File size: 36,694 Bytes
61fd66a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28ce7f7
 
61fd66a
 
a4e8b55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c374b8b
 
 
 
 
 
 
66f27f5
 
 
 
 
 
 
 
 
 
 
c374b8b
61fd66a
 
 
 
28ce7f7
a4e8b55
 
 
 
 
 
 
 
 
 
476cf4b
a4e8b55
 
 
 
 
 
 
 
61fd66a
28ce7f7
 
 
61fd66a
 
 
 
 
28ce7f7
e45fd18
61fd66a
 
 
 
e45fd18
61fd66a
28ce7f7
 
61fd66a
 
 
 
 
 
 
28ce7f7
61fd66a
 
 
a4e8b55
9ee35b3
a4e8b55
 
 
 
 
 
 
 
 
61fd66a
 
 
a4e8b55
61fd66a
 
 
 
28ce7f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e45fd18
28ce7f7
 
e45fd18
28ce7f7
 
 
e45fd18
28ce7f7
 
 
 
 
 
 
 
e45fd18
28ce7f7
 
 
 
e45fd18
28ce7f7
 
e45fd18
28ce7f7
 
 
e45fd18
28ce7f7
 
 
 
65651d7
28ce7f7
65651d7
 
 
 
 
 
 
 
 
 
 
e45fd18
65651d7
 
e45fd18
65651d7
 
 
e45fd18
65651d7
 
 
 
 
 
 
 
 
 
 
 
e45fd18
65651d7
 
 
e45fd18
65651d7
 
 
 
 
 
 
 
 
 
 
 
 
e45fd18
65651d7
 
 
 
e45fd18
65651d7
 
e45fd18
65651d7
 
e45fd18
65651d7
 
 
e45fd18
65651d7
 
 
 
 
 
 
 
 
 
 
28ce7f7
 
 
 
 
e45fd18
28ce7f7
 
e45fd18
28ce7f7
 
e45fd18
 
 
 
28ce7f7
 
 
e45fd18
65651d7
e45fd18
 
 
28ce7f7
e45fd18
28ce7f7
65651d7
28ce7f7
 
 
 
 
 
 
 
e45fd18
28ce7f7
65651d7
 
 
 
 
e45fd18
65651d7
28ce7f7
e45fd18
65651d7
 
 
e45fd18
28ce7f7
 
 
 
 
 
 
 
 
 
 
e45fd18
28ce7f7
 
e45fd18
28ce7f7
 
 
 
 
 
 
 
 
 
c374b8b
 
 
 
 
 
 
 
 
 
 
 
 
 
61fd66a
 
 
 
66f27f5
 
 
 
 
 
 
e45fd18
66f27f5
 
e45fd18
66f27f5
 
 
e45fd18
 
 
 
 
66f27f5
c374b8b
61fd66a
e45fd18
66f27f5
 
 
 
 
e45fd18
66f27f5
e45fd18
 
 
66f27f5
 
 
 
e45fd18
c374b8b
 
 
 
e45fd18
c374b8b
 
 
 
 
 
 
 
e45fd18
61fd66a
c374b8b
e45fd18
c374b8b
61fd66a
476cf4b
 
61fd66a
e45fd18
 
 
 
 
 
476cf4b
e45fd18
 
 
 
476cf4b
 
e45fd18
 
c374b8b
e45fd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476cf4b
 
e45fd18
66f27f5
476cf4b
e45fd18
 
 
66f27f5
 
65651d7
e45fd18
66f27f5
e45fd18
 
 
 
 
 
65651d7
e45fd18
 
 
 
 
65651d7
e45fd18
 
65651d7
e45fd18
 
65651d7
e45fd18
65651d7
e45fd18
 
 
 
 
 
 
 
 
 
 
 
65651d7
66f27f5
 
e45fd18
66f27f5
 
 
e45fd18
 
 
 
 
 
66f27f5
 
e45fd18
 
 
 
 
66f27f5
 
e45fd18
65651d7
e45fd18
61fd66a
66f27f5
c374b8b
 
65651d7
e45fd18
 
 
 
 
 
 
 
61fd66a
66f27f5
476cf4b
e45fd18
c374b8b
e45fd18
 
 
 
 
 
 
 
 
 
66f27f5
e45fd18
 
c374b8b
66f27f5
 
e45fd18
66f27f5
 
 
 
e45fd18
66f27f5
e45fd18
 
 
66f27f5
c374b8b
 
e45fd18
c374b8b
66f27f5
c374b8b
e45fd18
c374b8b
 
66f27f5
e45fd18
c374b8b
e45fd18
 
 
 
 
 
c374b8b
e45fd18
c374b8b
66f27f5
c374b8b
 
 
e45fd18
 
 
 
 
 
 
 
61fd66a
 
 
 
 
 
 
e45fd18
61fd66a
 
e45fd18
a4e8b55
 
61fd66a
a4e8b55
9ee35b3
a4e8b55
 
e45fd18
61fd66a
 
 
a4e8b55
61fd66a
 
 
 
 
e45fd18
 
 
 
 
 
 
 
 
 
61fd66a
 
 
e45fd18
61fd66a
 
 
e45fd18
61fd66a
 
e45fd18
61fd66a
 
e45fd18
 
 
 
 
 
 
 
 
61fd66a
 
e45fd18
61fd66a
dfbef66
61fd66a
 
 
 
e45fd18
61fd66a
 
66f27f5
61fd66a
28ce7f7
61fd66a
e45fd18
 
 
 
 
 
 
 
61fd66a
e45fd18
 
 
65651d7
66f27f5
 
e45fd18
66f27f5
e45fd18
61fd66a
66f27f5
 
e45fd18
 
 
 
66f27f5
e45fd18
 
 
28ce7f7
e45fd18
61fd66a
 
28ce7f7
e45fd18
 
 
28ce7f7
 
 
e45fd18
28ce7f7
e45fd18
 
 
 
 
 
 
 
61fd66a
e45fd18
 
66f27f5
e45fd18
a4e8b55
e45fd18
 
a4e8b55
 
e45fd18
 
 
 
 
 
 
 
 
 
 
 
 
 
61fd66a
e45fd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32c58e7
e45fd18
 
 
 
 
61fd66a
e45fd18
 
 
 
 
28ce7f7
 
dfbef66
e45fd18
28ce7f7
61fd66a
e45fd18
 
 
 
 
 
 
 
476cf4b
e45fd18
476cf4b
e45fd18
61fd66a
 
 
e45fd18
 
61fd66a
e45fd18
61fd66a
e45fd18
a4e8b55
 
e45fd18
 
 
 
 
 
 
 
 
 
 
 
 
 
61fd66a
e45fd18
28ce7f7
 
 
e45fd18
61fd66a
e45fd18
61fd66a
e45fd18
 
 
 
 
 
476cf4b
e45fd18
 
 
 
 
 
 
 
 
 
 
 
 
61fd66a
e45fd18
 
61fd66a
e45fd18
 
 
28ce7f7
 
61fd66a
28ce7f7
e45fd18
28ce7f7
a4e8b55
e45fd18
61fd66a
e45fd18
 
28ce7f7
 
e45fd18
28ce7f7
e45fd18
61fd66a
e45fd18
 
 
 
 
 
 
61fd66a
e45fd18
61fd66a
 
 
66f27f5
e45fd18
 
61fd66a
 
e45fd18
 
 
 
 
 
 
 
 
 
 
 
 
 
61fd66a
e45fd18
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
import os
import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import requests
import io
import matplotlib.colors as mcolors
import cv2
from io import BytesIO
import urllib.request
import tempfile
import rasterio
import warnings
import pandas as pd
import joblib
warnings.filterwarnings("ignore")

# Try to import segmentation_models_pytorch
try:
    import segmentation_models_pytorch as smp
    smp_available = True
    print("Successfully imported segmentation_models_pytorch")
except ImportError:
    smp_available = False
    print("Warning: segmentation_models_pytorch not available, will try to install it")
    import subprocess
    try:
        subprocess.check_call([
            "pip", "install", "segmentation-models-pytorch"
        ])
        import segmentation_models_pytorch as smp
        smp_available = True
        print("Successfully installed and imported segmentation_models_pytorch")
    except:
        print("Failed to install segmentation_models_pytorch")

# Try to import albumentations if needed for preprocessing
try:
    import albumentations as A
    albumentations_available = True
    print("Successfully imported albumentations")
except ImportError:
    albumentations_available = False
    print("Warning: albumentations not available, will try to install it")
    import subprocess
    try:
        subprocess.check_call([
            "pip", "install", "albumentations"
        ])
        import albumentations as A
        albumentations_available = True
        print("Successfully installed and imported albumentations")
    except:
        print("Failed to install albumentations, will use OpenCV for transforms")

# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Initialize the segmentation model
if smp_available:
    # Define the DeepLabV3+ model using smp
    model = smp.DeepLabV3Plus(
        encoder_name="resnet34",  # Using ResNet34 backbone as in your training
        encoder_weights=None,     # We'll load your custom weights
        in_channels=3,            # RGB input
        classes=1,                # Binary segmentation
    )
else:
    # Fallback to a simple model that won't actually work but allows the UI to load
    print("Warning: Using a placeholder model that won't produce valid predictions.")
    from torch import nn
    class PlaceholderModel(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 1, 3, padding=1)
        def forward(self, x):
            return self.conv(x)
    model = PlaceholderModel()

# Download segmentation model weights from HuggingFace
SEGMENTATION_MODEL_REPO = "dcrey7/wetlands_segmentation_deeplabsv3plus"
SEGMENTATION_MODEL_FILENAME = "DeepLabV3plus_best_model.pth"

def download_model_weights():
    """Download model weights from HuggingFace repository"""
    try:
        os.makedirs('weights', exist_ok=True)
        local_path = os.path.join('weights', SEGMENTATION_MODEL_FILENAME)

        # Check if weights are already downloaded
        if os.path.exists(local_path):
            print(f"Model weights already downloaded at {local_path}")
            return local_path

        # Download weights
        print(f"Downloading model weights from {SEGMENTATION_MODEL_REPO}...")
        url = f"https://huggingface.co/{SEGMENTATION_MODEL_REPO}/resolve/main/{SEGMENTATION_MODEL_FILENAME}"
        urllib.request.urlretrieve(url, local_path)
        print(f"Model weights downloaded to {local_path}")
        return local_path
    except Exception as e:
        print(f"Error downloading model weights: {e}")
        return None

# Load the segmentation model weights
weights_path = download_model_weights()
if weights_path:
    try:
        # Try to load with strict=False to allow for some parameter mismatches
        state_dict = torch.load(weights_path, map_location=device)
        # Check if we need to modify the state dict keys
        if all(key.startswith('encoder.') or key.startswith('decoder.') for key in list(state_dict.keys())[:5]):
            print("Model weights use encoder/decoder format, loading directly")
            model.load_state_dict(state_dict, strict=False)
        else:
            print("Attempting to adapt state dict to match model architecture")
            # This is a placeholder for state dict adaptation if needed
            model.load_state_dict(state_dict, strict=False)
        print("Model weights loaded successfully")
    except Exception as e:
        print(f"Error loading model weights: {e}")
else:
    print("No weights available. Model will not produce valid predictions.")

model.to(device)
model.eval()

# Load the cloud detection model
def load_cloud_detection_model():
    """Load cloud detection model from the local file"""
    try:
        # Check if the model file exists
        model_path = "cloud_detection_lightgbm.joblib"
        if os.path.exists(model_path):
            # Load the model
            cloud_model = joblib.load(model_path)
            print(f"Cloud detection model loaded successfully from {model_path}")
            return cloud_model
        else:
            print(f"Cloud detection model file not found at {model_path}")
            return None
    except Exception as e:
        print(f"Error loading cloud detection model: {e}")
        return None

# Load the cloud detection model
cloud_model = load_cloud_detection_model()
if cloud_model:
    print("Cloud detection model is ready for predictions")
else:
    print("Warning: Cloud detection model could not be loaded")

def normalize(band):
    """Normalize band values using 2-98 percentile range"""
    # Handle potential NaN or inf values
    band_cleaned = band[np.isfinite(band)]
    if len(band_cleaned) == 0:
        return band

    # Use percentiles to avoid outliers
    band_min, band_max = np.percentile(band_cleaned, (2, 98))

    # Avoid division by zero
    if band_max == band_min:
        return np.zeros_like(band)

    band_normalized = (band - band_min) / (band_max - band_min)
    band_normalized = np.clip(band_normalized, 0, 1)
    return band_normalized

def calculate_cv(band):
    """Calculate coefficient of variation (CV) for a band"""
    # First normalize the band
    band_normalized = normalize(band)

    # Handle potential NaN or inf values
    band_cleaned = band_normalized[np.isfinite(band_normalized)]
    if len(band_cleaned) == 0:
        return 0

    # Get mean and std dev
    mean = np.mean(band_cleaned)

    # Guard against division by zero or very small means
    if abs(mean) < 1e-10:
        return 0

    std = np.std(band_cleaned)
    cv = (std / mean)  # CV as ratio (not percentage)
    return cv

def read_tiff_image_for_segmentation(tiff_path):
    """
    Read a TIFF image using rasterio, focusing on RGB bands (first 3 bands)
    for wetland segmentation
    """
    try:
        # Read the image using rasterio (get RGB channels)
        with rasterio.open(tiff_path) as src:
            # Check if we have enough bands
            if src.count >= 3:
                red = src.read(1)
                green = src.read(2)
                blue = src.read(3)

                # Stack to create RGB image
                image = np.dstack((red, green, blue)).astype(np.float32)

                # Normalize to [0, 1]
                if image.max() > 0:
                    image = image / image.max()

                return image
            else:
                # If less than 3 bands, handle accordingly
                bands = [src.read(i+1) for i in range(src.count)]
                # If only one band, duplicate to create RGB
                if len(bands) == 1:
                    image = np.dstack((bands[0], bands[0], bands[0]))
                else:
                    # Use available bands and pad with zeros if needed
                    while len(bands) < 3:
                        bands.append(np.zeros_like(bands[0]))
                    image = np.dstack(bands[:3])  # Use first 3 bands

                # Normalize
                if image.max() > 0:
                    image = image / image.max()

                return image
    except Exception as e:
        print(f"Error reading TIFF file for segmentation: {e}")
        return None

def extract_cloud_features_from_tiff(tiff_path):
    """
    Extract CV features from all bands in a TIFF file for cloud detection.
    Will try to use up to 10 bands.
    """
    try:
        with rasterio.open(tiff_path) as src:
            num_bands = min(src.count, 10)  # Use up to 10 bands

            # Process each band
            features = {}
            for i in range(1, num_bands + 1):
                band = src.read(i)

                # Calculate coefficient of variation
                cv_value = calculate_cv(band)

                # Store feature with name matching the training data
                features[f'band{i}_cv'] = cv_value

            # If we have fewer than 10 bands, fill the missing ones with zeros
            for i in range(num_bands + 1, 11):
                features[f'band{i}_cv'] = 0.0

            return features
    except Exception as e:
        print(f"Error extracting cloud features from TIFF: {e}")
        import traceback
        traceback.print_exc()
        return None

def extract_cloud_features_from_rgb(image):
    """
    Extract CV features from RGB image for cloud detection.
    Will use 3 bands and fill the remaining 7 with zeros to match the expected 10 features.
    """
    try:
        # Make sure image is in float format in range [0,1]
        if image.dtype != np.float32 and image.dtype != np.float64:
            image = image.astype(np.float32)

        if image.max() > 1.0:
            image = image / 255.0

        # Create a dictionary for band CV features
        features = {}

        # Process each channel/band (assuming image is H, W, C)
        num_bands = min(3, image.shape[2])
        for i in range(num_bands):
            band = image[:, :, i]
            cv_value = calculate_cv(band)
            features[f'band{i+1}_cv'] = cv_value

        # Fill remaining bands with zeros to match the expected 10 features
        for i in range(num_bands + 1, 11):
            features[f'band{i}_cv'] = 0.0

        return features

    except Exception as e:
        print(f"Error extracting cloud features from RGB: {e}")
        import traceback
        traceback.print_exc()
        return None

def predict_cloud(features_dict, model):
    """Predict if an image is cloudy based on extracted features"""
    if model is None:
        return {'prediction': 'Model unavailable', 'probability': 0.0}

    try:
        # Ensure all 10 features from band1_cv to band10_cv are present
        feature_dict = {}
        for i in range(1, 11):
            feature_name = f'band{i}_cv'
            feature_dict[feature_name] = features_dict.get(feature_name, 0.0)

        # Create a DataFrame with all required features
        feature_df = pd.DataFrame([feature_dict])

        # Enable shape check disabling for prediction
        if hasattr(model, 'set_params'):
            model.set_params(predict_disable_shape_check=True)

        # Make prediction
        if hasattr(model, 'predict_proba'):
            proba = model.predict_proba(feature_df)
            if proba.shape[1] > 1:  # Binary classification with probabilities for both classes
                probability = proba[0][1]  # Probability of the positive class (cloudy)
            else:
                probability = proba[0][0]  # Single probability output
        else:
            # If model doesn't have predict_proba, use predict and assume binary output
            pred = model.predict(feature_df)
            probability = float(pred[0])

        # Classification based on probability threshold
        prediction = 'Cloudy' if probability >= 0.5 else 'Non-Cloudy'

        return {
            'prediction': prediction,
            'probability': probability
        }
    except Exception as e:
        print(f"Error predicting cloud: {e}")
        import traceback
        traceback.print_exc()
        return {'prediction': 'Error', 'probability': 0.0}

def read_tiff_mask(mask_path):
    """
    Read a TIFF mask using rasterio
    This matches your training data loading approach
    """
    try:
        # Read mask
        with rasterio.open(mask_path) as src:
            mask = src.read(1).astype(np.uint8)
        return mask
    except Exception as e:
        print(f"Error reading mask file: {e}")
        return None

def preprocess_image(image, target_size=(128, 128)):
    """
    Preprocess an image for inference
    """
    # If image is already a numpy array, use it directly
    if isinstance(image, np.ndarray):
        # Ensure RGB format
        if len(image.shape) == 2:  # Grayscale
            image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
        elif image.shape[2] == 4:  # RGBA
            image = image[:, :, :3]

        # Make a copy for display
        display_image = image.copy()

        # Normalize to [0, 1] if needed
        if display_image.max() > 1.0:
            image = image.astype(np.float32) / 255.0
            display_image = display_image.astype(np.uint8) # Keep display image as uint8
        else:
            # If already normalized, scale up for display
             display_image = (display_image * 255).astype(np.uint8)

    # Convert PIL image to numpy
    elif isinstance(image, Image.Image):
        image = np.array(image)

        # Ensure RGB format
        if len(image.shape) == 2:  # Grayscale
            image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
        elif image.shape[2] == 4:  # RGBA
            image = image[:, :, :3]

        # Make a copy for display
        display_image = image.copy() # display_image is uint8 here

        # Normalize to [0, 1] for model
        image = image.astype(np.float32) / 255.0
    else:
        print(f"Unsupported image type: {type(image)}")
        return None, None

    # Resize image to the target size
    if albumentations_available:
        # Use albumentations to match training preprocessing
        aug = A.Compose([
            A.PadIfNeeded(min_height=target_size[0], min_width=target_size[1],
                         border_mode=cv2.BORDER_CONSTANT, value=0),
            A.CenterCrop(height=target_size[0], width=target_size[1])
        ])
        augmented = aug(image=image)
        image_resized = augmented['image']
    else:
        # Fallback to OpenCV
        image_resized = cv2.resize(image, target_size, interpolation=cv2.INTER_LINEAR)

    # Convert to tensor [C, H, W]
    image_tensor = torch.from_numpy(image_resized.transpose(2, 0, 1)).float().unsqueeze(0)

    return image_tensor, display_image

def extract_file_content(file_obj):
    """Extract content from the file object, handling different types"""
    try:
        # Handle Gradio File object (which has 'name' attribute pointing to temp path)
        if hasattr(file_obj, 'name') and isinstance(file_obj.name, str):
            file_path = file_obj.name
            if os.path.exists(file_path):
                with open(file_path, 'rb') as f:
                    return f.read(), file_path # Return path for TIFF reading
            else:
                 print(f"Temp file path does not exist: {file_path}")
                 return None, None

        # Handle string path (from gr.Examples)
        elif isinstance(file_obj, str):
            if os.path.exists(file_obj):
                 with open(file_obj, 'rb') as f:
                    return f.read(), file_obj # Return path for TIFF reading
            else:
                print(f"Provided file path does not exist: {file_obj}")
                return None, None
        # Handle BytesIO or other file-like objects (less likely with gr.File/gr.Examples)
        elif hasattr(file_obj, 'read'):
            content = file_obj.read()
            # Need to save to temp file to get a path for rasterio
            with tempfile.NamedTemporaryFile(delete=False, suffix='.tmp') as temp_f:
                 temp_path = temp_f.name
                 temp_f.write(content)
            return content, temp_path # Return path
        elif isinstance(file_obj, bytes):
             # Need to save to temp file to get a path for rasterio
            with tempfile.NamedTemporaryFile(delete=False, suffix='.tmp') as temp_f:
                 temp_path = temp_f.name
                 temp_f.write(file_obj)
            return file_obj, temp_path # Return path
        else:
            print(f"Unsupported file object type: {type(file_obj)}")
            return None, None
    except Exception as e:
        print(f"Error extracting file content: {e}")
        import traceback
        traceback.print_exc()
        return None, None

def process_uploaded_tiff(file_obj):
    """Process an uploaded TIFF file for both segmentation and cloud detection"""
    temp_file_to_delete = None
    try:
        # Get file content and path
        # We primarily need the path for rasterio
        _, file_path = extract_file_content(file_obj)

        if file_path is None:
            print("Failed to get file path for TIFF processing")
            return None, None, None

        # Check if extract_file_content created a temp file we need to manage
        if file_path.endswith('.tmp'):
            temp_file_to_delete = file_path

        # Read as TIFF for segmentation (only using first 3 bands)
        image_for_segmentation = read_tiff_image_for_segmentation(file_path)

        # Extract cloud features from all available bands
        cloud_features = extract_cloud_features_from_tiff(file_path)

        if image_for_segmentation is None:
            print("Failed to read TIFF for segmentation.")
            return None, None, None

        # Make a copy for display, ensuring uint8 for display
        if image_for_segmentation.max() <= 1.0 and image_for_segmentation.min() >= 0.0:
            display_image = (image_for_segmentation * 255).astype(np.uint8)
        elif image_for_segmentation.dtype == np.uint8:
             display_image = image_for_segmentation.copy()
        else:
             # Attempt normalization for display if out of range
             display_image = cv2.normalize(image_for_segmentation, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
             print("Warning: TIFF image values outside [0,1], normalized for display.")


        # Resize/preprocess for segmentation model
        if albumentations_available:
            aug = A.Compose([
                A.PadIfNeeded(min_height=128, min_width=128,
                             border_mode=cv2.BORDER_CONSTANT, value=0),
                A.CenterCrop(height=128, width=128)
            ])
            # Need float image for albumentations
            image_float = image_for_segmentation.astype(np.float32)
            if image_float.max() > 1.0: # Normalize if not already done
                image_float = image_float / (image_float.max() + 1e-6)

            augmented = aug(image=image_float)
            image_resized = augmented['image']
        else:
            image_float = image_for_segmentation.astype(np.float32)
            if image_float.max() > 1.0: # Normalize if not already done
                image_float = image_float / (image_float.max() + 1e-6)
            image_resized = cv2.resize(image_float, (128, 128), interpolation=cv2.INTER_LINEAR)

        # Convert to tensor
        image_tensor = torch.from_numpy(image_resized.transpose(2, 0, 1)).float().unsqueeze(0)

        return image_tensor, display_image, cloud_features

    except Exception as e:
        print(f"Error processing uploaded TIFF: {e}")
        import traceback
        traceback.print_exc()
        return None, None, None
    finally:
        # Clean up temporary file if created by extract_file_content
        if temp_file_to_delete and os.path.exists(temp_file_to_delete):
            try:
                os.unlink(temp_file_to_delete)
            except Exception as e_del:
                print(f"Error deleting temp file {temp_file_to_delete}: {e_del}")


def process_uploaded_mask(file_obj):
    """Process an uploaded mask file"""
    temp_file_to_delete = None
    try:
        # Get file content and path
        _, file_path = extract_file_content(file_obj)
        if file_path is None:
             print("Failed to get file path for Mask processing")
             return None

        # Check if extract_file_content created a temp file we need to manage
        if file_path.endswith('.tmp'):
            temp_file_to_delete = file_path

        # Check if it's a TIFF file
        if file_path.lower().endswith(('.tif', '.tiff')):
            mask = read_tiff_mask(file_path)
        else:
            # Try to open as a regular image
            try:
                mask_img = Image.open(file_path).convert('L') # Convert to grayscale
                mask = np.array(mask_img)
            except Exception as e:
                print(f"Error opening mask as regular image: {e}")
                return None

        if mask is None:
             print("Failed to read mask data.")
             return None

        # Resize mask to 128x128
        if albumentations_available:
            aug = A.Compose([
                A.PadIfNeeded(min_height=128, min_width=128,
                             border_mode=cv2.BORDER_CONSTANT, value=0),
                A.CenterCrop(height=128, width=128)
            ])
            augmented = aug(image=mask) # Use 'image' key even for mask
            mask_resized = augmented['image']
        else:
            mask_resized = cv2.resize(mask, (128, 128), interpolation=cv2.INTER_NEAREST)

        # Binarize the mask (0: background, 1: wetland)
        # Use a threshold (e.g., 127 for typical grayscale) or >0 if it's already somewhat binary
        threshold = np.median(mask_resized[mask_resized > 0]) if np.any(mask_resized > 0) else 1
        mask_binary = (mask_resized >= threshold).astype(np.uint8)
        print(f"Mask binarized. Original min/max: {mask.min()}/{mask.max()}, Resized min/max: {mask_resized.min()}/{mask_resized.max()}, Binary sum: {mask_binary.sum()}")


        return mask_binary

    except Exception as e:
        print(f"Error processing uploaded mask: {e}")
        import traceback
        traceback.print_exc()
        return None
    finally:
        # Clean up temporary file if created by extract_file_content
        if temp_file_to_delete and os.path.exists(temp_file_to_delete):
            try:
                os.unlink(temp_file_to_delete)
            except Exception as e_del:
                print(f"Error deleting temp mask file {temp_file_to_delete}: {e_del}")


def predict_segmentation(image_tensor):
    """
    Run inference on the model
    """
    try:
        image_tensor = image_tensor.to(device)

        with torch.no_grad():
            output = model(image_tensor)

            # Handle different model output formats
            if isinstance(output, dict):
                output = output['out']
            if output.shape[1] > 1:  # Multi-class output
                pred = torch.argmax(output, dim=1).squeeze(0).cpu().numpy()
            else:  # Binary output (from smp models)
                pred = (torch.sigmoid(output) > 0.5).squeeze().cpu().numpy().astype(np.uint8)

        return pred
    except Exception as e:
        print(f"Error during prediction: {e}")
        return None

def calculate_metrics(pred_mask, gt_mask):
    """
    Calculate evaluation metrics between prediction and ground truth
    """
    if pred_mask is None or gt_mask is None:
        print("Cannot calculate metrics: Invalid masks provided.")
        return {}
    if pred_mask.shape != gt_mask.shape:
        print(f"Cannot calculate metrics: Shape mismatch - Pred {pred_mask.shape}, GT {gt_mask.shape}")
        # Optionally resize one to match the other, e.g., resize GT to Pred shape
        gt_mask = cv2.resize(gt_mask, (pred_mask.shape[1], pred_mask.shape[0]), interpolation=cv2.INTER_NEAREST)
        print(f"Resized GT mask to {gt_mask.shape}")


    # Ensure binary masks
    pred_binary = (pred_mask > 0).astype(np.uint8)
    gt_binary = (gt_mask > 0).astype(np.uint8)

    # Calculate intersection and union
    intersection = np.logical_and(pred_binary, gt_binary).sum()
    union = np.logical_or(pred_binary, gt_binary).sum()

    # Calculate IoU
    iou = intersection / union if union > 0 else 0

    # Calculate precision and recall
    true_positive = intersection
    pred_positive_count = pred_binary.sum()
    gt_positive_count = gt_binary.sum()

    false_positive = pred_positive_count - true_positive
    false_negative = gt_positive_count - true_positive

    precision = true_positive / pred_positive_count if pred_positive_count > 0 else 0
    recall = true_positive / gt_positive_count if gt_positive_count > 0 else 0

    # Calculate F1 score
    f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0

    metrics = {
        "Wetlands IoU": float(iou),
        "Precision": float(precision),
        "Recall": float(recall),
        "F1 Score": float(f1)
    }

    return metrics

def process_images(input_image=None, input_tiff=None, gt_mask_file=None):
    """
    Process input images, generate predictions for both wetland segmentation and cloud detection
    """
    image_tensor = None
    display_image = None
    cloud_features = None
    pred_mask = None
    gt_mask_processed = None
    result_image = None
    result_text = "Processing..." # Initial message

    try:
        # Determine input type and process
        if input_tiff is not None:
            print("Processing TIFF input...")
            image_tensor, display_image, cloud_features = process_uploaded_tiff(input_tiff)
            if image_tensor is None:
                return None, "Failed to process the input TIFF file."
            print("TIFF processing complete.")
        elif input_image is not None:
            print("Processing Image input...")
            image_tensor, display_image = preprocess_image(input_image)
            if image_tensor is None:
                return None, "Failed to process the input image."
            # For RGB images, extract cloud features separately
            print("Extracting cloud features from RGB...")
            cloud_features = extract_cloud_features_from_rgb(display_image) # Use display_image (uint8)
            print("Image processing complete.")
        else:
            return None, "Please upload an image or TIFF file."

        # --- Perform Predictions ---
        # Get wetland segmentation prediction
        print("Performing wetland segmentation...")
        pred_mask = predict_segmentation(image_tensor)
        if pred_mask is None:
            return None, "Failed to generate wetland segmentation prediction."
        print(f"Segmentation prediction generated, shape: {pred_mask.shape}, type: {pred_mask.dtype}")


        # Get cloud prediction
        cloud_result = {'prediction': 'Unknown', 'probability': 0.0}
        if cloud_features and cloud_model:
            print("Performing cloud detection...")
            cloud_result = predict_cloud(cloud_features, cloud_model)
            print(f"Cloud detection result: {cloud_result}")
        elif cloud_model is None:
             print("Cloud detection model not available.")
        else:
             print("Cloud features not extracted, skipping cloud detection.")


        # --- Process Ground Truth and Metrics (if provided) ---
        metrics_text = ""
        if gt_mask_file is not None:
            print("Processing ground truth mask...")
            gt_mask_processed = process_uploaded_mask(gt_mask_file)

            if gt_mask_processed is not None:
                print(f"Ground truth mask processed, shape: {gt_mask_processed.shape}, type: {gt_mask_processed.dtype}")
                print("Calculating metrics...")
                metrics = calculate_metrics(pred_mask, gt_mask_processed)
                metrics_text = "\n".join([f"{k}: {v:.4f}" for k, v in metrics.items()])
                print(f"Metrics calculated: {metrics_text}")
            else:
                print("Failed to process ground truth mask.")
                metrics_text = "Ground truth mask provided but could not be processed."


        # --- Create Visualization ---
        print("Creating result visualization...")
        fig, axes = plt.subplots(1, 3 if gt_mask_processed is not None else 2, figsize=(12, 5))
        fig.suptitle("Analysis Results", fontsize=16)

        # Ensure display_image is in correct format for imshow
        if display_image.dtype != np.uint8:
             display_image_for_plot = (display_image * 255).astype(np.uint8) if display_image.max() <=1 else display_image.astype(np.uint8)
        else:
             display_image_for_plot = display_image

        # Resize display image to match mask size for consistent display if needed, or keep original?
        # Let's keep original input size for clarity, masks are 128x128
        display_image_resized = cv2.resize(display_image_for_plot, (512, 512), interpolation=cv2.INTER_LINEAR)


        ax_idx = 0
        axes[ax_idx].imshow(display_image_resized)
        axes[ax_idx].set_title("Input Image (Resized for Display)")
        axes[ax_idx].axis('off')
        ax_idx += 1

        if gt_mask_processed is not None:
            axes[ax_idx].imshow(gt_mask_processed, cmap='viridis') # Use viridis for GT
            axes[ax_idx].set_title("Ground Truth (128x128)")
            axes[ax_idx].axis('off')
            ax_idx += 1

        # Ensure pred_mask is suitable for imshow (e.g., scale if needed, but should be 0/1)
        axes[ax_idx].imshow(pred_mask, cmap='viridis') # Use plasma for Prediction
        axes[ax_idx].set_title("Predicted Wetlands (128x128)")
        axes[ax_idx].axis('off')


        # Calculate wetland percentage from prediction
        wetland_percentage = np.mean(pred_mask) * 100

        # --- Format Output Text ---
        result_text = f"--- Analysis Summary ---\n"
        result_text += f"Wetland Coverage (Predicted): {wetland_percentage:.2f}%\n\n"

        # Add cloud detection results
        result_text += f"Cloud Detection: {cloud_result['prediction']} "
        result_text += f"({cloud_result['probability']*100:.2f}% Cloud probability)\n\n"

        # Add segmentation metrics if available
        if metrics_text:
            if "could not be processed" in metrics_text:
                 result_text += metrics_text # Add the error message
            else:
                 result_text += f"--- Evaluation Metrics (vs Ground Truth) ---\n{metrics_text}"
        elif gt_mask_file is not None:
             result_text += "--- Evaluation Metrics ---\nGround truth provided but metrics could not be calculated."


        # Convert figure to image for display
        plt.tight_layout(rect=[0, 0.03, 1, 0.95]) # Adjust layout to prevent title overlap
        buf = BytesIO()
        plt.savefig(buf, format='png', bbox_inches='tight')
        buf.seek(0)
        result_image = Image.open(buf)
        plt.close(fig)
        print("Visualization complete.")

        return result_image, result_text

    except Exception as e:
        print(f"Error in process_images: {e}")
        import traceback
        traceback.print_exc()
        # Return current state if partial results exist, otherwise error
        error_message = f"An error occurred during processing: {str(e)}"
        return result_image if result_image else None, result_text + f"\n\nERROR: {error_message}"


# --- Define Example Files ---
# Ensure these paths are correct relative to where app.py is run
# These should be at the root of your Gradio Space repository
example_list = [
    ["test_p1_cloudy_input.tif", "test_p1_cloudy_output.tif"],
    ["test_p1_noncloudy_input.tif", "test_p1_noncloudy_output.tif"],
    ["test_p1_cloudy_input.tif", None],  # Example without ground truth
    ["test_p1_noncloudy_input.tif", None], # Example without ground truth
]

# --- Create Gradio Interface ---
with gr.Blocks(title="Wetlands Segmentation & Cloud Detection") as demo:
    gr.Markdown("# Wetlands Segmentation & Cloud Detection from Satellite Imagery")
    gr.Markdown("Upload a satellite image or TIFF file to identify wetland areas and detect cloud cover. Optionally, you can also upload a ground truth mask for evaluation.")

    with gr.Row():
        with gr.Column(scale=1): # Input column
            gr.Markdown("### Input")
            with gr.Tabs():
                with gr.TabItem("Upload Image"):
                    input_image = gr.Image(label="Upload Satellite Image (JPG, PNG etc.)", type="numpy")
                with gr.TabItem("Upload TIFF"):
                    input_tiff = gr.File(label="Upload Multi-Band TIFF File", file_types=[".tif", ".tiff"], type="filepath") # Use filepath for easier handling

            # Ground truth mask as file upload
            gt_mask_file = gr.File(label="Ground Truth Mask (Optional)", file_types=[".tif", ".tiff", ".png", ".jpg", ".jpeg"], type="filepath")

            # --- Add Examples Section ---
            gr.Markdown("### Load Examples")
            gr.Examples(
                examples=example_list,
                inputs=[input_tiff, gt_mask_file], # Corresponds to TIFF input and GT Mask input
                label="Click an example below to load files:",
                # Outputs are not needed here, examples just populate inputs
                # examples_per_page=4 # Optional: control pagination
            )
            # --- End Examples Section ---

            process_btn = gr.Button("Analyze Image", variant="primary")

        with gr.Column(scale=2): # Output column (make it wider)
            gr.Markdown("### Results")
            output_image = gr.Image(label="Segmentation Results", type="pil", height=450) # Adjust height as needed
            output_text = gr.Textbox(label="Statistics & Metrics", lines=10, scale=1) # Adjust lines and scale

    # Information about the models
    gr.Markdown("### About these models")
    gr.Markdown("""
    This application uses two models:

    **1. Wetland Segmentation Model:**
    - Architecture: DeepLabv3+ with ResNet-34
    - Input: RGB satellite imagery (extracted from first 3 bands of TIFF if provided)
    - Output: Binary segmentation mask (Wetland vs Background)
    - Resolution: Processed at 128×128 pixels

    **2. Cloud Detection Model:**
    - Architecture: LightGBM Classifier
    - Input: Coefficient of Variation (CV) features extracted from up to 10 image bands (from TIFF)
    - Output: Binary classification (Cloudy vs Non-Cloudy) with probability

    **Tips for best results:**
    - Use the 'Upload TIFF' tab for multi-band satellite data to enable accurate cloud detection.
    - The cloud detection model expects up to 10 bands. Performance may vary with fewer bands.
    - The example files demonstrate cloudy/non-cloudy scenarios with corresponding ground truth.
    - The models work best with images similar in characteristics to those used in training.
    - For ground truth masks, both TIFF and standard image formats (PNG, JPG) are supported. Ensure the mask clearly delineates the target class.

    **Repository:** [dcrey7/wetland_segmentation_deeplabsv3plus](https://huggingface.co/spaces/dcrey7/wetland_segmentation_deeplabsv3plus)
    """)

    # Set up event handlers
    process_btn.click(
        fn=process_images,
        inputs=[input_image, input_tiff, gt_mask_file],
        outputs=[output_image, output_text],
        api_name="analyze" # Optional: name for API endpoint
    )

    # Clear inputs when switching tabs (optional but good UX)
    def clear_other_input(selected_tab):
        if selected_tab == 0: # "Upload Image" tab selected
            return gr.update(value=None), gr.update() # Clear TIFF input
        elif selected_tab == 1: # "Upload TIFF" tab selected
            return gr.update(), gr.update(value=None) # Clear Image input
        return gr.update(), gr.update() # Default case

    # Assuming the Tabs component itself can be accessed or named,
    # otherwise, this part might need adjustment based on Gradio's specific API for Tabs.
    # If Tabs don't directly support change events easily, this part can be omitted.
    # For now, let's assume tab switching doesn't automatically clear, user needs to manage inputs.


# Launch the app
if __name__ == "__main__":
    demo.launch(debug=True) # Enable debug for more detailed logs during development