Spaces:
Runtime error
Runtime error
Update app.py
#75
by
Jhossain
- opened
app.py
CHANGED
|
@@ -8,15 +8,12 @@ import time
|
|
| 8 |
import torch
|
| 9 |
import torchaudio
|
| 10 |
|
| 11 |
-
|
| 12 |
#download for mecab
|
| 13 |
os.system('python -m unidic download')
|
| 14 |
|
| 15 |
# By using XTTS you agree to CPML license https://coqui.ai/cpml
|
| 16 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
| 17 |
|
| 18 |
-
# langid is used to detect language for longer text
|
| 19 |
-
# Most users expect text to be their own language, there is checkbox to disable it
|
| 20 |
import langid
|
| 21 |
import base64
|
| 22 |
import csv
|
|
@@ -37,18 +34,15 @@ HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
| 37 |
|
| 38 |
from huggingface_hub import HfApi
|
| 39 |
|
| 40 |
-
# will use api to restart space on a unrecoverable error
|
| 41 |
api = HfApi(token=HF_TOKEN)
|
| 42 |
repo_id = "coqui/xtts"
|
| 43 |
|
| 44 |
-
# Use never ffmpeg binary for Ubuntu20 to use denoising for microphone input
|
| 45 |
print("Export newer ffmpeg binary for denoise filter")
|
| 46 |
ZipFile("ffmpeg.zip").extractall()
|
| 47 |
print("Make ffmpeg binary executable")
|
| 48 |
st = os.stat("ffmpeg")
|
| 49 |
os.chmod("ffmpeg", st.st_mode | stat.S_IEXEC)
|
| 50 |
|
| 51 |
-
# This will trigger downloading model
|
| 52 |
print("Downloading if not downloaded Coqui XTTS V2")
|
| 53 |
from TTS.utils.manage import ModelManager
|
| 54 |
|
|
@@ -70,7 +64,6 @@ model.load_checkpoint(
|
|
| 70 |
)
|
| 71 |
model.cuda()
|
| 72 |
|
| 73 |
-
# This is for debugging purposes only
|
| 74 |
DEVICE_ASSERT_DETECTED = 0
|
| 75 |
DEVICE_ASSERT_PROMPT = None
|
| 76 |
DEVICE_ASSERT_LANG = None
|
|
@@ -92,43 +85,20 @@ def predict(
|
|
| 92 |
gr.Warning(
|
| 93 |
f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown"
|
| 94 |
)
|
|
|
|
| 95 |
|
| 96 |
-
|
| 97 |
-
None,
|
| 98 |
-
None,
|
| 99 |
-
None,
|
| 100 |
-
None,
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
language_predicted = langid.classify(prompt)[
|
| 104 |
-
0
|
| 105 |
-
].strip() # strip need as there is space at end!
|
| 106 |
-
|
| 107 |
-
# tts expects chinese as zh-cn
|
| 108 |
if language_predicted == "zh":
|
| 109 |
-
# we use zh-cn
|
| 110 |
language_predicted = "zh-cn"
|
| 111 |
|
| 112 |
print(f"Detected language:{language_predicted}, Chosen language:{language}")
|
| 113 |
|
| 114 |
-
# After text character length 15 trigger language detection
|
| 115 |
if len(prompt) > 15:
|
| 116 |
-
# allow any language for short text as some may be common
|
| 117 |
-
# If user unchecks language autodetection it will not trigger
|
| 118 |
-
# You may remove this completely for own use
|
| 119 |
if language_predicted != language and not no_lang_auto_detect:
|
| 120 |
-
# Please duplicate and remove this check if you really want this
|
| 121 |
-
# Or auto-detector fails to identify language (which it can on pretty short text or mixed text)
|
| 122 |
gr.Warning(
|
| 123 |
-
f"It looks like your text isn
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
return (
|
| 127 |
-
None,
|
| 128 |
-
None,
|
| 129 |
-
None,
|
| 130 |
-
None,
|
| 131 |
)
|
|
|
|
| 132 |
|
| 133 |
if use_mic == True:
|
| 134 |
if mic_file_path is not None:
|
|
@@ -137,20 +107,10 @@ def predict(
|
|
| 137 |
gr.Warning(
|
| 138 |
"Please record your voice with Microphone, or uncheck Use Microphone to use reference audios"
|
| 139 |
)
|
| 140 |
-
return (
|
| 141 |
-
None,
|
| 142 |
-
None,
|
| 143 |
-
None,
|
| 144 |
-
None,
|
| 145 |
-
)
|
| 146 |
-
|
| 147 |
else:
|
| 148 |
speaker_wav = audio_file_pth
|
| 149 |
|
| 150 |
-
# Filtering for microphone input, as it has BG noise, maybe silence in beginning and end
|
| 151 |
-
# This is fast filtering not perfect
|
| 152 |
-
|
| 153 |
-
# Apply all on demand
|
| 154 |
lowpassfilter = denoise = trim = loudness = True
|
| 155 |
|
| 156 |
if lowpassfilter:
|
|
@@ -159,22 +119,14 @@ def predict(
|
|
| 159 |
lowpass_highpass = ""
|
| 160 |
|
| 161 |
if trim:
|
| 162 |
-
# better to remove silence in beginning and end for microphone
|
| 163 |
trim_silence = "areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,"
|
| 164 |
else:
|
| 165 |
trim_silence = ""
|
| 166 |
|
| 167 |
if voice_cleanup:
|
| 168 |
try:
|
| 169 |
-
out_filename = (
|
| 170 |
-
|
| 171 |
-
) # ffmpeg to know output format
|
| 172 |
-
|
| 173 |
-
# we will use newer ffmpeg as that has afftn denoise filter
|
| 174 |
-
shell_command = f"./ffmpeg -y -i {speaker_wav} -af {lowpass_highpass}{trim_silence} {out_filename}".split(
|
| 175 |
-
" "
|
| 176 |
-
)
|
| 177 |
-
|
| 178 |
command_result = subprocess.run(
|
| 179 |
[item for item in shell_command],
|
| 180 |
capture_output=False,
|
|
@@ -184,39 +136,26 @@ def predict(
|
|
| 184 |
speaker_wav = out_filename
|
| 185 |
print("Filtered microphone input")
|
| 186 |
except subprocess.CalledProcessError:
|
| 187 |
-
# There was an error - command exited with non-zero code
|
| 188 |
print("Error: failed filtering, use original microphone input")
|
| 189 |
else:
|
| 190 |
speaker_wav = speaker_wav
|
| 191 |
|
| 192 |
if len(prompt) < 2:
|
| 193 |
gr.Warning("Please give a longer prompt text")
|
| 194 |
-
return (
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
None,
|
| 199 |
-
)
|
| 200 |
-
if len(prompt) > 200:
|
| 201 |
gr.Warning(
|
| 202 |
-
"Text length limited to
|
| 203 |
-
)
|
| 204 |
-
return (
|
| 205 |
-
None,
|
| 206 |
-
None,
|
| 207 |
-
None,
|
| 208 |
-
None,
|
| 209 |
)
|
|
|
|
|
|
|
| 210 |
global DEVICE_ASSERT_DETECTED
|
| 211 |
if DEVICE_ASSERT_DETECTED:
|
| 212 |
global DEVICE_ASSERT_PROMPT
|
| 213 |
global DEVICE_ASSERT_LANG
|
| 214 |
-
|
| 215 |
-
print(
|
| 216 |
-
f"Unrecoverable exception caused by language:{DEVICE_ASSERT_LANG} prompt:{DEVICE_ASSERT_PROMPT}"
|
| 217 |
-
)
|
| 218 |
-
|
| 219 |
-
# HF Space specific.. This error is unrecoverable need to restart space
|
| 220 |
space = api.get_space_runtime(repo_id=repo_id)
|
| 221 |
if space.stage!="BUILDING":
|
| 222 |
api.restart_space(repo_id=repo_id)
|
|
@@ -227,33 +166,21 @@ def predict(
|
|
| 227 |
metrics_text = ""
|
| 228 |
t_latent = time.time()
|
| 229 |
|
| 230 |
-
# note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference
|
| 231 |
try:
|
| 232 |
-
(
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
|
|
|
|
|
|
| 236 |
except Exception as e:
|
| 237 |
print("Speaker encoding error", str(e))
|
| 238 |
-
gr.Warning(
|
| 239 |
-
|
| 240 |
-
)
|
| 241 |
-
return (
|
| 242 |
-
None,
|
| 243 |
-
None,
|
| 244 |
-
None,
|
| 245 |
-
None,
|
| 246 |
-
)
|
| 247 |
|
| 248 |
latent_calculation_time = time.time() - t_latent
|
| 249 |
-
|
| 250 |
|
| 251 |
-
# temporary comma fix
|
| 252 |
-
prompt= re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)",r"\1 \2\2",prompt)
|
| 253 |
-
|
| 254 |
-
wav_chunks = []
|
| 255 |
-
## Direct mode
|
| 256 |
-
|
| 257 |
print("I: Generating new audio...")
|
| 258 |
t0 = time.time()
|
| 259 |
out = model.inference(
|
|
@@ -272,51 +199,9 @@ def predict(
|
|
| 272 |
metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
| 273 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
| 274 |
|
| 275 |
-
|
| 276 |
-
"""
|
| 277 |
-
print("I: Generating new audio in streaming mode...")
|
| 278 |
-
t0 = time.time()
|
| 279 |
-
chunks = model.inference_stream(
|
| 280 |
-
prompt,
|
| 281 |
-
language,
|
| 282 |
-
gpt_cond_latent,
|
| 283 |
-
speaker_embedding,
|
| 284 |
-
repetition_penalty=7.0,
|
| 285 |
-
temperature=0.85,
|
| 286 |
-
)
|
| 287 |
-
|
| 288 |
-
first_chunk = True
|
| 289 |
-
for i, chunk in enumerate(chunks):
|
| 290 |
-
if first_chunk:
|
| 291 |
-
first_chunk_time = time.time() - t0
|
| 292 |
-
metrics_text += f"Latency to first audio chunk: {round(first_chunk_time*1000)} milliseconds\n"
|
| 293 |
-
first_chunk = False
|
| 294 |
-
wav_chunks.append(chunk)
|
| 295 |
-
print(f"Received chunk {i} of audio length {chunk.shape[-1]}")
|
| 296 |
-
inference_time = time.time() - t0
|
| 297 |
-
print(
|
| 298 |
-
f"I: Time to generate audio: {round(inference_time*1000)} milliseconds"
|
| 299 |
-
)
|
| 300 |
-
#metrics_text += (
|
| 301 |
-
# f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
|
| 302 |
-
#)
|
| 303 |
-
|
| 304 |
-
wav = torch.cat(wav_chunks, dim=0)
|
| 305 |
-
print(wav.shape)
|
| 306 |
-
real_time_factor = (time.time() - t0) / wav.shape[0] * 24000
|
| 307 |
-
print(f"Real-time factor (RTF): {real_time_factor}")
|
| 308 |
-
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
| 309 |
-
|
| 310 |
-
torchaudio.save("output.wav", wav.squeeze().unsqueeze(0).cpu(), 24000)
|
| 311 |
-
"""
|
| 312 |
-
|
| 313 |
except RuntimeError as e:
|
| 314 |
if "device-side assert" in str(e):
|
| 315 |
-
|
| 316 |
-
print(
|
| 317 |
-
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
| 318 |
-
flush=True,
|
| 319 |
-
)
|
| 320 |
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
| 321 |
print("Cuda device-assert Runtime encountered need restart")
|
| 322 |
if not DEVICE_ASSERT_DETECTED:
|
|
@@ -324,8 +209,6 @@ def predict(
|
|
| 324 |
DEVICE_ASSERT_PROMPT = prompt
|
| 325 |
DEVICE_ASSERT_LANG = language
|
| 326 |
|
| 327 |
-
# just before restarting save what caused the issue so we can handle it in future
|
| 328 |
-
# Uploading Error data only happens for unrecovarable error
|
| 329 |
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
|
| 330 |
error_data = [
|
| 331 |
error_time,
|
|
@@ -355,11 +238,7 @@ def predict(
|
|
| 355 |
repo_type="dataset",
|
| 356 |
)
|
| 357 |
|
| 358 |
-
|
| 359 |
-
print("Writing error reference audio")
|
| 360 |
-
speaker_filename = (
|
| 361 |
-
error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
| 362 |
-
)
|
| 363 |
error_api = HfApi()
|
| 364 |
error_api.upload_file(
|
| 365 |
path_or_fileobj=speaker_wav,
|
|
@@ -368,7 +247,6 @@ def predict(
|
|
| 368 |
repo_type="dataset",
|
| 369 |
)
|
| 370 |
|
| 371 |
-
# HF Space specific.. This error is unrecoverable need to restart space
|
| 372 |
space = api.get_space_runtime(repo_id=repo_id)
|
| 373 |
if space.stage!="BUILDING":
|
| 374 |
api.restart_space(repo_id=repo_id)
|
|
@@ -378,310 +256,92 @@ def predict(
|
|
| 378 |
else:
|
| 379 |
if "Failed to decode" in str(e):
|
| 380 |
print("Speaker encoding error", str(e))
|
| 381 |
-
gr.Warning(
|
| 382 |
-
"It appears something wrong with reference, did you unmute your microphone?"
|
| 383 |
-
)
|
| 384 |
else:
|
| 385 |
print("RuntimeError: non device-side assert error:", str(e))
|
| 386 |
gr.Warning("Something unexpected happened please retry again.")
|
| 387 |
-
return (
|
| 388 |
-
None,
|
| 389 |
-
None,
|
| 390 |
-
None,
|
| 391 |
-
None,
|
| 392 |
-
)
|
| 393 |
return (
|
| 394 |
-
gr.make_waveform(
|
| 395 |
-
audio="output.wav",
|
| 396 |
-
),
|
| 397 |
"output.wav",
|
| 398 |
metrics_text,
|
| 399 |
speaker_wav,
|
| 400 |
)
|
| 401 |
else:
|
| 402 |
gr.Warning("Please accept the Terms & Condition!")
|
| 403 |
-
return (
|
| 404 |
-
None,
|
| 405 |
-
None,
|
| 406 |
-
None,
|
| 407 |
-
None,
|
| 408 |
-
)
|
| 409 |
|
| 410 |
-
|
| 411 |
-
title = "Coqui🐸 XTTS"
|
| 412 |
|
| 413 |
description = """
|
| 414 |
-
|
| 415 |
<br/>
|
| 416 |
-
|
| 417 |
-
This demo is currently running **XTTS v2.0.3** <a href="https://huggingface.co/coqui/XTTS-v2">XTTS</a> is a multilingual text-to-speech and voice-cloning model. This demo features zero-shot voice cloning, however, you can fine-tune XTTS for better results. Leave a star 🌟 on Github <a href="https://github.com/coqui-ai/TTS">🐸TTS</a>, where our open-source inference and training code lives.
|
| 418 |
-
|
| 419 |
<br/>
|
| 420 |
-
|
| 421 |
-
Supported languages: Arabic: ar, Brazilian Portuguese: pt , Mandarin Chinese: zh-cn, Czech: cs, Dutch: nl, English: en, French: fr, German: de, Italian: it, Polish: pl, Russian: ru, Spanish: es, Turkish: tr, Japanese: ja, Korean: ko, Hungarian: hu, Hindi: hi
|
| 422 |
-
|
| 423 |
<br/>
|
| 424 |
"""
|
| 425 |
|
| 426 |
-
links = """
|
| 427 |
-
<img referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=0d00920c-8cc9-4bf3-90f2-a615797e5f59" />
|
| 428 |
-
|
| 429 |
-
| | |
|
| 430 |
-
| ------------------------------- | --------------------------------------- |
|
| 431 |
-
| 🐸💬 **CoquiTTS** | <a style="display:inline-block" href='https://github.com/coqui-ai/TTS'><img src='https://img.shields.io/github/stars/coqui-ai/TTS?style=social' /></a>|
|
| 432 |
-
| 💼 **Documentation** | [ReadTheDocs](https://tts.readthedocs.io/en/latest/)
|
| 433 |
-
| 👩💻 **Questions** | [GitHub Discussions](https://github.com/coqui-ai/TTS/discussions) |
|
| 434 |
-
| 🗯 **Community** | [](https://discord.gg/5eXr5seRrv) |
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
"""
|
| 438 |
-
|
| 439 |
-
article = """
|
| 440 |
-
<div style='margin:20px auto;'>
|
| 441 |
-
<p>By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml</p>
|
| 442 |
-
<p>We collect data only for error cases for improvement.</p>
|
| 443 |
-
</div>
|
| 444 |
-
"""
|
| 445 |
-
examples = [
|
| 446 |
-
[
|
| 447 |
-
"Once when I was six years old I saw a magnificent picture",
|
| 448 |
-
"en",
|
| 449 |
-
"examples/female.wav",
|
| 450 |
-
None,
|
| 451 |
-
False,
|
| 452 |
-
False,
|
| 453 |
-
False,
|
| 454 |
-
True,
|
| 455 |
-
],
|
| 456 |
-
[
|
| 457 |
-
"Lorsque j'avais six ans j'ai vu, une fois, une magnifique image",
|
| 458 |
-
"fr",
|
| 459 |
-
"examples/male.wav",
|
| 460 |
-
None,
|
| 461 |
-
False,
|
| 462 |
-
False,
|
| 463 |
-
False,
|
| 464 |
-
True,
|
| 465 |
-
],
|
| 466 |
-
[
|
| 467 |
-
"Als ich sechs war, sah ich einmal ein wunderbares Bild",
|
| 468 |
-
"de",
|
| 469 |
-
"examples/female.wav",
|
| 470 |
-
None,
|
| 471 |
-
False,
|
| 472 |
-
False,
|
| 473 |
-
False,
|
| 474 |
-
True,
|
| 475 |
-
],
|
| 476 |
-
[
|
| 477 |
-
"Cuando tenía seis años, vi una vez una imagen magnífica",
|
| 478 |
-
"es",
|
| 479 |
-
"examples/male.wav",
|
| 480 |
-
None,
|
| 481 |
-
False,
|
| 482 |
-
False,
|
| 483 |
-
False,
|
| 484 |
-
True,
|
| 485 |
-
],
|
| 486 |
-
[
|
| 487 |
-
"Quando eu tinha seis anos eu vi, uma vez, uma imagem magnífica",
|
| 488 |
-
"pt",
|
| 489 |
-
"examples/female.wav",
|
| 490 |
-
None,
|
| 491 |
-
False,
|
| 492 |
-
False,
|
| 493 |
-
False,
|
| 494 |
-
True,
|
| 495 |
-
],
|
| 496 |
-
[
|
| 497 |
-
"Kiedy miałem sześć lat, zobaczyłem pewnego razu wspaniały obrazek",
|
| 498 |
-
"pl",
|
| 499 |
-
"examples/male.wav",
|
| 500 |
-
None,
|
| 501 |
-
False,
|
| 502 |
-
False,
|
| 503 |
-
False,
|
| 504 |
-
True,
|
| 505 |
-
],
|
| 506 |
-
[
|
| 507 |
-
"Un tempo lontano, quando avevo sei anni, vidi un magnifico disegno",
|
| 508 |
-
"it",
|
| 509 |
-
"examples/female.wav",
|
| 510 |
-
None,
|
| 511 |
-
False,
|
| 512 |
-
False,
|
| 513 |
-
False,
|
| 514 |
-
True,
|
| 515 |
-
],
|
| 516 |
-
[
|
| 517 |
-
"Bir zamanlar, altı yaşındayken, muhteşem bir resim gördüm",
|
| 518 |
-
"tr",
|
| 519 |
-
"examples/female.wav",
|
| 520 |
-
None,
|
| 521 |
-
False,
|
| 522 |
-
False,
|
| 523 |
-
False,
|
| 524 |
-
True,
|
| 525 |
-
],
|
| 526 |
-
[
|
| 527 |
-
"Когда мне было шесть лет, я увидел однажды удивительную картинку",
|
| 528 |
-
"ru",
|
| 529 |
-
"examples/female.wav",
|
| 530 |
-
None,
|
| 531 |
-
False,
|
| 532 |
-
False,
|
| 533 |
-
False,
|
| 534 |
-
True,
|
| 535 |
-
],
|
| 536 |
-
[
|
| 537 |
-
"Toen ik een jaar of zes was, zag ik op een keer een prachtige plaat",
|
| 538 |
-
"nl",
|
| 539 |
-
"examples/male.wav",
|
| 540 |
-
None,
|
| 541 |
-
False,
|
| 542 |
-
False,
|
| 543 |
-
False,
|
| 544 |
-
True,
|
| 545 |
-
],
|
| 546 |
-
[
|
| 547 |
-
"Když mi bylo šest let, viděl jsem jednou nádherný obrázek",
|
| 548 |
-
"cs",
|
| 549 |
-
"examples/female.wav",
|
| 550 |
-
None,
|
| 551 |
-
False,
|
| 552 |
-
False,
|
| 553 |
-
False,
|
| 554 |
-
True,
|
| 555 |
-
],
|
| 556 |
-
[
|
| 557 |
-
"当我还只有六岁的时候, 看到了一副精彩的插画",
|
| 558 |
-
"zh-cn",
|
| 559 |
-
"examples/female.wav",
|
| 560 |
-
None,
|
| 561 |
-
False,
|
| 562 |
-
False,
|
| 563 |
-
False,
|
| 564 |
-
True,
|
| 565 |
-
],
|
| 566 |
-
[
|
| 567 |
-
"かつて 六歳のとき、素晴らしい絵を見ました",
|
| 568 |
-
"ja",
|
| 569 |
-
"examples/female.wav",
|
| 570 |
-
None,
|
| 571 |
-
False,
|
| 572 |
-
True,
|
| 573 |
-
False,
|
| 574 |
-
True,
|
| 575 |
-
],
|
| 576 |
-
[
|
| 577 |
-
"한번은 내가 여섯 살이었을 때 멋진 그림을 보았습니다.",
|
| 578 |
-
"ko",
|
| 579 |
-
"examples/female.wav",
|
| 580 |
-
None,
|
| 581 |
-
False,
|
| 582 |
-
True,
|
| 583 |
-
False,
|
| 584 |
-
True,
|
| 585 |
-
],
|
| 586 |
-
[
|
| 587 |
-
"Egyszer hat éves koromban láttam egy csodálatos képet",
|
| 588 |
-
"hu",
|
| 589 |
-
"examples/male.wav",
|
| 590 |
-
None,
|
| 591 |
-
False,
|
| 592 |
-
True,
|
| 593 |
-
False,
|
| 594 |
-
True,
|
| 595 |
-
],
|
| 596 |
-
]
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
with gr.Blocks(analytics_enabled=False) as demo:
|
| 601 |
with gr.Row():
|
| 602 |
with gr.Column():
|
| 603 |
-
gr.Markdown(
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
"""
|
| 607 |
-
)
|
| 608 |
with gr.Column():
|
| 609 |
-
# placeholder to align the image
|
| 610 |
pass
|
| 611 |
|
| 612 |
with gr.Row():
|
| 613 |
with gr.Column():
|
| 614 |
gr.Markdown(description)
|
| 615 |
with gr.Column():
|
| 616 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 617 |
|
| 618 |
with gr.Row():
|
| 619 |
with gr.Column():
|
| 620 |
input_text_gr = gr.Textbox(
|
| 621 |
label="Text Prompt",
|
| 622 |
-
info="
|
| 623 |
value="Hi there, I'm your new voice clone. Try your best to upload quality audio.",
|
|
|
|
|
|
|
| 624 |
)
|
| 625 |
language_gr = gr.Dropdown(
|
| 626 |
label="Language",
|
| 627 |
-
|
| 628 |
-
choices=[
|
| 629 |
-
"en",
|
| 630 |
-
"es",
|
| 631 |
-
"fr",
|
| 632 |
-
"de",
|
| 633 |
-
"it",
|
| 634 |
-
"pt",
|
| 635 |
-
"pl",
|
| 636 |
-
"tr",
|
| 637 |
-
"ru",
|
| 638 |
-
"nl",
|
| 639 |
-
"cs",
|
| 640 |
-
"ar",
|
| 641 |
-
"zh-cn",
|
| 642 |
-
"ja",
|
| 643 |
-
"ko",
|
| 644 |
-
"hu",
|
| 645 |
-
"hi"
|
| 646 |
-
],
|
| 647 |
-
max_choices=1,
|
| 648 |
value="en",
|
| 649 |
)
|
| 650 |
ref_gr = gr.Audio(
|
| 651 |
label="Reference Audio",
|
| 652 |
-
info="Click on the ✎ button to upload your own target speaker audio",
|
| 653 |
type="filepath",
|
| 654 |
value="examples/female.wav",
|
| 655 |
)
|
| 656 |
mic_gr = gr.Audio(
|
| 657 |
source="microphone",
|
| 658 |
type="filepath",
|
| 659 |
-
info="Use your microphone to record audio",
|
| 660 |
label="Use Microphone for Reference",
|
| 661 |
)
|
| 662 |
use_mic_gr = gr.Checkbox(
|
| 663 |
label="Use Microphone",
|
| 664 |
value=False,
|
| 665 |
-
info="Notice: Microphone input may not work properly under traffic",
|
| 666 |
)
|
| 667 |
clean_ref_gr = gr.Checkbox(
|
| 668 |
label="Cleanup Reference Voice",
|
| 669 |
value=False,
|
| 670 |
-
info="This check can improve output if your microphone or reference voice is noisy",
|
| 671 |
)
|
| 672 |
auto_det_lang_gr = gr.Checkbox(
|
| 673 |
label="Do not use language auto-detect",
|
| 674 |
value=False,
|
| 675 |
-
info="Check to disable language auto-detection",
|
| 676 |
)
|
| 677 |
tos_gr = gr.Checkbox(
|
| 678 |
-
label="Agree",
|
| 679 |
value=False,
|
| 680 |
-
info="I agree to the terms of the CPML: https://coqui.ai/cpml",
|
| 681 |
)
|
| 682 |
-
|
| 683 |
-
tts_button = gr.Button("Send", elem_id="send-btn", visible=True)
|
| 684 |
-
|
| 685 |
|
| 686 |
with gr.Column():
|
| 687 |
video_gr = gr.Video(label="Waveform Visual")
|
|
@@ -689,15 +349,11 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
| 689 |
out_text_gr = gr.Text(label="Metrics")
|
| 690 |
ref_audio_gr = gr.Audio(label="Reference Audio Used")
|
| 691 |
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
fn=predict,
|
| 698 |
-
cache_examples=False,)
|
| 699 |
-
|
| 700 |
-
tts_button.click(predict, [input_text_gr, language_gr, ref_gr, mic_gr, use_mic_gr, clean_ref_gr, auto_det_lang_gr, tos_gr], outputs=[video_gr, audio_gr, out_text_gr, ref_audio_gr])
|
| 701 |
|
| 702 |
demo.queue()
|
| 703 |
demo.launch(debug=True, show_api=True)
|
|
|
|
| 8 |
import torch
|
| 9 |
import torchaudio
|
| 10 |
|
|
|
|
| 11 |
#download for mecab
|
| 12 |
os.system('python -m unidic download')
|
| 13 |
|
| 14 |
# By using XTTS you agree to CPML license https://coqui.ai/cpml
|
| 15 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
| 16 |
|
|
|
|
|
|
|
| 17 |
import langid
|
| 18 |
import base64
|
| 19 |
import csv
|
|
|
|
| 34 |
|
| 35 |
from huggingface_hub import HfApi
|
| 36 |
|
|
|
|
| 37 |
api = HfApi(token=HF_TOKEN)
|
| 38 |
repo_id = "coqui/xtts"
|
| 39 |
|
|
|
|
| 40 |
print("Export newer ffmpeg binary for denoise filter")
|
| 41 |
ZipFile("ffmpeg.zip").extractall()
|
| 42 |
print("Make ffmpeg binary executable")
|
| 43 |
st = os.stat("ffmpeg")
|
| 44 |
os.chmod("ffmpeg", st.st_mode | stat.S_IEXEC)
|
| 45 |
|
|
|
|
| 46 |
print("Downloading if not downloaded Coqui XTTS V2")
|
| 47 |
from TTS.utils.manage import ModelManager
|
| 48 |
|
|
|
|
| 64 |
)
|
| 65 |
model.cuda()
|
| 66 |
|
|
|
|
| 67 |
DEVICE_ASSERT_DETECTED = 0
|
| 68 |
DEVICE_ASSERT_PROMPT = None
|
| 69 |
DEVICE_ASSERT_LANG = None
|
|
|
|
| 85 |
gr.Warning(
|
| 86 |
f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown"
|
| 87 |
)
|
| 88 |
+
return (None, None, None, None)
|
| 89 |
|
| 90 |
+
language_predicted = langid.classify(prompt)[0].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
if language_predicted == "zh":
|
|
|
|
| 92 |
language_predicted = "zh-cn"
|
| 93 |
|
| 94 |
print(f"Detected language:{language_predicted}, Chosen language:{language}")
|
| 95 |
|
|
|
|
| 96 |
if len(prompt) > 15:
|
|
|
|
|
|
|
|
|
|
| 97 |
if language_predicted != language and not no_lang_auto_detect:
|
|
|
|
|
|
|
| 98 |
gr.Warning(
|
| 99 |
+
f"It looks like your text isn't the language you chose, if you're sure the text is the same language you chose, please check disable language auto-detection checkbox"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
)
|
| 101 |
+
return (None, None, None, None)
|
| 102 |
|
| 103 |
if use_mic == True:
|
| 104 |
if mic_file_path is not None:
|
|
|
|
| 107 |
gr.Warning(
|
| 108 |
"Please record your voice with Microphone, or uncheck Use Microphone to use reference audios"
|
| 109 |
)
|
| 110 |
+
return (None, None, None, None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
else:
|
| 112 |
speaker_wav = audio_file_pth
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
lowpassfilter = denoise = trim = loudness = True
|
| 115 |
|
| 116 |
if lowpassfilter:
|
|
|
|
| 119 |
lowpass_highpass = ""
|
| 120 |
|
| 121 |
if trim:
|
|
|
|
| 122 |
trim_silence = "areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,"
|
| 123 |
else:
|
| 124 |
trim_silence = ""
|
| 125 |
|
| 126 |
if voice_cleanup:
|
| 127 |
try:
|
| 128 |
+
out_filename = speaker_wav + str(uuid.uuid4()) + ".wav"
|
| 129 |
+
shell_command = f"./ffmpeg -y -i {speaker_wav} -af {lowpass_highpass}{trim_silence} {out_filename}".split(" ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
command_result = subprocess.run(
|
| 131 |
[item for item in shell_command],
|
| 132 |
capture_output=False,
|
|
|
|
| 136 |
speaker_wav = out_filename
|
| 137 |
print("Filtered microphone input")
|
| 138 |
except subprocess.CalledProcessError:
|
|
|
|
| 139 |
print("Error: failed filtering, use original microphone input")
|
| 140 |
else:
|
| 141 |
speaker_wav = speaker_wav
|
| 142 |
|
| 143 |
if len(prompt) < 2:
|
| 144 |
gr.Warning("Please give a longer prompt text")
|
| 145 |
+
return (None, None, None, None)
|
| 146 |
+
|
| 147 |
+
# Changed from 200 to 5000 characters
|
| 148 |
+
if len(prompt) > 5000:
|
|
|
|
|
|
|
|
|
|
| 149 |
gr.Warning(
|
| 150 |
+
"Text length limited to 5000 characters for this demo"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
)
|
| 152 |
+
return (None, None, None, None)
|
| 153 |
+
|
| 154 |
global DEVICE_ASSERT_DETECTED
|
| 155 |
if DEVICE_ASSERT_DETECTED:
|
| 156 |
global DEVICE_ASSERT_PROMPT
|
| 157 |
global DEVICE_ASSERT_LANG
|
| 158 |
+
print(f"Unrecoverable exception caused by language:{DEVICE_ASSERT_LANG} prompt:{DEVICE_ASSERT_PROMPT}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
space = api.get_space_runtime(repo_id=repo_id)
|
| 160 |
if space.stage!="BUILDING":
|
| 161 |
api.restart_space(repo_id=repo_id)
|
|
|
|
| 166 |
metrics_text = ""
|
| 167 |
t_latent = time.time()
|
| 168 |
|
|
|
|
| 169 |
try:
|
| 170 |
+
(gpt_cond_latent, speaker_embedding) = model.get_conditioning_latents(
|
| 171 |
+
audio_path=speaker_wav,
|
| 172 |
+
gpt_cond_len=30,
|
| 173 |
+
gpt_cond_chunk_len=4,
|
| 174 |
+
max_ref_length=60
|
| 175 |
+
)
|
| 176 |
except Exception as e:
|
| 177 |
print("Speaker encoding error", str(e))
|
| 178 |
+
gr.Warning("It appears something wrong with reference, did you unmute your microphone?")
|
| 179 |
+
return (None, None, None, None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
latent_calculation_time = time.time() - t_latent
|
| 182 |
+
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)",r"\1 \2\2",prompt)
|
| 183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
print("I: Generating new audio...")
|
| 185 |
t0 = time.time()
|
| 186 |
out = model.inference(
|
|
|
|
| 199 |
metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
| 200 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
| 201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
except RuntimeError as e:
|
| 203 |
if "device-side assert" in str(e):
|
| 204 |
+
print(f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}", flush=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
| 206 |
print("Cuda device-assert Runtime encountered need restart")
|
| 207 |
if not DEVICE_ASSERT_DETECTED:
|
|
|
|
| 209 |
DEVICE_ASSERT_PROMPT = prompt
|
| 210 |
DEVICE_ASSERT_LANG = language
|
| 211 |
|
|
|
|
|
|
|
| 212 |
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
|
| 213 |
error_data = [
|
| 214 |
error_time,
|
|
|
|
| 238 |
repo_type="dataset",
|
| 239 |
)
|
| 240 |
|
| 241 |
+
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
error_api = HfApi()
|
| 243 |
error_api.upload_file(
|
| 244 |
path_or_fileobj=speaker_wav,
|
|
|
|
| 247 |
repo_type="dataset",
|
| 248 |
)
|
| 249 |
|
|
|
|
| 250 |
space = api.get_space_runtime(repo_id=repo_id)
|
| 251 |
if space.stage!="BUILDING":
|
| 252 |
api.restart_space(repo_id=repo_id)
|
|
|
|
| 256 |
else:
|
| 257 |
if "Failed to decode" in str(e):
|
| 258 |
print("Speaker encoding error", str(e))
|
| 259 |
+
gr.Warning("It appears something wrong with reference, did you unmute your microphone?")
|
|
|
|
|
|
|
| 260 |
else:
|
| 261 |
print("RuntimeError: non device-side assert error:", str(e))
|
| 262 |
gr.Warning("Something unexpected happened please retry again.")
|
| 263 |
+
return (None, None, None, None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
return (
|
| 265 |
+
gr.make_waveform(audio="output.wav"),
|
|
|
|
|
|
|
| 266 |
"output.wav",
|
| 267 |
metrics_text,
|
| 268 |
speaker_wav,
|
| 269 |
)
|
| 270 |
else:
|
| 271 |
gr.Warning("Please accept the Terms & Condition!")
|
| 272 |
+
return (None, None, None, None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
+
title = "Coqui🐸 XTTS (5000 Char Limit)"
|
|
|
|
| 275 |
|
| 276 |
description = """
|
|
|
|
| 277 |
<br/>
|
| 278 |
+
This demo is running **XTTS v2.0.3** with 5000 character limit. <a href="https://huggingface.co/coqui/XTTS-v2">XTTS</a> is a multilingual text-to-speech model with voice cloning.
|
|
|
|
|
|
|
| 279 |
<br/>
|
| 280 |
+
Supported languages: Arabic (ar), Portuguese (pt), Chinese (zh-cn), Czech (cs), Dutch (nl), English (en), French (fr), German (de), Italian (it), Polish (pl), Russian (ru), Spanish (es), Turkish (tr), Japanese (ja), Korean (ko), Hungarian (hu), Hindi (hi)
|
|
|
|
|
|
|
| 281 |
<br/>
|
| 282 |
"""
|
| 283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
with gr.Blocks(analytics_enabled=False) as demo:
|
| 285 |
with gr.Row():
|
| 286 |
with gr.Column():
|
| 287 |
+
gr.Markdown("""
|
| 288 |
+
## <img src="https://raw.githubusercontent.com/coqui-ai/TTS/main/images/coqui-log-green-TTS.png" height="56"/>
|
| 289 |
+
""")
|
|
|
|
|
|
|
| 290 |
with gr.Column():
|
|
|
|
| 291 |
pass
|
| 292 |
|
| 293 |
with gr.Row():
|
| 294 |
with gr.Column():
|
| 295 |
gr.Markdown(description)
|
| 296 |
with gr.Column():
|
| 297 |
+
gr.Markdown("""
|
| 298 |
+
| | |
|
| 299 |
+
| ------------------------------- | --------------------------------------- |
|
| 300 |
+
| 🐸💬 **CoquiTTS** | <a style="display:inline-block" href='https://github.com/coqui-ai/TTS'><img src='https://img.shields.io/github/stars/coqui-ai/TTS?style=social' /></a>|
|
| 301 |
+
| 💼 **Documentation** | [ReadTheDocs](https://tts.readthedocs.io/en/latest/) |
|
| 302 |
+
""")
|
| 303 |
|
| 304 |
with gr.Row():
|
| 305 |
with gr.Column():
|
| 306 |
input_text_gr = gr.Textbox(
|
| 307 |
label="Text Prompt",
|
| 308 |
+
info="Up to 5000 text characters.",
|
| 309 |
value="Hi there, I'm your new voice clone. Try your best to upload quality audio.",
|
| 310 |
+
lines=5,
|
| 311 |
+
max_lines=10
|
| 312 |
)
|
| 313 |
language_gr = gr.Dropdown(
|
| 314 |
label="Language",
|
| 315 |
+
choices=["en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "ko", "hu", "hi"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
value="en",
|
| 317 |
)
|
| 318 |
ref_gr = gr.Audio(
|
| 319 |
label="Reference Audio",
|
|
|
|
| 320 |
type="filepath",
|
| 321 |
value="examples/female.wav",
|
| 322 |
)
|
| 323 |
mic_gr = gr.Audio(
|
| 324 |
source="microphone",
|
| 325 |
type="filepath",
|
|
|
|
| 326 |
label="Use Microphone for Reference",
|
| 327 |
)
|
| 328 |
use_mic_gr = gr.Checkbox(
|
| 329 |
label="Use Microphone",
|
| 330 |
value=False,
|
|
|
|
| 331 |
)
|
| 332 |
clean_ref_gr = gr.Checkbox(
|
| 333 |
label="Cleanup Reference Voice",
|
| 334 |
value=False,
|
|
|
|
| 335 |
)
|
| 336 |
auto_det_lang_gr = gr.Checkbox(
|
| 337 |
label="Do not use language auto-detect",
|
| 338 |
value=False,
|
|
|
|
| 339 |
)
|
| 340 |
tos_gr = gr.Checkbox(
|
| 341 |
+
label="Agree to CPML terms",
|
| 342 |
value=False,
|
|
|
|
| 343 |
)
|
| 344 |
+
tts_button = gr.Button("Generate Speech", elem_id="send-btn", visible=True)
|
|
|
|
|
|
|
| 345 |
|
| 346 |
with gr.Column():
|
| 347 |
video_gr = gr.Video(label="Waveform Visual")
|
|
|
|
| 349 |
out_text_gr = gr.Text(label="Metrics")
|
| 350 |
ref_audio_gr = gr.Audio(label="Reference Audio Used")
|
| 351 |
|
| 352 |
+
tts_button.click(
|
| 353 |
+
predict,
|
| 354 |
+
[input_text_gr, language_gr, ref_gr, mic_gr, use_mic_gr, clean_ref_gr, auto_det_lang_gr, tos_gr],
|
| 355 |
+
outputs=[video_gr, audio_gr, out_text_gr, ref_audio_gr]
|
| 356 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
demo.queue()
|
| 359 |
demo.launch(debug=True, show_api=True)
|