Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,147 Bytes
1d1d107 f0005b0 1d1d107 728997f 1d1d107 41daf64 1d1d107 41daf64 1d1d107 41daf64 1d1d107 41daf64 1d1d107 41daf64 1d1d107 728997f 1d1d107 127b4cb 1d1d107 127b4cb 1d1d107 127b4cb 1d1d107 706937a 127b4cb 1d1d107 127b4cb 1d1d107 8eace23 1d1d107 127b4cb 1d1d107 8eace23 1d1d107 99d003b 1d1d107 99d003b 1d1d107 127b4cb 1d1d107 8eace23 1d1d107 54c12ba cdfbdf6 728997f cdfbdf6 54c12ba cdfbdf6 54c12ba cdfbdf6 54c12ba cdfbdf6 54c12ba cdfbdf6 728997f cdfbdf6 1d1d107 2268a48 1d1d107 aa63c28 a7d12bd aa63c28 1d1d107 4506ef6 1d1d107 bf30e1e 1d1d107 4506ef6 1d1d107 93d44bc 1d1d107 93d44bc 1d1d107 6aa3c20 1d1d107 aa63c28 1d1d107 aa63c28 1d1d107 aa63c28 1d1d107 aa63c28 1d1d107 aa63c28 2268a48 1d1d107 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
from io import BytesIO
from typing import Optional, Tuple, Dict, Any, Iterable
import fitz
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
Qwen3VLForConditionalGeneration,
AutoTokenizer,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
import shlex
import subprocess
subprocess.run(shlex.split("pip install flash-attn --no-build-isolation"), env=os.environ | {"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, check=True)
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Qwen3-VL-4B-Instruct
MODEL_ID_Q = "Qwen/Qwen3-VL-4B-Instruct"
processor_q = AutoProcessor.from_pretrained(MODEL_ID_Q, trust_remote_code=True)
model_q = Qwen3VLForConditionalGeneration.from_pretrained(
MODEL_ID_Q,
trust_remote_code=True,
torch_dtype=torch.bfloat16).to(device).eval()
# Load Qwen3-VL-8B-Instruct
MODEL_ID_Y = "Qwen/Qwen3-VL-8B-Instruct"
processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True)
model_y = Qwen3VLForConditionalGeneration.from_pretrained(
MODEL_ID_Y,
trust_remote_code=True,
torch_dtype=torch.bfloat16).to(device).eval()
# Load Qwen3-VL-2B-Instruct
MODEL_ID_L = "Qwen/Qwen3-VL-2B-Instruct"
processor_l = AutoProcessor.from_pretrained(MODEL_ID_L, trust_remote_code=True)
model_l = Qwen3VLForConditionalGeneration.from_pretrained(
MODEL_ID_L,
trust_remote_code=True,
torch_dtype=torch.bfloat16).to(device).eval()
# Load Qwen3-VL-2B-Thinking
MODEL_ID_J = "Qwen/Qwen3-VL-2B-Thinking"
processor_j = AutoProcessor.from_pretrained(MODEL_ID_J, trust_remote_code=True)
model_j = Qwen3VLForConditionalGeneration.from_pretrained(
MODEL_ID_J,
trust_remote_code=True,
torch_dtype=torch.bfloat16).to(device).eval()
# Load Qwen3-VL-4B-Thinking
MODEL_ID_T = "Qwen/Qwen3-VL-4B-Thinking"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen3VLForConditionalGeneration.from_pretrained(
MODEL_ID_T,
trust_remote_code=True,
torch_dtype=torch.bfloat16).to(device).eval()
def convert_pdf_to_images(file_path: str, dpi: int = 128):
if not file_path:
return []
images = []
pdf_document = fitz.open(file_path)
zoom = dpi / 72.0
mat = fitz.Matrix(zoom, zoom)
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("png")
images.append(Image.open(BytesIO(img_data)))
pdf_document.close()
return images
def get_initial_pdf_state() -> Dict[str, Any]:
return {"pages": [], "total_pages": 0, "current_page_index": 0}
def load_and_preview_pdf(file_path: Optional[str]) -> Tuple[Optional[Image.Image], Dict[str, Any], str]:
state = get_initial_pdf_state()
if not file_path:
return None, state, '<div style="text-align:center;">No file loaded</div>'
try:
pages = convert_pdf_to_images(file_path)
if not pages:
return None, state, '<div style="text-align:center;">Could not load file</div>'
state["pages"] = pages
state["total_pages"] = len(pages)
page_info_html = f'<div style="text-align:center;">Page 1 / {state["total_pages"]}</div>'
return pages[0], state, page_info_html
except Exception as e:
return None, state, f'<div style="text-align:center;">Failed to load preview: {e}</div>'
def navigate_pdf_page(direction: str, state: Dict[str, Any]):
if not state or not state["pages"]:
return None, state, '<div style="text-align:center;">No file loaded</div>'
current_index = state["current_page_index"]
total_pages = state["total_pages"]
if direction == "prev":
new_index = max(0, current_index - 1)
elif direction == "next":
new_index = min(total_pages - 1, current_index + 1)
else:
new_index = current_index
state["current_page_index"] = new_index
image_preview = state["pages"][new_index]
page_info_html = f'<div style="text-align:center;">Page {new_index + 1} / {total_pages}</div>'
return image_preview, state, page_info_html
def downsample_video(video_path, max_dim=720):
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frames = []
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
h, w = image.shape[:2]
scale = max_dim / max(h, w)
if scale < 1:
image = cv2.resize(image, (int(w*scale), int(h*scale)), interpolation=cv2.INTER_AREA)
pil_image = Image.fromarray(image)
frames.append(pil_image)
vidcap.release()
return frames
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for image input.
"""
if model_name == "Qwen3-VL-4B-Instruct":
processor, model = processor_q, model_q
elif model_name == "Qwen3-VL-8B-Instruct":
processor, model = processor_y, model_y
elif model_name == "Qwen3-VL-4B-Thinking":
processor, model = processor_t, model_t
elif model_name == "Qwen3-VL-2B-Instruct":
processor, model = processor_l, model_l
elif model_name == "Qwen3-VL-2B-Thinking":
processor, model = processor_j, model_j
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU(duration=180)
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for video input.
"""
if model_name == "Qwen3-VL-4B-Instruct":
processor, model = processor_q, model_q
elif model_name == "Qwen3-VL-8B-Instruct":
processor, model = processor_y, model_y
elif model_name == "Qwen3-VL-4B-Thinking":
processor, model = processor_t, model_t
elif model_name == "Qwen3-VL-2B-Instruct":
processor, model = processor_l, model_l
elif model_name == "Qwen3-VL-2B-Thinking":
processor, model = processor_j, model_j
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames = downsample_video(video_path)
if not frames:
yield "Could not process video.", "Could not process video."
return
messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
images_for_processor = []
for frame in frames:
messages[0]["content"].append({"type": "image"})
images_for_processor.append(frame)
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full], images=images_for_processor, return_tensors="pt", padding=True).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens,
"do_sample": True, "temperature": temperature, "top_p": top_p,
"top_k": top_k, "repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU(duration=180)
def generate_pdf(model_name: str, text: str, state: Dict[str, Any],
max_new_tokens: int = 2048,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
if model_name == "Qwen3-VL-4B-Instruct":
processor, model = processor_q, model_q
elif model_name == "Qwen3-VL-8B-Instruct":
processor, model = processor_y, model_y
elif model_name == "Qwen3-VL-4B-Thinking":
processor, model = processor_t, model_t
elif model_name == "Qwen3-VL-2B-Instruct":
processor, model = processor_l, model_l
elif model_name == "Qwen3-VL-2B-Thinking":
processor, model = processor_j, model_j
else:
yield "Invalid model selected.", "Invalid model selected."
return
if not state or not state["pages"]:
yield "Please upload a PDF file first.", "Please upload a PDF file first."
return
page_images = state["pages"]
messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
images_for_processor = []
for frame in page_images:
messages[0]["content"].append({"type": "image"})
images_for_processor.append(frame)
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=images_for_processor, # Truyền cả list ảnh
return_tensors="pt",
padding=True
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "") # Thêm dòng này giống video
yield buffer, buffer
time.sleep(0.01)
image_examples = [
["Explain the content in detail.", "images/force.jpg"],
["Explain the content (ocr).", "images/ocr.jpg"],
["Extract the content in the json format", "images/bill.jpg"],
["Choose the right answer .", "images/math.jpg"],
]
video_examples = [
["Explain the ad in detail", "videos/1.mp4"],
["Identify the main actions in the video", "videos/2.mp4"],
]
pdf_examples = [
["Extract the content precisely.", "pdfs/doc1.pdf"],
["Nội dung của văn bản trong ảnh là gì?.", "pdfs/doc2.pdf"]
]
css = """
#main-title h1 {
font-size: 2.3em !important;
}
#output-title h2 {
font-size: 2.1em !important;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
pdf_state = gr.State(value=get_initial_pdf_state())
gr.Markdown("# 🎉**Qwen3-VL-Demo**🎉", elem_id="main-title")
with gr.Row():
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Upload Image", height=290)
image_submit = gr.Button("Submit", variant="primary")
gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Upload Video", height=290)
video_submit = gr.Button("Submit", variant="primary")
gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
with gr.TabItem("PDF Inference"):
with gr.Row():
with gr.Column(scale=1):
pdf_query = gr.Textbox(label="Query Input", placeholder="e.g., 'Summarize this document'")
pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
pdf_submit = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
pdf_preview_img = gr.Image(label="PDF Preview", height=290)
with gr.Row():
prev_page_btn = gr.Button("◀ Previous")
page_info = gr.HTML('<div style="text-align:center;">No file loaded</div>')
next_page_btn = gr.Button("Next ▶")
gr.Examples(examples=pdf_examples, inputs=[pdf_query, pdf_upload])
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column(scale=3):
gr.Markdown("## Output", elem_id="output-title")
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=14, show_copy_button=True)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown(latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False}
])
model_choice = gr.Radio(
choices=["Qwen3-VL-4B-Instruct", "Qwen3-VL-8B-Instruct", "Qwen3-VL-2B-Instruct", "Qwen3-VL-2B-Thinking", "Qwen3-VL-4B-Thinking"],
label="Select Model",
value="Qwen3-VL-4B-Instruct"
)
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
pdf_submit.click(
fn=generate_pdf,
inputs=[model_choice, pdf_query, pdf_state, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
pdf_upload.change(
fn=load_and_preview_pdf,
inputs=[pdf_upload],
outputs=[pdf_preview_img, pdf_state, page_info]
)
prev_page_btn.click(
fn=lambda s: navigate_pdf_page("prev", s),
inputs=[pdf_state],
outputs=[pdf_preview_img, pdf_state, page_info]
)
next_page_btn.click(
fn=lambda s: navigate_pdf_page("next", s),
inputs=[pdf_state],
outputs=[pdf_preview_img, pdf_state, page_info]
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True) |