Spaces:
Sleeping
Sleeping
| """LangGraph Agent""" | |
| import os | |
| from dotenv import load_dotenv | |
| from langgraph.graph import START, StateGraph, MessagesState | |
| from langgraph.prebuilt import tools_condition | |
| from langgraph.prebuilt import ToolNode | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| from langchain_groq import ChatGroq | |
| from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
| from langchain_community.tools.tavily_search import TavilySearchResults | |
| from langchain_community.document_loaders import WikipediaLoader | |
| from langchain_community.document_loaders import ArxivLoader | |
| from langchain_community.vectorstores import SupabaseVectorStore | |
| from langchain_core.messages import SystemMessage, HumanMessage | |
| from langchain_core.tools import tool | |
| from langchain.tools.retriever import create_retriever_tool | |
| from supabase.client import Client, create_client | |
| load_dotenv() | |
| def multiply(a: int, b: int) -> int: | |
| """Multiply two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a * b | |
| def add(a: int, b: int) -> int: | |
| """Add two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a + b | |
| def subtract(a: int, b: int) -> int: | |
| """Subtract two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a - b | |
| def divide(a: int, b: int) -> int: | |
| """Divide two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| if b == 0: | |
| raise ValueError("Cannot divide by zero.") | |
| return a / b | |
| def modulus(a: int, b: int) -> int: | |
| """Get the modulus of two numbers. | |
| Args: | |
| a: first int | |
| b: second int | |
| """ | |
| return a % b | |
| def wiki_search(query: str) -> str: | |
| """Search Wikipedia for a query and return maximum 2 results. | |
| Args: | |
| query: The search query.""" | |
| search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
| for doc in search_docs | |
| ]) | |
| return {"wiki_results": formatted_search_docs} | |
| def web_search(query: str) -> str: | |
| """Search Tavily for a query and return maximum 3 results. | |
| Args: | |
| query: The search query.""" | |
| search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
| for doc in search_docs | |
| ]) | |
| return {"web_results": formatted_search_docs} | |
| def arvix_search(query: str) -> str: | |
| """Search Arxiv for a query and return maximum 3 result. | |
| Args: | |
| query: The search query.""" | |
| search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
| for doc in search_docs | |
| ]) | |
| return {"arvix_results": formatted_search_docs} | |
| # load the system prompt from the file | |
| with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
| system_prompt = f.read() | |
| # System message | |
| sys_msg = SystemMessage(content=system_prompt) | |
| # build a retriever | |
| embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768 | |
| supabase: Client = create_client( | |
| os.environ.get("SUPABASE_URL"), | |
| os.environ.get("SUPABASE_SERVICE_KEY")) | |
| vector_store = SupabaseVectorStore( | |
| client=supabase, | |
| embedding= embeddings, | |
| table_name="documents", | |
| query_name="match_documents_langchain", | |
| ) | |
| create_retriever_tool = create_retriever_tool( | |
| retriever=vector_store.as_retriever(), | |
| name="Question Search", | |
| description="A tool to retrieve similar questions from a vector store.", | |
| ) | |
| tools = [ | |
| multiply, | |
| add, | |
| subtract, | |
| divide, | |
| modulus, | |
| wiki_search, | |
| web_search, | |
| arvix_search, | |
| ] | |
| # Build graph function | |
| def build_graph(provider: str = "groq"): | |
| """Build the graph""" | |
| # Load environment variables from .env file | |
| if provider == "google": | |
| # Google Gemini | |
| llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) | |
| elif provider == "groq": | |
| # Groq https://console.groq.com/docs/models | |
| llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it | |
| elif provider == "huggingface": | |
| # TODO: Add huggingface endpoint | |
| llm = ChatHuggingFace( | |
| llm=HuggingFaceEndpoint( | |
| url="/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2FMeta-DeepLearning%2Fllama-2-7b-chat-hf%26quot%3B%3C%2Fspan%3E%2C%3C!-- HTML_TAG_END --> | |
| temperature=0, | |
| ), | |
| ) | |
| else: | |
| raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") | |
| # Bind tools to LLM | |
| llm_with_tools = llm.bind_tools(tools) | |
| # Node | |
| def assistant(state: MessagesState): | |
| """Assistant node""" | |
| return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
| def retriever(state: MessagesState): | |
| """Retriever node""" | |
| similar_question = vector_store.similarity_search(state["messages"][0].content) | |
| example_msg = HumanMessage( | |
| content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", | |
| ) | |
| return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
| builder = StateGraph(MessagesState) | |
| builder.add_node("retriever", retriever) | |
| builder.add_node("assistant", assistant) | |
| builder.add_node("tools", ToolNode(tools)) | |
| builder.add_edge(START, "retriever") | |
| builder.add_edge("retriever", "assistant") | |
| builder.add_conditional_edges( | |
| "assistant", | |
| tools_condition, | |
| ) | |
| builder.add_edge("tools", "assistant") | |
| # Compile graph | |
| return builder.compile() | |
| # test | |
| if __name__ == "__main__": | |
| question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" | |
| # Build the graph | |
| graph = build_graph(provider="groq") | |
| # Run the graph | |
| messages = [HumanMessage(content=question)] | |
| messages = graph.invoke({"messages": messages}) | |
| for m in messages["messages"]: | |
| m.pretty_print() |