File size: 17,147 Bytes
1d1d107
 
 
 
 
 
 
 
 
f0005b0
1d1d107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
728997f
 
 
 
 
1d1d107
 
 
 
 
 
 
 
 
 
 
41daf64
1d1d107
 
 
 
 
 
 
41daf64
1d1d107
 
 
 
 
 
 
41daf64
1d1d107
 
 
 
 
 
 
41daf64
1d1d107
 
 
 
 
 
 
41daf64
1d1d107
728997f
1d1d107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127b4cb
1d1d107
 
 
 
127b4cb
1d1d107
 
 
 
 
127b4cb
 
 
 
 
 
1d1d107
706937a
127b4cb
1d1d107
 
 
127b4cb
1d1d107
 
 
 
 
 
 
 
 
 
8eace23
1d1d107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127b4cb
1d1d107
 
 
 
 
 
 
 
 
8eace23
1d1d107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d003b
 
1d1d107
 
 
 
99d003b
1d1d107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127b4cb
1d1d107
 
 
 
 
 
 
8eace23
1d1d107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54c12ba
cdfbdf6
 
 
 
 
728997f
cdfbdf6
54c12ba
cdfbdf6
 
 
 
 
 
54c12ba
cdfbdf6
54c12ba
cdfbdf6
 
 
 
 
 
 
 
 
 
54c12ba
cdfbdf6
 
728997f
cdfbdf6
 
 
 
 
 
1d1d107
 
2268a48
 
 
 
1d1d107
aa63c28
 
 
 
 
a7d12bd
 
aa63c28
1d1d107
 
 
 
 
 
 
 
 
 
4506ef6
1d1d107
bf30e1e
1d1d107
4506ef6
1d1d107
 
 
 
 
 
 
 
 
93d44bc
 
 
 
 
1d1d107
93d44bc
 
 
 
 
 
 
 
 
 
 
 
 
1d1d107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa3c20
1d1d107
 
 
 
 
 
 
 
 
 
aa63c28
 
 
 
 
1d1d107
aa63c28
 
 
 
 
1d1d107
aa63c28
 
 
 
 
1d1d107
aa63c28
 
 
 
 
1d1d107
aa63c28
 
 
 
 
2268a48
1d1d107
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
from io import BytesIO
from typing import Optional, Tuple, Dict, Any, Iterable
import fitz
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    Qwen3VLForConditionalGeneration,
    AutoTokenizer,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes

import shlex
import subprocess

subprocess.run(shlex.split("pip install flash-attn  --no-build-isolation"), env=os.environ | {"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, check=True)

MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load Qwen3-VL-4B-Instruct
MODEL_ID_Q = "Qwen/Qwen3-VL-4B-Instruct"
processor_q = AutoProcessor.from_pretrained(MODEL_ID_Q, trust_remote_code=True)
model_q = Qwen3VLForConditionalGeneration.from_pretrained(
    MODEL_ID_Q,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16).to(device).eval()

# Load Qwen3-VL-8B-Instruct
MODEL_ID_Y = "Qwen/Qwen3-VL-8B-Instruct"
processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True)
model_y = Qwen3VLForConditionalGeneration.from_pretrained(
    MODEL_ID_Y,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16).to(device).eval()

# Load Qwen3-VL-2B-Instruct
MODEL_ID_L = "Qwen/Qwen3-VL-2B-Instruct"
processor_l = AutoProcessor.from_pretrained(MODEL_ID_L, trust_remote_code=True)
model_l = Qwen3VLForConditionalGeneration.from_pretrained(
    MODEL_ID_L,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16).to(device).eval()

# Load Qwen3-VL-2B-Thinking
MODEL_ID_J = "Qwen/Qwen3-VL-2B-Thinking"
processor_j = AutoProcessor.from_pretrained(MODEL_ID_J, trust_remote_code=True)
model_j = Qwen3VLForConditionalGeneration.from_pretrained(
    MODEL_ID_J,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16).to(device).eval()

# Load Qwen3-VL-4B-Thinking
MODEL_ID_T = "Qwen/Qwen3-VL-4B-Thinking"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen3VLForConditionalGeneration.from_pretrained(
    MODEL_ID_T,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16).to(device).eval()

def convert_pdf_to_images(file_path: str, dpi: int = 128):
    if not file_path:
        return []
    images = []
    pdf_document = fitz.open(file_path)
    zoom = dpi / 72.0
    mat = fitz.Matrix(zoom, zoom)
    for page_num in range(len(pdf_document)):
        page = pdf_document.load_page(page_num)
        pix = page.get_pixmap(matrix=mat)
        img_data = pix.tobytes("png")
        images.append(Image.open(BytesIO(img_data)))
    pdf_document.close()
    return images

def get_initial_pdf_state() -> Dict[str, Any]:
    return {"pages": [], "total_pages": 0, "current_page_index": 0}

def load_and_preview_pdf(file_path: Optional[str]) -> Tuple[Optional[Image.Image], Dict[str, Any], str]:
    state = get_initial_pdf_state()
    if not file_path:
        return None, state, '<div style="text-align:center;">No file loaded</div>'
    try:
        pages = convert_pdf_to_images(file_path)
        if not pages:
            return None, state, '<div style="text-align:center;">Could not load file</div>'
        state["pages"] = pages
        state["total_pages"] = len(pages)
        page_info_html = f'<div style="text-align:center;">Page 1 / {state["total_pages"]}</div>'
        return pages[0], state, page_info_html
    except Exception as e:
        return None, state, f'<div style="text-align:center;">Failed to load preview: {e}</div>'

def navigate_pdf_page(direction: str, state: Dict[str, Any]):
    if not state or not state["pages"]:
        return None, state, '<div style="text-align:center;">No file loaded</div>'
    current_index = state["current_page_index"]
    total_pages = state["total_pages"]
    if direction == "prev":
        new_index = max(0, current_index - 1)
    elif direction == "next":
        new_index = min(total_pages - 1, current_index + 1)
    else:
        new_index = current_index
    state["current_page_index"] = new_index
    image_preview = state["pages"][new_index]
    page_info_html = f'<div style="text-align:center;">Page {new_index + 1} / {total_pages}</div>'
    return image_preview, state, page_info_html

def downsample_video(video_path, max_dim=720):
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)

    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

            h, w = image.shape[:2]
            scale = max_dim / max(h, w)
            if scale < 1:
                image = cv2.resize(image, (int(w*scale), int(h*scale)), interpolation=cv2.INTER_AREA)

            pil_image = Image.fromarray(image)
            frames.append(pil_image)

    vidcap.release()
    return frames


@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for image input.
    """
    if model_name == "Qwen3-VL-4B-Instruct":
        processor, model = processor_q, model_q
    elif model_name == "Qwen3-VL-8B-Instruct":
        processor, model = processor_y, model_y
    elif model_name == "Qwen3-VL-4B-Thinking":
        processor, model = processor_t, model_t
    elif model_name == "Qwen3-VL-2B-Instruct":
        processor, model = processor_l, model_l
    elif model_name == "Qwen3-VL-2B-Thinking":
        processor, model = processor_j, model_j
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return
    if image is None:
        yield "Please upload an image.", "Please upload an image."
        return
    messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer, buffer

@spaces.GPU(duration=180)
def generate_video(model_name: str, text: str, video_path: str,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for video input.
    """
    if model_name == "Qwen3-VL-4B-Instruct":
        processor, model = processor_q, model_q
    elif model_name == "Qwen3-VL-8B-Instruct":
        processor, model = processor_y, model_y
    elif model_name == "Qwen3-VL-4B-Thinking":
        processor, model = processor_t, model_t
    elif model_name == "Qwen3-VL-2B-Instruct":
        processor, model = processor_l, model_l
    elif model_name == "Qwen3-VL-2B-Thinking":
        processor, model = processor_j, model_j
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return
    if video_path is None:
        yield "Please upload a video.", "Please upload a video."
        return
    frames = downsample_video(video_path)
    if not frames:
        yield "Could not process video.", "Could not process video."
        return
    messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
    images_for_processor = []
    for frame in frames:
        messages[0]["content"].append({"type": "image"})
        images_for_processor.append(frame)
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt_full], images=images_for_processor, return_tensors="pt", padding=True).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs, "streamer": streamer, "max_new_tokens": max_new_tokens,
        "do_sample": True, "temperature": temperature, "top_p": top_p,
        "top_k": top_k, "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer, buffer

@spaces.GPU(duration=180)
def generate_pdf(model_name: str, text: str, state: Dict[str, Any], 
                 max_new_tokens: int = 2048, 
                 temperature: float = 0.6, 
                 top_p: float = 0.9, 
                 top_k: int = 50, 
                 repetition_penalty: float = 1.2):
    
    if model_name == "Qwen3-VL-4B-Instruct":
        processor, model = processor_q, model_q
    elif model_name == "Qwen3-VL-8B-Instruct":
        processor, model = processor_y, model_y
    elif model_name == "Qwen3-VL-4B-Thinking":
        processor, model = processor_t, model_t
    elif model_name == "Qwen3-VL-2B-Instruct":
        processor, model = processor_l, model_l
    elif model_name == "Qwen3-VL-2B-Thinking":
        processor, model = processor_j, model_j
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if not state or not state["pages"]:
        yield "Please upload a PDF file first.", "Please upload a PDF file first."
        return
    
    page_images = state["pages"]

    messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
    images_for_processor = []
    for frame in page_images:
        messages[0]["content"].append({"type": "image"})
        images_for_processor.append(frame)

    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    
    inputs = processor(
        text=[prompt_full], 
        images=images_for_processor,  # Truyền cả list ảnh
        return_tensors="pt", 
        padding=True
    ).to(device)
    
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    
    generation_kwargs = {
        **inputs, 
        "streamer": streamer, 
        "max_new_tokens": max_new_tokens,
        "do_sample": True, 
        "temperature": temperature, 
        "top_p": top_p, 
        "top_k": top_k, 
        "repetition_penalty": repetition_penalty
    }
    
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "") # Thêm dòng này giống video
        yield buffer, buffer
        time.sleep(0.01)

image_examples = [
    ["Explain the content in detail.", "images/force.jpg"],
    ["Explain the content (ocr).", "images/ocr.jpg"],
    ["Extract the content in the json format", "images/bill.jpg"],
    ["Choose the right answer .", "images/math.jpg"],
]
video_examples = [
    ["Explain the ad in detail", "videos/1.mp4"],
    ["Identify the main actions in the video", "videos/2.mp4"],
]
pdf_examples = [
    ["Extract the content precisely.", "pdfs/doc1.pdf"],
    ["Nội dung của văn bản trong ảnh là gì?.", "pdfs/doc2.pdf"]
]

css = """
#main-title h1 {
    font-size: 2.3em !important;
}
#output-title h2 {
    font-size: 2.1em !important;
}
"""

with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    
    pdf_state = gr.State(value=get_initial_pdf_state())
    
    gr.Markdown("# 🎉**Qwen3-VL-Demo**🎉", elem_id="main-title")
    with gr.Row():
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Upload Image", height=290)
                    image_submit = gr.Button("Submit", variant="primary")
                    gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
                
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Upload Video", height=290)
                    video_submit = gr.Button("Submit", variant="primary")
                    gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
                
                with gr.TabItem("PDF Inference"):
                    with gr.Row():
                        with gr.Column(scale=1):
                            pdf_query = gr.Textbox(label="Query Input", placeholder="e.g., 'Summarize this document'")
                            pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
                            pdf_submit = gr.Button("Submit", variant="primary")
                        with gr.Column(scale=1):
                            pdf_preview_img = gr.Image(label="PDF Preview", height=290)
                            with gr.Row():
                                prev_page_btn = gr.Button("◀ Previous")
                                page_info = gr.HTML('<div style="text-align:center;">No file loaded</div>')
                                next_page_btn = gr.Button("Next ▶")
                    gr.Examples(examples=pdf_examples, inputs=[pdf_query, pdf_upload])

            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
        
        with gr.Column(scale=3):
            gr.Markdown("## Output", elem_id="output-title")
            output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=14, show_copy_button=True)
            with gr.Accordion("(Result.md)", open=False):
                markdown_output = gr.Markdown(latex_delimiters=[
                                {"left": "$$", "right": "$$", "display": True},
                                {"left": "$", "right": "$", "display": False}
                            ])
            
            model_choice = gr.Radio(
                choices=["Qwen3-VL-4B-Instruct", "Qwen3-VL-8B-Instruct", "Qwen3-VL-2B-Instruct", "Qwen3-VL-2B-Thinking", "Qwen3-VL-4B-Thinking"],
                label="Select Model",
                value="Qwen3-VL-4B-Instruct"
            )

    image_submit.click(
        fn=generate_image,
        inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[output, markdown_output]
    )
    
    video_submit.click(
        fn=generate_video,
        inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[output, markdown_output]
    )
    
    pdf_submit.click(
        fn=generate_pdf,
        inputs=[model_choice, pdf_query, pdf_state, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[output, markdown_output]
    )
    
    pdf_upload.change(
        fn=load_and_preview_pdf, 
        inputs=[pdf_upload], 
        outputs=[pdf_preview_img, pdf_state, page_info]
    )
    
    prev_page_btn.click(
        fn=lambda s: navigate_pdf_page("prev", s), 
        inputs=[pdf_state], 
        outputs=[pdf_preview_img, pdf_state, page_info]
    )
    
    next_page_btn.click(
        fn=lambda s: navigate_pdf_page("next", s), 
        inputs=[pdf_state], 
        outputs=[pdf_preview_img, pdf_state, page_info]
    )


if __name__ == "__main__":
    demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)