
         
     | 
| 1495 | 
         
            -
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1496 | 
         
            -
                                attention_mask=attention_mask,
         
     | 
| 1497 | 
         
            -
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 1498 | 
         
            -
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1499 | 
         
            -
                            )
         
     | 
| 1500 | 
         
            -
                            extracted_kvs.update(extracted_kv)
         
     | 
| 1501 | 
         
            -
                        else:
         
     | 
| 1502 | 
         
            -
                            sample = self.mid_block(sample, emb)
         
     | 
| 1503 | 
         
            -
             
     | 
| 1504 | 
         
            -
                        # To support T2I-Adapter-XL
         
     | 
| 1505 | 
         
            -
                        if (
         
     | 
| 1506 | 
         
            -
                            is_adapter
         
     | 
| 1507 | 
         
            -
                            and len(down_intrablock_additional_residuals) > 0
         
     | 
| 1508 | 
         
            -
                            and sample.shape == down_intrablock_additional_residuals[0].shape
         
     | 
| 1509 | 
         
            -
                        ):
         
     | 
| 1510 | 
         
            -
                            sample += down_intrablock_additional_residuals.pop(0)
         
     | 
| 1511 | 
         
            -
             
     | 
| 1512 | 
         
            -
                    if is_controlnet:
         
     | 
| 1513 | 
         
            -
                        sample = sample + mid_block_additional_residual
         
     | 
| 1514 | 
         
            -
             
     | 
| 1515 | 
         
            -
                    # 5. Control net blocks
         
     | 
| 1516 | 
         
            -
             
     | 
| 1517 | 
         
            -
                    controlnet_down_block_res_samples = ()
         
     | 
| 1518 | 
         
            -
             
     | 
| 1519 | 
         
            -
                    for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
         
     | 
| 1520 | 
         
            -
                        down_block_res_sample = controlnet_block(down_block_res_sample)
         
     | 
| 1521 | 
         
            -
                        controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
         
     | 
| 1522 | 
         
            -
             
     | 
| 1523 | 
         
            -
                    mid_block_res_sample = self.controlnet_mid_block(sample)
         
     | 
| 1524 | 
         
            -
             
     | 
| 1525 | 
         
            -
                    # 6. up
         
     | 
| 1526 | 
         
            -
                    for i, upsample_block in enumerate(self.up_blocks):
         
     | 
| 1527 | 
         
            -
                        is_final_block = i == len(self.up_blocks) - 1
         
     | 
| 1528 | 
         
            -
             
     | 
| 1529 | 
         
            -
                        res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
         
     | 
| 1530 | 
         
            -
                        down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
         
     | 
| 1531 | 
         
            -
             
     | 
| 1532 | 
         
            -
                        # if we have not reached the final block and need to forward the
         
     | 
| 1533 | 
         
            -
                        # upsample size, we do it here
         
     | 
| 1534 | 
         
            -
                        if not is_final_block and forward_upsample_size:
         
     | 
| 1535 | 
         
            -
                            upsample_size = down_block_res_samples[-1].shape[2:]
         
     | 
| 1536 | 
         
            -
             
     | 
| 1537 | 
         
            -
                        if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
         
     | 
| 1538 | 
         
            -
                            sample, extract_kv = upsample_block(
         
     | 
| 1539 | 
         
            -
                                hidden_states=sample,
         
     | 
| 1540 | 
         
            -
                                temb=emb,
         
     | 
| 1541 | 
         
            -
                                res_hidden_states_tuple=res_samples,
         
     | 
| 1542 | 
         
            -
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1543 | 
         
            -
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 1544 | 
         
            -
                                upsample_size=upsample_size,
         
     | 
| 1545 | 
         
            -
                                attention_mask=attention_mask,
         
     | 
| 1546 | 
         
            -
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1547 | 
         
            -
                            )
         
     | 
| 1548 | 
         
            -
                            extracted_kvs.update(extract_kv)
         
     | 
| 1549 | 
         
            -
                        else:
         
     | 
| 1550 | 
         
            -
                            sample = upsample_block(
         
     | 
| 1551 | 
         
            -
                                hidden_states=sample,
         
     | 
| 1552 | 
         
            -
                                temb=emb,
         
     | 
| 1553 | 
         
            -
                                res_hidden_states_tuple=res_samples,
         
     | 
| 1554 | 
         
            -
                                upsample_size=upsample_size,
         
     | 
| 1555 | 
         
            -
                            )
         
     | 
| 1556 | 
         
            -
             
     | 
| 1557 | 
         
            -
                    # 6. post-process
         
     | 
| 1558 | 
         
            -
                    if self.conv_norm_out:
         
     | 
| 1559 | 
         
            -
                        sample = self.conv_norm_out(sample)
         
     | 
| 1560 | 
         
            -
                        sample = self.conv_act(sample)
         
     | 
| 1561 | 
         
            -
                    sample = self.conv_out(sample)
         
     | 
| 1562 | 
         
            -
             
     | 
| 1563 | 
         
            -
                    # 7. scaling
         
     | 
| 1564 | 
         
            -
                    if guess_mode and not self.config.global_pool_conditions:
         
     | 
| 1565 | 
         
            -
                        scales = torch.logspace(-1, 0, len(controlnet_down_block_res_samples) + 1, device=sample.device)  # 0.1 to 1.0
         
     | 
| 1566 | 
         
            -
                        scales = scales * conditioning_scale
         
     | 
| 1567 | 
         
            -
                        controlnet_down_block_res_samples = [sample * scale for sample, scale in zip(controlnet_down_block_res_samples, scales)]
         
     | 
| 1568 | 
         
            -
                        mid_block_res_sample = mid_block_res_sample * scales[-1]  # last one
         
     | 
| 1569 | 
         
            -
                    else:
         
     | 
| 1570 | 
         
            -
                        controlnet_down_block_res_samples = [sample * conditioning_scale for sample in controlnet_down_block_res_samples]
         
     | 
| 1571 | 
         
            -
                        mid_block_res_sample = mid_block_res_sample * conditioning_scale
         
     | 
| 1572 | 
         
            -
             
     | 
| 1573 | 
         
            -
                    if self.config.global_pool_conditions:
         
     | 
| 1574 | 
         
            -
                        controlnet_down_block_res_samples = [
         
     | 
| 1575 | 
         
            -
                            torch.mean(sample, dim=(2, 3), keepdim=True) for sample in controlnet_down_block_res_samples
         
     | 
| 1576 | 
         
            -
                        ]
         
     | 
| 1577 | 
         
            -
                        mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
         
     | 
| 1578 | 
         
            -
             
     | 
| 1579 | 
         
            -
                    if USE_PEFT_BACKEND:
         
     | 
| 1580 | 
         
            -
                        # remove `lora_scale` from each PEFT layer
         
     | 
| 1581 | 
         
            -
                        unscale_lora_layers(self, lora_scale)
         
     | 
| 1582 | 
         
            -
             
     | 
| 1583 | 
         
            -
                    if not return_dict:
         
     | 
| 1584 | 
         
            -
                        return (sample, extracted_kvs, controlnet_down_block_res_samples, mid_block_res_sample)
         
     | 
| 1585 | 
         
            -
             
     | 
| 1586 | 
         
            -
                    return ExtractKVUNet2DConditionOutput(
         
     | 
| 1587 | 
         
            -
                        sample=sample, cached_kvs=extracted_kvs,
         
     | 
| 1588 | 
         
            -
                        down_block_res_samples=controlnet_down_block_res_samples, mid_block_res_sample=mid_block_res_sample
         
     | 
| 1589 | 
         
            -
                    )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        pipelines/sdxl_instantir.py
    CHANGED
    
    | 
         @@ -1377,6 +1377,7 @@ class InstantIRPipeline( 
     | 
|
| 1377 | 
         
             
                        image = image * self.vae.config.scaling_factor
         
     | 
| 1378 | 
         
             
                        if needs_upcasting:
         
     | 
| 1379 | 
         
             
                            self.vae.to(dtype=torch.float16)
         
     | 
| 
         | 
|
| 1380 | 
         
             
                    else:
         
     | 
| 1381 | 
         
             
                        height = int(height * self.vae_scale_factor)
         
     | 
| 1382 | 
         
             
                        width = int(width * self.vae_scale_factor)
         
     | 
| 
         | 
|
| 1377 | 
         
             
                        image = image * self.vae.config.scaling_factor
         
     | 
| 1378 | 
         
             
                        if needs_upcasting:
         
     | 
| 1379 | 
         
             
                            self.vae.to(dtype=torch.float16)
         
     | 
| 1380 | 
         
            +
                            image = image.to(dtype=torch.float16)
         
     | 
| 1381 | 
         
             
                    else:
         
     | 
| 1382 | 
         
             
                        height = int(height * self.vae_scale_factor)
         
     | 
| 1383 | 
         
             
                        width = int(width * self.vae_scale_factor)
         
     | 
    	
        requirements.txt
    CHANGED
    
    | 
         @@ -1,5 +1,6 @@ 
     | 
|
| 1 | 
         
            -
            diffusers
         
     | 
| 2 | 
         
             
            pillow
         
     | 
| 
         | 
|
| 3 | 
         
             
            accelerate==0.25.0
         
     | 
| 4 | 
         
             
            datasets==2.19.1
         
     | 
| 5 | 
         
             
            einops==0.8.0
         
     | 
| 
         | 
|
| 1 | 
         
            +
            diffusers==0.28.1
         
     | 
| 2 | 
         
             
            pillow
         
     | 
| 3 | 
         
            +
            spaces
         
     | 
| 4 | 
         
             
            accelerate==0.25.0
         
     | 
| 5 | 
         
             
            datasets==2.19.1
         
     | 
| 6 | 
         
             
            einops==0.8.0
         
     |