File size: 19,943 Bytes
7c15ab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
from dataclasses import dataclass
from typing import Optional, Tuple, Callable

import torch
from torch import nn
from transformers import DynamicCache
from .modeling_qwen2_vl import Qwen2VLForConditionalGeneration
from transformers.masking_utils import create_causal_mask
from transformers.utils import ModelOutput


def replace_token_pair_vectorized(
    input_ids: torch.Tensor,
    seg_start_token_id: int,
    seg_holder_token_id: int,
    vision_start_token_id: int,
    image_token_id: int,
) -> torch.Tensor:
    modified_ids = input_ids.clone()

    #creating aligned views of current and next tokens
    current_tokens = modified_ids[..., :-1]
    next_tokens = modified_ids[..., 1:]

    # parallel find all positions where (current == start) & (next == holder)
    mask = (current_tokens == seg_start_token_id) & (next_tokens == seg_holder_token_id)

    #   Use the mask to perform all replacements at once, in parallel
    modified_ids[..., :-1][mask] = vision_start_token_id
    modified_ids[seg_holder_token_id == modified_ids] = image_token_id

    return modified_ids, mask.sum()

import torch

def get_rope_index(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        seg_start_token_id: Optional[int] = None,
        seg_holder_token_id: Optional[int] = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:

        spatial_merge_size = self.config.vision_config.spatial_merge_size
        image_token_id = self.config.image_token_id
        video_token_id = self.config.video_token_id
        vision_start_token_id = self.config.vision_start_token_id

        input_ids = input_ids.clone()
        if seg_start_token_id is not None and seg_holder_token_id is not None:
            input_ids, num = replace_token_pair_vectorized(input_ids, seg_start_token_id, seg_holder_token_id,
                                                           vision_start_token_id, image_token_id)
            mask_grid_thw = image_grid_thw[-1].clone()
            mask_grid_thw = mask_grid_thw.unsqueeze(0).repeat([num, 1])
            image_grid_thw = torch.cat((image_grid_thw, mask_grid_thw), dim=0)

        mrope_position_deltas = []
        if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
            total_input_ids = input_ids
            if attention_mask is None:
                attention_mask = torch.ones_like(total_input_ids)
            position_ids = torch.ones(
                3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device
            )
            if isinstance(attention_mask, dict):
                attention_mask = attention_mask['raw_attention']
            image_index, video_index = 0, 0
            for i, input_ids in enumerate(total_input_ids):
                input_ids = input_ids[attention_mask[i].to(input_ids.device) == 1]
                image_nums, video_nums = 0, 0
                vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
                vision_tokens = input_ids[vision_start_indices + 1]
                image_nums = (vision_tokens == image_token_id).sum()
                video_nums = (vision_tokens == video_token_id).sum()
                input_tokens = input_ids.tolist()
                llm_pos_ids_list: list = []
                st = 0
                remain_images, remain_videos = image_nums, video_nums
                for _ in range(image_nums + video_nums):
                    if image_token_id in input_tokens and remain_images > 0:
                        ed_image = input_tokens.index(image_token_id, st)
                    else:
                        ed_image = len(input_tokens) + 1
                    if video_token_id in input_tokens and remain_videos > 0:
                        ed_video = input_tokens.index(video_token_id, st)
                    else:
                        ed_video = len(input_tokens) + 1
                    if ed_image < ed_video:
                        t, h, w = (
                            image_grid_thw[image_index][0],
                            image_grid_thw[image_index][1],
                            image_grid_thw[image_index][2],
                        )
                        image_index += 1
                        remain_images -= 1
                        ed = ed_image
                    else:
                        t, h, w = (
                            video_grid_thw[video_index][0],
                            video_grid_thw[video_index][1],
                            video_grid_thw[video_index][2],
                        )
                        video_index += 1
                        remain_videos -= 1
                        ed = ed_video
                    llm_grid_t, llm_grid_h, llm_grid_w = (
                        t.item(),
                        h.item() // spatial_merge_size,
                        w.item() // spatial_merge_size,
                    )
                    text_len = ed - st

                    st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
                    llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)

                    t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
                    h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
                    w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
                    llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
                    st = ed + llm_grid_t * llm_grid_h * llm_grid_w

                if st < len(input_tokens):
                    st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
                    text_len = len(input_tokens) - st
                    llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)

                llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
                position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
                mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
            mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
            return position_ids, mrope_position_deltas
        else:
            if attention_mask is not None:
                position_ids = attention_mask.long().cumsum(-1) - 1
                position_ids.masked_fill_(attention_mask == 0, 1)
                position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
                max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
                mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
            else:
                position_ids = (
                    torch.arange(input_ids.shape[1], device=input_ids.device)
                    .view(1, 1, -1)
                    .expand(3, input_ids.shape[0], -1)
                )
                mrope_position_deltas = torch.zeros(
                    [input_ids.shape[0], 1],
                    device=input_ids.device,
                    dtype=input_ids.dtype,
                )

            return position_ids, mrope_position_deltas

def get_rope_index_2_5(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        second_per_grid_ts: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        seg_start_token_id: Optional[int] = None,
        seg_holder_token_id: Optional[int] = None,
) -> tuple[torch.Tensor, torch.Tensor]:

    spatial_merge_size = self.config.vision_config.spatial_merge_size
    image_token_id = self.config.image_token_id
    video_token_id = self.config.video_token_id
    vision_start_token_id = self.config.vision_start_token_id
    input_ids = input_ids.clone()
    if seg_start_token_id is not None and seg_holder_token_id is not None:
        input_ids, num = replace_token_pair_vectorized(input_ids, seg_start_token_id, seg_holder_token_id,
                                                  vision_start_token_id, image_token_id)
        mask_grid_thw = image_grid_thw[-1].clone()
        mask_grid_thw = mask_grid_thw.unsqueeze(0).repeat([num, 1])
        image_grid_thw = torch.cat((image_grid_thw, mask_grid_thw), dim=0)

    mrope_position_deltas = []
    if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
        total_input_ids = input_ids
        if attention_mask is None:
            attention_mask = torch.ones_like(total_input_ids)
        position_ids = torch.ones(
            3,
            input_ids.shape[0],
            input_ids.shape[1],
            dtype=input_ids.dtype,
            device=input_ids.device,
        )
        image_index, video_index = 0, 0
        attention_mask = attention_mask.to(total_input_ids.device)
        for i, input_ids in enumerate(total_input_ids):
            input_ids = input_ids[attention_mask[i] == 1]
            image_nums, video_nums = 0, 0
            vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
            vision_tokens = input_ids[vision_start_indices + 1]
            image_nums = (vision_tokens == image_token_id).sum()
            video_nums = (vision_tokens == video_token_id).sum()
            input_tokens = input_ids.tolist()
            llm_pos_ids_list: list = []
            st = 0
            remain_images, remain_videos = image_nums, video_nums
            for _ in range(image_nums + video_nums):
                if image_token_id in input_tokens and remain_images > 0:
                    ed_image = input_tokens.index(image_token_id, st)
                else:
                    ed_image = len(input_tokens) + 1
                if video_token_id in input_tokens and remain_videos > 0:
                    ed_video = input_tokens.index(video_token_id, st)
                else:
                    ed_video = len(input_tokens) + 1
                if ed_image < ed_video:
                    t, h, w = (
                        image_grid_thw[image_index][0],
                        image_grid_thw[image_index][1],
                        image_grid_thw[image_index][2],
                    )
                    second_per_grid_t = 0
                    image_index += 1
                    remain_images -= 1
                    ed = ed_image

                else:
                    t, h, w = (
                        video_grid_thw[video_index][0],
                        video_grid_thw[video_index][1],
                        video_grid_thw[video_index][2],
                    )
                    if second_per_grid_ts is not None:
                        second_per_grid_t = second_per_grid_ts[video_index]
                    else:
                        second_per_grid_t = 1.0
                    video_index += 1
                    remain_videos -= 1
                    ed = ed_video
                llm_grid_t, llm_grid_h, llm_grid_w = (
                    t.item(),
                    h.item() // spatial_merge_size,
                    w.item() // spatial_merge_size,
                )
                text_len = ed - st

                st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
                llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)

                range_tensor = torch.arange(llm_grid_t).view(-1, 1)
                expanded_range = range_tensor.expand(-1, llm_grid_h * llm_grid_w)

                ## normalize type, send to device.
                second_per_grid_t = torch.as_tensor(
                    second_per_grid_t, dtype=range_tensor.dtype, device=range_tensor.device
                )

                time_tensor = expanded_range * second_per_grid_t * self.config.vision_config.tokens_per_second

                time_tensor_long = time_tensor.long()
                t_index = time_tensor_long.flatten()

                h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
                w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
                llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
                st = ed + llm_grid_t * llm_grid_h * llm_grid_w

            if st < len(input_tokens):
                st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
                text_len = len(input_tokens) - st
                llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)

            llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
            position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
            mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
        mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
        return position_ids, mrope_position_deltas
    else:
        if attention_mask is not None:
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
            max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
            mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
        else:
            position_ids = (
                torch.arange(input_ids.shape[1], device=input_ids.device)
                .view(1, 1, -1)
                .expand(3, input_ids.shape[0], -1)
            )
            mrope_position_deltas = torch.zeros(
                [input_ids.shape[0], 1],
                device=input_ids.device,
                dtype=input_ids.dtype,
            )

        return position_ids, mrope_position_deltas

@dataclass
class CustomModelOutput(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    bi_logits: Optional[torch.FloatTensor] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


import torch


def create_bidirectional_lookup_function(seg_mask_tensor: torch.Tensor) -> Callable:

    def lookup_function(batch_idx, head_idx, q_idx, kv_idx) -> bool:
        is_query_in_seg = seg_mask_tensor[batch_idx, q_idx]

        return is_query_in_seg

    return lookup_function

def _create_hybrid_mask_and_dependencies(
        self,
        seg_mask: torch.Tensor,
        inputs_embeds: torch.Tensor,
        attention_mask: torch.Tensor,
        position_ids: torch.Tensor,
        **kwargs,
):


    bidirectional_mask_fn = create_bidirectional_lookup_function(seg_mask)

    use_cache = kwargs.get('use_cache', None)
    if self.is_gradient_checkpointing and self.training:
        if use_cache:
            use_cache = False

    past_key_values = kwargs.get('past_key_values', None)
    if use_cache and past_key_values is None and not torch.jit.is_tracing():
        past_key_values = DynamicCache(config=self.config)

    cache_position = kwargs.get('cache_position', None)
    if cache_position is None:
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
        cache_position = torch.arange(
            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
        )

    if position_ids is None:
        local_position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
    elif position_ids.ndim == 2:
        local_position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
    else:
        local_position_ids = position_ids

    if local_position_ids.ndim == 3 and local_position_ids.shape[0] == 4:
        text_position_ids = local_position_ids[0]
        final_position_ids = local_position_ids[1:]
    else:
        text_position_ids = local_position_ids[0]
        final_position_ids = position_ids  

    mask_kwargs = {
        "config": self.config,
        "input_embeds": inputs_embeds,
        "attention_mask": attention_mask,
        "cache_position": cache_position,
        "past_key_values": past_key_values,
        "position_ids": text_position_ids,
        "or_mask_function": bidirectional_mask_fn,
    }
    hybrid_attention_mask = create_causal_mask(**mask_kwargs)

    return hybrid_attention_mask, final_position_ids, past_key_values, use_cache, cache_position

class SegQwenVL(Qwen2VLForConditionalGeneration):
    def __init__(self, config):
        super().__init__(config)
        self.classifier = nn.Linear(config.hidden_size, 1)
        self.model._create_hybrid_mask_and_dependencies = _create_hybrid_mask_and_dependencies.__get__(self)
        self.model.get_rope_index = get_rope_index.__get__(self)

    def forward(self, input_ids: torch.LongTensor = None, attention_mask: torch.FloatTensor = None, pixel_values: torch.FloatTensor = None,
                position_ids=None, labels: torch.LongTensor = None, do_classification: bool=False, output_hidden_states=False, **kwargs,):

        if do_classification:  
            inputs_embeds = self.model.get_input_embeddings()(input_ids)
            image_embeds = self.model.get_image_features(pixel_values, kwargs['image_grid_thw'])
            image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
            image_mask, _ = self.model.get_placeholder_mask(
                input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds
            )
            inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
            seg_mask = (input_ids == self.mask_token_id)

            inputs_embeds[seg_mask] = inputs_embeds[seg_mask] + image_embeds[-seg_mask.sum():]

            outputs = self.model(
                input_ids=input_ids,
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                pixel_values=None,
                output_hidden_states=True,
                position_ids=position_ids,
                seg_mask=seg_mask,
                **kwargs,
            )
            last_hidden_state = outputs.hidden_states[-1]
            logits = self.classifier(last_hidden_state)

            return CustomModelOutput(
                bi_logits=logits,
                # hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
            )

        else:
            if labels is not None:
                output_hidden_states = True

            original_output = super().forward(
                input_ids=input_ids,
                attention_mask=attention_mask,
                pixel_values=pixel_values,
                labels=labels,
                output_hidden_states=output_hidden_states,
                position_ids=position_ids,
                **kwargs,
            )
            if labels is not None:
                last_hidden_state = original_output.hidden_states[-1]
                dummy_logits = self.classifier(last_hidden_state) 
                if hasattr(original_output, 'loss') and original_output.loss is not None:
                    dummy_loss = dummy_logits[0, 0].sum() * 0.0
                    original_output.loss += dummy_loss

            return original_output