Spaces:
Sleeping
Sleeping
File size: 18,591 Bytes
fa2498f 6e031de 2742aad fa2498f 2742aad fa2498f 2742aad fa2498f 2742aad fa2498f 2742aad 6e031de 2742aad 6e031de 2742aad 6e031de 2742aad 6e031de 2742aad fa2498f 2742aad fa2498f 2742aad 6e031de 2742aad 6e031de 73bd487 2742aad fa2498f 2742aad fa2498f 2742aad fa2498f 2742aad fa2498f 2742aad fa2498f 2742aad fa2498f 2742aad fa2498f 73bd487 2742aad 73bd487 fa2498f 2742aad 73bd487 2742aad 73bd487 2742aad fa2498f 2742aad fa2498f 2742aad 73bd487 fa2498f 2742aad 73bd487 2742aad fa2498f 2742aad fa2498f 73bd487 fa2498f 2742aad 73bd487 2742aad 73bd487 2742aad 73bd487 2742aad 73bd487 2742aad fa2498f 73bd487 fa2498f 73bd487 2742aad 6e031de 73bd487 fa2498f 73bd487 fa2498f 73bd487 fa2498f 73bd487 2742aad fa2498f 73bd487 fa2498f 2742aad fa2498f 2742aad fa2498f 2742aad 6e031de 73bd487 fa2498f 2742aad fa2498f 2742aad fa2498f 2742aad fa2498f 2742aad fa2498f 6e031de fa2498f 2742aad 6e031de 2742aad 6e031de 2742aad fa2498f 6e031de fa2498f 73bd487 fa2498f 6e031de 73bd487 fa2498f 6e031de fa2498f 2742aad fa2498f 2742aad fa2498f 2742aad 6e031de 2742aad fa2498f 2742aad fa2498f 2742aad 6e031de fa2498f 73bd487 fa2498f 73bd487 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import gradio as gr
import pandas as pd
import io
import torch
import numpy as np
from tirex import load_model
import matplotlib.pyplot as plt
from datetime import timedelta
import warnings
warnings.filterwarnings('ignore')
# Load model (once)
model = load_model("NX-AI/TiRex")
def load_columns(file):
if file is None:
return (gr.Dropdown(choices=[], label="Select Time Column", interactive=True),
gr.Dropdown(choices=[], label="Select Value Column", interactive=True),
gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Historical Start Index"),
gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Historical End Index"))
try:
# Handle file as path string (Gradio convention)
with open(file, 'rb') as f:
content = f.read()
df_preview = pd.read_csv(io.BytesIO(content))
# All columns for time selection
all_cols = df_preview.columns.tolist()
time_choices = [(col, col) for col in all_cols]
time_value = all_cols[0] if all_cols else None
# Available numeric columns for forecast
numeric_cols = df_preview.select_dtypes(include=['number']).columns.tolist()
if numeric_cols:
value_choices = [(col, col) for col in numeric_cols]
value_value = numeric_cols[0]
else:
value_choices = []
value_value = None
n_rows = len(df_preview)
time_dropdown = gr.Dropdown(
choices=time_choices,
value=time_value,
label="Select Time Column",
interactive=True
)
value_dropdown = gr.Dropdown(
choices=value_choices,
value=value_value,
label="Select Value Column",
interactive=True
) if value_choices else gr.Dropdown(
choices=[],
value=None,
label="No numeric columns found",
interactive=False
)
start_slider = gr.Slider(
minimum=1, maximum=n_rows, value=1, step=1,
label="Historical Start Index"
)
end_slider = gr.Slider(
minimum=1, maximum=n_rows, value=n_rows, step=1,
label="Historical End Index"
)
return time_dropdown, value_dropdown, start_slider, end_slider
except Exception as e:
return (gr.Dropdown(
choices=[],
value=None,
label=f"Error loading CSV: {str(e)}",
interactive=False
), gr.Dropdown(
choices=[],
value=None,
label=f"Error loading CSV: {str(e)}",
interactive=False
), gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Historical Start Index"),
gr.Slider(minimum=1, maximum=1, value=1, step=1, label="Historical End Index"))
def update_ma_visibility(add_ma):
return gr.Slider(visible=add_ma)
def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_length, confidence, add_trendline, add_moving_average, ma_window, add_skew_viz):
if file is None or time_col is None or selected_col is None:
return None, "### Error\nPlease upload a CSV and select time and value columns!"
try:
# Handle file as path string (Gradio convention)
with open(file, 'rb') as f:
content = f.read()
df = pd.read_csv(io.BytesIO(content))
# Validate columns exist
if time_col not in df.columns or selected_col not in df.columns:
return None, f"### Error\nSelected columns '{time_col}' or '{selected_col}' not found in CSV."
# Rename selected columns
df = df.rename(columns={time_col: 'date', selected_col: 'sales'})
# Validate
required_cols = ['date', 'sales']
if not all(col in df.columns for col in required_cols):
return None, f"### Error\nMissing renamed columns."
# Prep data
df['date'] = pd.to_datetime(df['date'])
df = df.set_index('date').sort_index()
full_len = len(df)
context_start = max(0, int(start_idx) - 1)
context_end = min(full_len, int(end_idx))
context_df = df.iloc[context_start:context_end]
held_out_df = df.iloc[context_end:] if context_end < full_len else pd.DataFrame(index=pd.DatetimeIndex([]), columns=df.columns)
if len(context_df) < 10:
return None, "### Error\nNeed at least 10 data points in the selected historical range."
context_series = context_df['sales'].dropna().values
print(f"Loaded context: {len(context_series)} points from {context_df.index.min().date()} to {context_df.index.max().date()} (Column: {selected_col})") # For logs
# Infer freq
freq = pd.infer_freq(context_df.index)
if freq is None:
freq = 'D'
print(f"Frequency: '{freq}'.")
# Prep context
context_len = min(len(context_series), 2048)
context = torch.tensor(context_series[-context_len:]).unsqueeze(0).float()
pred_len = prediction_length
conf_level = confidence / 100.0
lower_alpha_slider = (1 - conf_level) / 2
upper_alpha_slider = 1 - lower_alpha_slider
# Fixed inner level: 50%
lower_alpha_50 = 0.25
upper_alpha_50 = 0.75
quantiles, mean = model.forecast(context=context, prediction_length=pred_len)
# Median is always 50th percentile (index 4)
median = quantiles[0, :, 4].numpy()
# Extract quantiles array
q = quantiles[0].detach().numpy() # (pred_len, 9)
alphas = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
# Compute bounds for 50% and slider
lower50 = np.zeros(pred_len)
upper50 = np.zeros(pred_len)
lower_slider = np.zeros(pred_len)
upper_slider = np.zeros(pred_len)
skew_ratios = np.zeros(pred_len)
delta_skews = np.zeros(pred_len)
skew_directions = []
epsilon = 1e-8
for t in range(pred_len):
q_t = q[t]
lower50[t] = np.interp(lower_alpha_50, alphas, q_t)
upper50[t] = np.interp(upper_alpha_50, alphas, q_t)
lower_slider[t] = np.interp(lower_alpha_slider, alphas, q_t)
upper_slider[t] = np.interp(upper_alpha_slider, alphas, q_t)
# Compute skew direction based on asymmetry around median
med = median[t]
upside_dist = upper_slider[t] - med
downside_dist = med - lower_slider[t]
total_dist = upside_dist + downside_dist + epsilon
skew_ratios[t] = (upside_dist - downside_dist) / total_dist
# Delta for momentum (shift from previous step)
if t == 0:
delta_skews[t] = 0.0
else:
delta_skews[t] = skew_ratios[t] - skew_ratios[t-1]
# Existing categorical (optional: derive from skew_ratio for compat)
if skew_ratios[t] > 0.1:
skew_directions.append("Upside")
elif skew_ratios[t] < -0.1:
skew_directions.append("Downside")
else:
skew_directions.append("Neutral")
# Mean forecast
mean_forecast = mean[0].detach().numpy()
# Future dates
last_date = context_df.index[-1]
if freq == 'D':
future_dates = pd.date_range(start=last_date + timedelta(days=1), periods=pred_len, freq='D')
else:
future_dates = pd.date_range(start=last_date + pd.DateOffset(1), periods=pred_len, freq=freq)
pred_df = pd.DataFrame({
'date': future_dates,
'predicted_sales_median': median,
'predicted_sales_lower': lower_slider,
'predicted_sales_upper': upper_slider,
'predicted_sales_mean': mean_forecast,
'skew_direction': skew_directions,
'skew_ratio': skew_ratios,
'delta_skew': delta_skews
}).set_index('date')
# Count skews for summary
upside_count = sum(1 for r in skew_ratios if r > 0.1)
downside_count = sum(1 for r in skew_ratios if r < -0.1)
neutral_count = pred_len - upside_count - downside_count
# NEW: Summary stats for skew momentum
avg_skew = skew_ratios.mean()
max_momentum_shift = abs(delta_skews).max()
# Prepare markdown output (broken into smaller strings to avoid multiline f-string parsing issues)
markdown_text = "### Summary\n"
markdown_text += "- **Number of Historical Periods Used:** {} points\n".format(len(context_series))
markdown_text += "- **Held Out Periods:** {} points {}\n".format(len(held_out_df), "(Full Context Used)" if len(held_out_df) == 0 else "(For Validation)")
markdown_text += "- **Prediction Length:** {} periods\n".format(pred_len)
markdown_text += "- **Prediction Interval:** {}% (alphas: {:.3f} - {:.3f})\n".format(confidence, lower_alpha_slider, upper_alpha_slider)
markdown_text += "- **Sum of Median Predicted Values:** {:.2f}\n".format(pred_df['predicted_sales_median'].sum())
markdown_text += "- **Sum of Mean Predicted Values:** {:.2f}\n".format(pred_df['predicted_sales_mean'].sum())
markdown_text += "- **Skew Distribution:** {} Upside, {} Downside, {} Neutral\n".format(upside_count, downside_count, neutral_count)
markdown_text += "- **Average Skew Ratio:** {:.3f} (momentum: max |Ξ| = {:.3f})\n\n".format(avg_skew, max_momentum_shift)
forecast_table = "### TiRex Forecast Results (Median + {}% Prediction Interval)\n\n".format(confidence)
forecast_table += "| Date | Median | Lower Bound | Upper Bound | Mean | Skew Direction | Skew Ratio | Ξ Skew |\n"
forecast_table += "|------|--------|-------------|-------------|------|----------------|------------|--------|\n"
for idx, row in pred_df.iterrows():
forecast_table += "| {} | {:.2f} | {:.2f} | {:.2f} | {:.2f} | {} | {:.3f} | {:.3f} |\n".format(
idx.strftime('%Y-%m-%d'),
row['predicted_sales_median'],
row['predicted_sales_lower'],
row['predicted_sales_upper'],
row['predicted_sales_mean'],
row['skew_direction'],
row['skew_ratio'],
row['delta_skew']
)
sample_data = "### Sample Historical Data (Context)\n"
sample_data += "```\n" + context_df.head().to_string() + "\n```"
markdown_text += f'\n<details><summary>Click to expand Forecast Table</summary>\n\n{forecast_table}\n</details>\n\n'
markdown_text += f'<details><summary>Click to expand Sample Historical Data</summary>\n\n{sample_data}\n</details>'
# Create plot (single subplot)
fig, ax = plt.subplots(figsize=(14, 7))
fig.set_dpi(300) # High resolution for PNG zoom
# Historical and held-out
ax.plot(context_df.index, context_df['sales'], label='Historical Data', color='#1f77b4', linewidth=1.5, alpha=0.8)
if not held_out_df.empty:
ax.plot(held_out_df.index, held_out_df['sales'], label='Held Out Actual (Validation)', color='#2ca02c', linestyle=':', linewidth=2)
if add_trendline:
x = np.arange(len(context_df))
y = context_df['sales'].values
if len(x) > 1:
coeffs = np.polyfit(x, y, 1)
trend = np.polyval(coeffs, x)
ax.plot(context_df.index, trend, label='Trendline', color='black', linestyle='-', linewidth=1.5)
if add_moving_average:
window = int(ma_window)
ma = context_df['sales'].rolling(window=window, min_periods=1).mean()
ax.plot(context_df.index, ma, label=f'Moving Average ({window} periods)', color='purple', linewidth=2)
# Median forecast: regular green line
ax.plot(pred_df.index, median, label='Median Forecast', color='green', linewidth=2, alpha=0.9)
# Fan chart: non-overlapping bands
# Inner 50% (lightest, center)
ax.fill_between(pred_df.index, lower50, upper50,
color='#d62728', alpha=0.1, label='50% Prediction Interval')
# Wings: between 50% and slider level (medium)
ax.fill_between(pred_df.index, lower_slider, lower50,
color='#d62728', alpha=0.3)
ax.fill_between(pred_df.index, upper50, upper_slider,
color='#d62728', alpha=0.3, label=f'{confidence}% Prediction Interval')
# Optional skew visualization on twin axis (light lines)
skew_handles = []
if add_skew_viz:
ax2 = ax.twinx()
# Light line for skew_ratio
line1, = ax2.plot(pred_df.index, skew_ratios, label='Skew Ratio', color='lightblue', linewidth=1, alpha=0.6)
skew_handles.append(line1)
# Light line for delta_skew (momentum) - milder color
line2, = ax2.plot(pred_df.index, delta_skews, label='Skew Momentum', color='lightgray', linewidth=1, alpha=0.6)
skew_handles.append(line2)
ax2.set_ylabel('Skew (-1 to 1)', color='lightblue')
ax2.tick_params(colors='lightblue')
# Set limits for visibility
ax2.set_ylim(-1.2, 1.2)
ax.set_title(f'{selected_col} Forecast with TiRex (Context: {context_start+1}-{context_end}, Horizon: {pred_len})', fontsize=16, fontweight='bold')
ax.set_xlabel('Date', fontsize=12)
ax.set_ylabel(selected_col, fontsize=12)
# Combined legend to avoid overlap
if add_skew_viz:
handles1, labels1 = ax.get_legend_handles_labels()
handles2, labels2 = ax2.get_legend_handles_labels()
ax.legend(handles1 + handles2, labels1 + labels2, fontsize=10, loc='upper left')
else:
ax.legend(fontsize=10)
ax.tick_params(axis='x', rotation=45)
plt.tight_layout()
return fig, markdown_text
except Exception as e:
return None, f"### Error\n{str(e)}\n\nTips: Ensure the time column can be parsed as dates; check NaNs/zeros; ensure data is valid."
# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="red"), title="TiRex Forecaster") as demo:
gr.HTML("""
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap" rel="stylesheet">
<style>
:root {
--font-family: Inter, ui-sans-serif, system-ui, sans-serif;
}
.gradio-container * {
font-family: var(--font-family) !important;
}
</style>
""")
gr.Markdown("""
# TiRex Forecaster Dashboard
Upload a CSV file with a time column and numeric columns. Select the time column and one numeric column to forecast future values using the TiRex model.
""")
with gr.Row(variant="panel"):
with gr.Column(scale=1):
csv_file = gr.File(
file_types=[".csv"],
label="Upload CSV File",
elem_id="file_upload"
)
gr.Markdown("The minimum effective input is around 128 time steps per series. Use a full context of 2048 steps for optimal performance.")
time_dropdown = gr.Dropdown(
choices=[],
label="Select Time Column",
interactive=True,
elem_id="time_select"
)
column_dropdown = gr.Dropdown(
choices=[],
label="Select Value Column",
interactive=True,
elem_id="column_select"
)
start_slider = gr.Slider(
minimum=1, maximum=1, value=1, step=1,
label="Historical Start Index",
elem_id="start_idx"
)
end_slider = gr.Slider(
minimum=1, maximum=1, value=1, step=1,
label="Historical End Index",
elem_id="end_idx"
)
prediction_length = gr.Slider(
minimum=1, maximum=720, value=100, step=1,
label="Prediction Length",
elem_id="pred_length"
)
confidence = gr.Slider(
minimum=50, maximum=95, value=80, step=5,
label="Prediction Interval (%)",
elem_id="confidence"
)
trend_checkbox = gr.Checkbox(
label="Add Trendline",
value=False
)
ma_checkbox = gr.Checkbox(
label="Add Moving Average",
value=False
)
ma_slider = gr.Slider(
minimum=3, maximum=30, value=7, step=1,
label="Moving Average Window (Periods)",
elem_id="ma_window",
visible=False
)
skew_checkbox = gr.Checkbox(
label="Add Skew Ratio & Momentum",
value=False
)
run_button = gr.Button(
"Run forecast",
variant="primary",
size="lg",
elem_id="run_btn"
)
with gr.Column(scale=2):
forecast_plot = gr.Plot(
label="Forecast Visualization",
elem_id="plot"
)
output_text = gr.Markdown(
"### Welcome!\nUpload your CSV to get started.",
elem_id="output"
)
gr.Markdown("**Built by** [next one gmbh](https://nextone.at/?utm_source=dashboard&utm_medium=referrer&utm_campaign=tirex)")
# Event for updating dropdowns on file upload
csv_file.change(
load_columns,
inputs=csv_file,
outputs=[time_dropdown, column_dropdown, start_slider, end_slider]
)
# Event for updating MA slider visibility
ma_checkbox.change(
update_ma_visibility,
inputs=[ma_checkbox],
outputs=[ma_slider]
)
# Event for running forecast
run_button.click(
run_forecast,
inputs=[csv_file, time_dropdown, column_dropdown, start_slider, end_slider, prediction_length, confidence, trend_checkbox, ma_checkbox, ma_slider, skew_checkbox],
outputs=[forecast_plot, output_text]
)
if __name__ == "__main__":
demo.launch() |