Mostafa174's picture
fixing UI
c8cbe59
import gradio as gr
import os
import numpy as np
from scipy.special import expit
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from PyPDF2 import PdfReader
from docx import Document
# Load Model and Tokenizer
MODEL = "cardiffnlp/tweet-topic-21-multi"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
class_mapping = model.config.id2label
# Text Analyzer
def analyze_topics(text):
detected_topics = []
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
outputs = model(**inputs)
scores = outputs.logits[0].detach().numpy()
scores = expit(scores)
predictions = (scores >= 0.5).astype(int)
for i, pred in enumerate(predictions):
if pred:
topic_name = class_mapping[i]
confidence = scores[i]
detected_topics.append(f"• {topic_name} ({confidence:.2f})")
if detected_topics:
return "\n".join(detected_topics)
else:
return "No specific topics detected."
# Document Analyzer Helpers
def extract_text_from_file(file_path):
ext = os.path.splitext(file_path)[1].lower()
if ext == ".pdf":
reader = PdfReader(file_path)
text = " ".join([page.extract_text() for page in reader.pages if page.extract_text()])
elif ext == ".docx":
doc = Document(file_path)
text = "\n".join([p.text for p in doc.paragraphs])
elif ext == ".txt":
with open(file_path, "r", encoding="utf-8") as f:
text = f.read()
else:
raise ValueError("Unsupported file format. Please upload a PDF, DOCX, or TXT file.")
return text.strip()
def analyze_document(file):
if file is None:
return "Please upload a document first."
text = extract_text_from_file(file.name)
if not text:
return "No readable text found in document."
# Split into chunks for large docs
words = text.split()
chunks = [" ".join(words[i:i + 400]) for i in range(0, len(words), 400)]
all_detected_topics = {}
for chunk in chunks:
inputs = tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512)
outputs = model(**inputs)
scores = outputs.logits[0].detach().numpy()
scores = expit(scores)
predictions = (scores >= 0.5).astype(int)
for i, pred in enumerate(predictions):
if pred:
topic_name = class_mapping[i]
confidence = scores[i]
all_detected_topics.setdefault(topic_name, []).append(confidence)
if all_detected_topics:
summary = [
f"• {topic} (avg confidence: {np.mean(confs):.2f})"
for topic, confs in all_detected_topics.items()
]
summary.sort(key=lambda x: float(x.split(': ')[-1].rstrip(')')), reverse=True)
return "\n".join(summary)
else:
return "No specific topics detected in document."
# -------------------------
# Custom CSS for Dark Theme
# -------------------------
css = """
body, .gradio-container {
background-color: #1a1a1a !important;
color: #f5f5f5 !important;
font-family: 'Inter', sans-serif !important;
}
h1, h2, h3, label {
color: #ff9900 !important;
font-weight: 600 !important;
}
textarea, input, .upload-box, .gr-box {
background-color: #2a2a2a !important;
color: #f5f5f5 !important;
border: 1px solid #3a3a3a !important;
border-radius: 10px !important;
}
button {
background-color: #ff9900 !important;
color: #1a1a1a !important;
font-weight: 600 !important;
border-radius: 8px !important;
border: none !important;
transition: 0.25s ease-in-out;
}
button:hover {
background-color: #ffb84d !important;
}
.output-textbox {
background-color: #252525 !important;
color: #ffd480 !important;
border: 1px solid #3a3a3a !important;
border-radius: 10px !important;
}
.gr-tabs, .tabitem {
background-color: transparent !important;
}
footer, .footer, .svelte-1xdkkgx {
background: none !important;
border: none !important;
box-shadow: none !important;
color: #888 !important;
text-align: center !important;
}
"""
# -------------------------
# Layout Using Blocks
# -------------------------
with gr.Blocks(css=css, theme=gr.themes.Base(primary_hue="orange")) as app:
gr.Markdown("<h1 style='text-align:center;'>🧠 AI Topic Analyzer</h1>")
gr.Markdown(
"Analyze text or upload a document to detect key topics using CardiffNLP’s Tweet Topic model."
)
with gr.Tabs():
with gr.Tab("💬 Text Analyzer"):
text_input = gr.Textbox(
label="📝 Enter Text", placeholder="Type or paste text here...", lines=4
)
text_output = gr.Textbox(label="🎯 Detected Topics", elem_classes=["output-textbox"])
analyze_text_btn = gr.Button("Analyze Text")
analyze_text_btn.click(analyze_topics, inputs=text_input, outputs=text_output)
with gr.Tab("📄 Document Analyzer"):
file_input = gr.File(label="📄 Upload PDF, DOCX, or TXT", file_types=[".pdf", ".docx", ".txt"])
doc_output = gr.Textbox(label="📘 Detected Topics", elem_classes=["output-textbox"])
analyze_doc_btn = gr.Button("Analyze Document")
analyze_doc_btn.click(analyze_document, inputs=file_input, outputs=doc_output)
gr.Markdown("<p style='text-align:center; color:#888;'>Built with ❤️ using Gradio & Transformers</p>")
# -------------------------
# Launch
# -------------------------
if __name__ == "__main__":
app.launch()