Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#235
by
onnew
- opened
app.py
CHANGED
|
@@ -1,58 +1,66 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
-
import spaces
|
| 5 |
import torch
|
| 6 |
-
from diffusers import
|
| 7 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
| 8 |
-
from live_preview_helpers import
|
| 9 |
|
| 10 |
-
|
|
|
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
|
| 13 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 14 |
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
| 15 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
|
|
|
|
|
|
| 16 |
torch.cuda.empty_cache()
|
| 17 |
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
MAX_IMAGE_SIZE = 2048
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
@spaces.GPU(duration=75)
|
| 24 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 25 |
if randomize_seed:
|
| 26 |
seed = random.randint(0, MAX_SEED)
|
| 27 |
-
generator = torch.Generator().manual_seed(seed)
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
yield img, seed
|
| 40 |
|
|
|
|
|
|
|
|
|
|
| 41 |
examples = [
|
| 42 |
"a tiny astronaut hatching from an egg on the moon",
|
| 43 |
"a cat holding a sign that says hello world",
|
| 44 |
"an anime illustration of a wiener schnitzel",
|
| 45 |
]
|
| 46 |
|
| 47 |
-
css="""
|
| 48 |
#col-container {
|
| 49 |
margin: 0 auto;
|
| 50 |
max-width: 520px;
|
| 51 |
}
|
| 52 |
"""
|
| 53 |
|
|
|
|
| 54 |
with gr.Blocks(css=css) as demo:
|
| 55 |
-
|
| 56 |
with gr.Column(elem_id="col-container"):
|
| 57 |
gr.Markdown(f"""# FLUX.1 [dev]
|
| 58 |
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
|
@@ -60,7 +68,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 60 |
""")
|
| 61 |
|
| 62 |
with gr.Row():
|
| 63 |
-
|
| 64 |
prompt = gr.Text(
|
| 65 |
label="Prompt",
|
| 66 |
show_label=False,
|
|
@@ -68,13 +75,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 68 |
placeholder="Enter your prompt",
|
| 69 |
container=False,
|
| 70 |
)
|
| 71 |
-
|
| 72 |
run_button = gr.Button("Run", scale=0)
|
| 73 |
|
| 74 |
result = gr.Image(label="Result", show_label=False)
|
| 75 |
|
| 76 |
with gr.Accordion("Advanced Settings", open=False):
|
| 77 |
-
|
| 78 |
seed = gr.Slider(
|
| 79 |
label="Seed",
|
| 80 |
minimum=0,
|
|
@@ -86,7 +91,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 86 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 87 |
|
| 88 |
with gr.Row():
|
| 89 |
-
|
| 90 |
width = gr.Slider(
|
| 91 |
label="Width",
|
| 92 |
minimum=256,
|
|
@@ -104,7 +108,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 104 |
)
|
| 105 |
|
| 106 |
with gr.Row():
|
| 107 |
-
|
| 108 |
guidance_scale = gr.Slider(
|
| 109 |
label="Guidance Scale",
|
| 110 |
minimum=1,
|
|
@@ -122,18 +125,18 @@ with gr.Blocks(css=css) as demo:
|
|
| 122 |
)
|
| 123 |
|
| 124 |
gr.Examples(
|
| 125 |
-
examples
|
| 126 |
-
fn
|
| 127 |
-
inputs
|
| 128 |
-
outputs
|
| 129 |
cache_examples="lazy"
|
| 130 |
)
|
| 131 |
|
| 132 |
gr.on(
|
| 133 |
triggers=[run_button.click, prompt.submit],
|
| 134 |
-
fn
|
| 135 |
-
inputs
|
| 136 |
-
outputs
|
| 137 |
)
|
| 138 |
|
| 139 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
|
|
|
| 4 |
import torch
|
| 5 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
| 6 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
| 7 |
+
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
|
| 8 |
|
| 9 |
+
# Definindo variáveis e carregando modelos
|
| 10 |
+
dtype = torch.float16 # Usando float16 para melhorar a performance
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
|
| 13 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 14 |
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
| 15 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
| 16 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 17 |
+
|
| 18 |
torch.cuda.empty_cache()
|
| 19 |
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
MAX_IMAGE_SIZE = 2048
|
| 22 |
|
| 23 |
+
# Função de inferência otimizada
|
| 24 |
+
@torch.inference_mode() # Desabilitando cálculo de gradientes para acelerar a inferência
|
| 25 |
@spaces.GPU(duration=75)
|
| 26 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 27 |
if randomize_seed:
|
| 28 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 29 |
|
| 30 |
+
generator = torch.Generator(device).manual_seed(seed)
|
| 31 |
+
|
| 32 |
+
# Usando autograd em precisão reduzida (float16) para acelerar a inferência
|
| 33 |
+
with torch.autocast("cuda", dtype=torch.float16):
|
| 34 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 35 |
+
prompt=prompt,
|
| 36 |
+
guidance_scale=guidance_scale,
|
| 37 |
+
num_inference_steps=num_inference_steps,
|
| 38 |
+
width=width,
|
| 39 |
+
height=height,
|
| 40 |
+
generator=generator,
|
| 41 |
+
output_type="pil",
|
| 42 |
+
good_vae=good_vae,
|
| 43 |
+
):
|
| 44 |
yield img, seed
|
| 45 |
|
| 46 |
+
torch.cuda.empty_cache() # Limpar a memória após a inferência para liberar recursos
|
| 47 |
+
|
| 48 |
+
# Exemplos
|
| 49 |
examples = [
|
| 50 |
"a tiny astronaut hatching from an egg on the moon",
|
| 51 |
"a cat holding a sign that says hello world",
|
| 52 |
"an anime illustration of a wiener schnitzel",
|
| 53 |
]
|
| 54 |
|
| 55 |
+
css = """
|
| 56 |
#col-container {
|
| 57 |
margin: 0 auto;
|
| 58 |
max-width: 520px;
|
| 59 |
}
|
| 60 |
"""
|
| 61 |
|
| 62 |
+
# Interface Gradio
|
| 63 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 64 |
with gr.Column(elem_id="col-container"):
|
| 65 |
gr.Markdown(f"""# FLUX.1 [dev]
|
| 66 |
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
|
|
|
| 68 |
""")
|
| 69 |
|
| 70 |
with gr.Row():
|
|
|
|
| 71 |
prompt = gr.Text(
|
| 72 |
label="Prompt",
|
| 73 |
show_label=False,
|
|
|
|
| 75 |
placeholder="Enter your prompt",
|
| 76 |
container=False,
|
| 77 |
)
|
|
|
|
| 78 |
run_button = gr.Button("Run", scale=0)
|
| 79 |
|
| 80 |
result = gr.Image(label="Result", show_label=False)
|
| 81 |
|
| 82 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
| 83 |
seed = gr.Slider(
|
| 84 |
label="Seed",
|
| 85 |
minimum=0,
|
|
|
|
| 91 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 92 |
|
| 93 |
with gr.Row():
|
|
|
|
| 94 |
width = gr.Slider(
|
| 95 |
label="Width",
|
| 96 |
minimum=256,
|
|
|
|
| 108 |
)
|
| 109 |
|
| 110 |
with gr.Row():
|
|
|
|
| 111 |
guidance_scale = gr.Slider(
|
| 112 |
label="Guidance Scale",
|
| 113 |
minimum=1,
|
|
|
|
| 125 |
)
|
| 126 |
|
| 127 |
gr.Examples(
|
| 128 |
+
examples=examples,
|
| 129 |
+
fn=infer,
|
| 130 |
+
inputs=[prompt],
|
| 131 |
+
outputs=[result, seed],
|
| 132 |
cache_examples="lazy"
|
| 133 |
)
|
| 134 |
|
| 135 |
gr.on(
|
| 136 |
triggers=[run_button.click, prompt.submit],
|
| 137 |
+
fn=infer,
|
| 138 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 139 |
+
outputs=[result, seed]
|
| 140 |
)
|
| 141 |
|
| 142 |
+
demo.launch()
|