Spaces:
Running
Running
| import streamlit as st | |
| from transformers import pipeline | |
| # Load the pre-trained model and tokenizer | |
| qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad") | |
| def answer_question(context: str, question: str) -> str: | |
| result = qa_pipeline(question=question, context=context) | |
| return result['answer'] | |
| # Streamlit app | |
| st.title("Question-Answering Bot") | |
| st.write("Enter the context text and ask a question about it.") | |
| context = st.text_area("Context", height=300) | |
| question = st.text_input("Question") | |
| if st.button("Get Answer"): | |
| if context and question: | |
| answer = answer_question(context, question) | |
| st.write(f"**Question:** {question}") | |
| st.write(f"**Answer:** {answer}") | |
| else: | |
| st.write("Please enter both the context and the question.") | |