Spaces:
Paused
Paused
File size: 13,350 Bytes
f6212ca 5e32fba f6212ca 15b8e5b 1be336f f6212ca 3622941 15b8e5b 9f63005 15b8e5b 3622941 f6212ca 5e32fba f6212ca 15b8e5b 9f63005 a13563f 15b8e5b 9f63005 15b8e5b a13563f 15b8e5b 3622941 15b8e5b 9f63005 15b8e5b 3622941 15b8e5b 9f63005 3622941 15b8e5b 3622941 15b8e5b 9f63005 15b8e5b a13563f 15b8e5b a13563f 9f63005 da70ee3 3a26cb9 da70ee3 ad9c7fd da70ee3 3a26cb9 ad9c7fd 5e32fba ad9c7fd 3a26cb9 a12ec75 ad9c7fd 9f63005 3622941 ad9c7fd 9f63005 ad9c7fd 9f63005 3622941 ad9c7fd 9f63005 ad9c7fd 9f63005 ad9c7fd 9f63005 ad9c7fd 9f63005 ad9c7fd 9f63005 3622941 ad9c7fd 9f63005 ad9c7fd 13d07d6 ad9c7fd 9f63005 ad9c7fd 9f63005 ad9c7fd d0ff9d9 7bf9267 ad9c7fd d0ff9d9 9f63005 5e32fba 9f63005 3622941 9f63005 15b8e5b 3622941 9f63005 3622941 9f63005 3622941 9f63005 3622941 9f63005 3622941 9f63005 3622941 9f63005 15b8e5b f6212ca 5e32fba 3622941 9f63005 05acf34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import os
import torch
import numpy as np
from PIL import Image
import gradio as gr
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from dataclasses import dataclass
import spaces
# This dataclass definition is required for the processor
@dataclass
class VLChatProcessorOutput():
sft_format: str
input_ids: torch.Tensor
pixel_values: torch.Tensor
num_image_tokens: torch.IntTensor
def __len__(self):
return len(self.input_ids)
def process_image(image_paths, vl_chat_processor):
"""Processes a list of image paths into pixel values."""
images = [Image.open(image_path).convert("RGB") for image_path in image_paths]
images_outputs = vl_chat_processor.image_processor(images, return_tensors="pt")
return images_outputs['pixel_values']
# === Load Janus model and processor ===
# This setup assumes the necessary model files are accessible.
model_path = "FreedomIntelligence/Janus-4o-7B"
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True, torch_dtype=torch.bfloat16
)
vl_gpt = vl_gpt.cuda().eval()
# === Text-and-Image-to-Image generation ===
def text_and_image_to_image_generate(input_prompt, input_image_path, output_path, vl_chat_processor, vl_gpt, temperature=1.0, parallel_size=2, cfg_weight=5, cfg_weight2=5):
"""Generates an image from a text prompt and an input image."""
torch.cuda.empty_cache()
input_img_tokens = vl_chat_processor.image_start_tag + vl_chat_processor.image_tag * vl_chat_processor.num_image_tokens + vl_chat_processor.image_end_tag + vl_chat_processor.image_start_tag + vl_chat_processor.pad_tag * vl_chat_processor.num_image_tokens + vl_chat_processor.image_end_tag
output_img_tokens = vl_chat_processor.image_start_tag
pre_data = []
input_images = [input_image_path]
img_len = len(input_images)
prompts = input_img_tokens * img_len + input_prompt
conversation = [
{"role": "<|User|>", "content": prompts},
{"role": "<|Assistant|>", "content": ""}
]
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=conversation,
sft_format=vl_chat_processor.sft_format,
system_prompt="",
)
sft_format = sft_format + output_img_tokens
image_token_num_per_image = 576
img_size = 384
patch_size = 16
with torch.inference_mode():
input_image_pixel_values = process_image(input_images, vl_chat_processor).to(torch.bfloat16).cuda()
_, _, info_input = vl_gpt.gen_vision_model.encode(input_image_pixel_values)
image_tokens_input = info_input[2].detach().reshape(input_image_pixel_values.shape[0], -1)
image_embeds_input = vl_gpt.prepare_gen_img_embeds(image_tokens_input)
input_ids = torch.LongTensor(vl_chat_processor.tokenizer.encode(sft_format))
encoder_pixel_values = process_image(input_images, vl_chat_processor).cuda()
tokens = torch.zeros((parallel_size * 3, len(input_ids)), dtype=torch.long)
for i in range(parallel_size * 3):
tokens[i, :] = input_ids
if i % 3 == 2:
tokens[i, 1:-1] = vl_chat_processor.pad_id
pre_data.append(VLChatProcessorOutput(sft_format=sft_format, pixel_values=encoder_pixel_values, input_ids=tokens[i-2], num_image_tokens=[vl_chat_processor.num_image_tokens] * img_len))
pre_data.append(VLChatProcessorOutput(sft_format=sft_format, pixel_values=encoder_pixel_values, input_ids=tokens[i-1], num_image_tokens=[vl_chat_processor.num_image_tokens] * img_len))
pre_data.append(VLChatProcessorOutput(sft_format=sft_format, pixel_values=None, input_ids=tokens[i], num_image_tokens=[]))
prepare_inputs = vl_chat_processor.batchify(pre_data)
inputs_embeds = vl_gpt.prepare_inputs_embeds(
input_ids=tokens.cuda(),
pixel_values=prepare_inputs['pixel_values'].to(torch.bfloat16).cuda(),
images_emb_mask=prepare_inputs['images_emb_mask'].cuda(),
images_seq_mask=prepare_inputs['images_seq_mask'].cuda()
)
image_gen_indices = (tokens == vl_chat_processor.image_end_id).nonzero()
for ii, ind in enumerate(image_gen_indices):
if ii % 4 == 0:
offset = ind[1] + 2
inputs_embeds[ind[0], offset: offset + image_embeds_input.shape[1], :] = image_embeds_input[(ii // 2) % img_len]
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()
# --- FIX: Initialize past_key_values for cached generation ---
past_key_values = None
for i in range(image_token_num_per_image):
outputs = vl_gpt.language_model.model(
inputs_embeds=inputs_embeds,
use_cache=True,
past_key_values=past_key_values # Pass cached values
)
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond_full = logits[0::3, :]
logit_cond_part = logits[1::3, :]
logit_uncond = logits[2::3, :]
logit_cond = (logit_cond_full + cfg_weight2 * logit_cond_part) / (1 + cfg_weight2)
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
# --- FIX: Update past_key_values with the output from the current step ---
past_key_values = outputs.past_key_values
dec = vl_gpt.gen_vision_model.decode_code(
generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, img_size // patch_size, img_size // patch_size]
)
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
output_dir = os.path.dirname(output_path)
if output_dir:
os.makedirs(output_dir, exist_ok=True)
output_images = []
for i in range(parallel_size):
save_path = output_path.replace('.png', f'_{i}.png')
Image.fromarray(visual_img[i]).save(save_path)
output_images.append(save_path)
torch.cuda.empty_cache()
return output_images
# === Text-to-Image generation ===
def text_to_image_generate(input_prompt, output_path, vl_chat_processor, vl_gpt, temperature=1.0, parallel_size=2, cfg_weight=5.0):
"""Generates an image from a text prompt only."""
torch.cuda.empty_cache()
conversation = [
{"role": "<|User|>", "content": input_prompt},
{"role": "<|Assistant|>", "content": ""},
]
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=conversation,
sft_format=vl_chat_processor.sft_format,
system_prompt="",
)
prompt = sft_format + vl_chat_processor.image_start_tag
image_token_num_per_image = 576
img_size = 384
patch_size = 16
with torch.inference_mode():
input_ids = vl_chat_processor.tokenizer.encode(prompt)
input_ids = torch.LongTensor(input_ids)
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).cuda()
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()
# --- FIX: Initialize past_key_values for cached generation ---
past_key_values = None
for i in range(image_token_num_per_image):
outputs = vl_gpt.language_model.model(
inputs_embeds=inputs_embeds,
use_cache=True,
past_key_values=past_key_values # Pass cached values
)
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token_expanded = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token_expanded)
inputs_embeds = img_embeds.unsqueeze(dim=1)
# --- FIX: Update past_key_values with the output from the current step ---
past_key_values = outputs.past_key_values
dec = vl_gpt.gen_vision_model.decode_code(
generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, img_size // patch_size, img_size // patch_size]
)
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
output_dir = os.path.dirname(output_path)
if output_dir:
os.makedirs(output_dir, exist_ok=True)
output_images = []
for i in range(parallel_size):
save_path = output_path.replace('.png', f'_{i}.png')
Image.fromarray(visual_img[i]).save(save_path)
output_images.append(save_path)
torch.cuda.empty_cache()
return output_images
# === Unified Gradio handler for ChatInterface ===
@spaces.GPU(duration=120)
def janus_chat_responder(message, history):
"""
Handles both text-only and multimodal (text+image) inputs from the ChatInterface.
'message' is a dictionary with 'text' and 'files' keys.
"""
output_path = "./output/chat_image.png"
prompt = message["text"]
uploaded_files = message["files"]
try:
if uploaded_files:
# Handle text+image to image generation
temp_image_path = uploaded_files[0]
images = text_and_image_to_image_generate(
prompt, temp_image_path, output_path, vl_chat_processor, vl_gpt
)
else:
# Handle text-to-image generation
images = text_to_image_generate(prompt, output_path, vl_chat_processor, vl_gpt)
# Return a gallery component to display all generated images
return gr.Gallery(value=images, label="Generated Images")
except Exception as e:
# Return a user-friendly error message
gr.Error(f"An error occurred during generation: {str(e)}")
# Return None or an empty list for the gallery to clear it
return None
# === Gradio UI with a single ChatInterface ===
with gr.Blocks(theme="soft", title="Janus Image Generation") as demo:
gr.Markdown("# Janus Multi-Modal Image Generation")
gr.Markdown("Generate images from text prompts, or upload an image and a prompt to transform it.")
# Using gr.ChatInterface which handles the chat history and input box automatically
gr.ChatInterface(
fn=janus_chat_responder,
multimodal=True, # Enables file uploads
title="Janus-4o-7B",
chatbot=gr.Chatbot(height=400, label="Chat", show_label=False),
textbox=gr.MultimodalTextbox(
file_types=["image"],
placeholder="Type a prompt or upload an image...",
label="Input"
),
examples=[
{"text": "A cat made of glass, sitting on a table.", "files": []},
{"text": "A futuristic city at sunset, with flying cars.", "files": []},
{"text": "A dragon breathing fire over a medieval castle.", "files": []},
{"text": "Turn this into a watercolor painting.", "files": ["./assets/example_image.jpg"]}
]
)
if __name__ == "__main__":
# Create a dummy image for the example if it doesn't exist to prevent errors
assets_dir = "./assets"
example_image_path = os.path.join(assets_dir, "example_image.jpg")
if not os.path.exists(example_image_path):
os.makedirs(assets_dir, exist_ok=True)
try:
dummy_image = Image.new('RGB', (384, 384), color = 'red')
dummy_image.save(example_image_path)
print(f"Created dummy example image at: {example_image_path}")
except Exception as e:
print(f"Could not create dummy image: {e}")
demo.launch() |