Update app.py
Browse files
app.py
CHANGED
|
@@ -1,49 +1,181 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
-
import
|
| 4 |
from PIL import Image
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
# Load
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
-
|
| 10 |
-
model
|
|
|
|
| 11 |
model.eval()
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
st.title("🛠️ Few-Shot Fault Detection (Industrial Quality Control)")
|
|
|
|
| 14 |
|
| 15 |
-
st.
|
| 16 |
|
| 17 |
-
|
| 18 |
-
with
|
| 19 |
-
|
| 20 |
-
with col2:
|
| 21 |
-
defective_files = st.file_uploader("Upload Defective Images", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
|
| 22 |
|
| 23 |
-
|
|
|
|
| 24 |
|
| 25 |
-
if
|
| 26 |
-
|
| 27 |
-
st.
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
)
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
+
import clip
|
| 4 |
from PIL import Image
|
| 5 |
+
import os
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from typing import List
|
| 10 |
|
| 11 |
+
# Load secrets
|
| 12 |
+
openai_api_key = st.secrets.get("OPENAI_API_KEY")
|
| 13 |
+
# You can now use openai_api_key for anything requiring OpenAI access
|
| 14 |
+
|
| 15 |
+
# Device setup
|
| 16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
|
| 18 |
+
# Load CLIP model + preprocess from OpenAI CLIP
|
| 19 |
+
model, preprocess = clip.load("ViT-L/14", device=device)
|
| 20 |
model.eval()
|
| 21 |
|
| 22 |
+
# Ensure reproducibility
|
| 23 |
+
torch.set_grad_enabled(False)
|
| 24 |
+
|
| 25 |
+
# Import the few-shot classification function
|
| 26 |
+
# --- COPY YOUR FUNCTION DEFINITION BELOW DIRECTLY OR PUT IT IN A SEPARATE FILE ---
|
| 27 |
+
def few_shot_fault_classification(
|
| 28 |
+
test_images: List[Image.Image],
|
| 29 |
+
test_image_filenames: List[str],
|
| 30 |
+
nominal_images: List[Image.Image],
|
| 31 |
+
nominal_descriptions: List[str],
|
| 32 |
+
defective_images: List[Image.Image],
|
| 33 |
+
defective_descriptions: List[str],
|
| 34 |
+
num_few_shot_nominal_imgs: int,
|
| 35 |
+
file_path: str = '.',
|
| 36 |
+
file_name: str = 'image_classification_results.csv',
|
| 37 |
+
print_one_liner: bool = False
|
| 38 |
+
):
|
| 39 |
+
if not isinstance(test_images, list): test_images = [test_images]
|
| 40 |
+
if not isinstance(test_image_filenames, list): test_image_filenames = [test_image_filenames]
|
| 41 |
+
if not isinstance(nominal_images, list): nominal_images = [nominal_images]
|
| 42 |
+
if not isinstance(nominal_descriptions, list): nominal_descriptions = [nominal_descriptions]
|
| 43 |
+
if not isinstance(defective_images, list): defective_images = [defective_images]
|
| 44 |
+
if not isinstance(defective_descriptions, list): defective_descriptions = [defective_descriptions]
|
| 45 |
+
|
| 46 |
+
csv_file = os.path.join(file_path, file_name)
|
| 47 |
+
results = []
|
| 48 |
+
|
| 49 |
+
with torch.no_grad():
|
| 50 |
+
nominal_features = torch.stack([model.encode_image(img).to(device) for img in nominal_images])
|
| 51 |
+
nominal_features /= nominal_features.norm(dim=-1, keepdim=True)
|
| 52 |
+
|
| 53 |
+
defective_features = torch.stack([model.encode_image(img).to(device) for img in defective_images])
|
| 54 |
+
defective_features /= defective_features.norm(dim=-1, keepdim=True)
|
| 55 |
+
|
| 56 |
+
csv_data = []
|
| 57 |
+
|
| 58 |
+
for idx, test_img in enumerate(test_images):
|
| 59 |
+
test_features = model.encode_image(test_img).to(device)
|
| 60 |
+
test_features /= test_features.norm(dim=-1, keepdim=True)
|
| 61 |
+
|
| 62 |
+
max_nom_sim, max_def_sim = -float('inf'), -float('inf')
|
| 63 |
+
max_nom_idx, max_def_idx = -1, -1
|
| 64 |
+
|
| 65 |
+
for i in range(nominal_features.shape[0]):
|
| 66 |
+
sim = (test_features @ nominal_features[i].T).item()
|
| 67 |
+
if sim > max_nom_sim:
|
| 68 |
+
max_nom_sim, max_nom_idx = sim, i
|
| 69 |
+
|
| 70 |
+
for j in range(defective_features.shape[0]):
|
| 71 |
+
sim = (test_features @ defective_features[j].T).item()
|
| 72 |
+
if sim > max_def_sim:
|
| 73 |
+
max_def_sim, max_def_idx = sim, j
|
| 74 |
+
|
| 75 |
+
similarities = torch.tensor([max_nom_sim, max_def_sim])
|
| 76 |
+
probabilities = F.softmax(similarities, dim=0).tolist()
|
| 77 |
+
prob_nom, prob_def = probabilities
|
| 78 |
+
|
| 79 |
+
classification = "Defective" if prob_def > prob_nom else "Nominal"
|
| 80 |
+
|
| 81 |
+
csv_data.append({
|
| 82 |
+
"datetime_of_operation": datetime.now().isoformat(),
|
| 83 |
+
"num_few_shot_nominal_imgs": num_few_shot_nominal_imgs,
|
| 84 |
+
"image_path": test_image_filenames[idx],
|
| 85 |
+
"image_name": test_image_filenames[idx].split('/')[-1],
|
| 86 |
+
"classification_result": classification,
|
| 87 |
+
"non_defect_prob": round(prob_nom, 3),
|
| 88 |
+
"defect_prob": round(prob_def, 3),
|
| 89 |
+
"nominal_description": nominal_descriptions[max_nom_idx],
|
| 90 |
+
"defective_description": defective_descriptions[max_def_idx] if defective_images else "N/A"
|
| 91 |
+
})
|
| 92 |
+
|
| 93 |
+
if print_one_liner:
|
| 94 |
+
print(f"{test_image_filenames[idx]} classified as {classification} "
|
| 95 |
+
f"(Nominal Prob: {prob_nom:.3f}, Defective Prob: {prob_def:.3f})")
|
| 96 |
+
|
| 97 |
+
file_exists = os.path.isfile(csv_file)
|
| 98 |
+
with open(csv_file, mode='a' if file_exists else 'w', newline='') as file:
|
| 99 |
+
import csv
|
| 100 |
+
fieldnames = [
|
| 101 |
+
"datetime_of_operation", "num_few_shot_nominal_imgs", "image_path", "image_name",
|
| 102 |
+
"classification_result", "non_defect_prob", "defect_prob",
|
| 103 |
+
"nominal_description", "defective_description"
|
| 104 |
+
]
|
| 105 |
+
writer = csv.DictWriter(file, fieldnames=fieldnames)
|
| 106 |
+
if not file_exists:
|
| 107 |
+
writer.writeheader()
|
| 108 |
+
for row in csv_data:
|
| 109 |
+
writer.writerow(row)
|
| 110 |
+
|
| 111 |
+
return ""
|
| 112 |
+
|
| 113 |
+
# Initialize app state
|
| 114 |
+
if 'nominal_images' not in st.session_state:
|
| 115 |
+
st.session_state.nominal_images = []
|
| 116 |
+
if 'defective_images' not in st.session_state:
|
| 117 |
+
st.session_state.defective_images = []
|
| 118 |
+
if 'test_images' not in st.session_state:
|
| 119 |
+
st.session_state.test_images = []
|
| 120 |
+
if 'results' not in st.session_state:
|
| 121 |
+
st.session_state.results = []
|
| 122 |
+
|
| 123 |
+
st.set_page_config(page_title="Few-Shot Fault Detection", layout="wide")
|
| 124 |
st.title("🛠️ Few-Shot Fault Detection (Industrial Quality Control)")
|
| 125 |
+
st.markdown("Upload **Nominal Images** (good parts), **Defective Images** (bad parts), and **Test Images** to classify.")
|
| 126 |
|
| 127 |
+
tab1, tab2, tab3 = st.tabs(["📥 Upload Reference Images", "🔍 Test Classification", "📊 Results"])
|
| 128 |
|
| 129 |
+
# --- Tab 1: Upload Reference Images ---
|
| 130 |
+
with tab1:
|
| 131 |
+
st.header("Upload Reference Images")
|
|
|
|
|
|
|
| 132 |
|
| 133 |
+
nominal_files = st.file_uploader("Upload Nominal Images", accept_multiple_files=True, type=['png', 'jpg', 'jpeg'])
|
| 134 |
+
defective_files = st.file_uploader("Upload Defective Images", accept_multiple_files=True, type=['png', 'jpg', 'jpeg'])
|
| 135 |
|
| 136 |
+
if nominal_files:
|
| 137 |
+
st.session_state.nominal_images = [preprocess(Image.open(file).convert("RGB")).to(device) for file in nominal_files]
|
| 138 |
+
st.session_state.nominal_descriptions = [file.name for file in nominal_files]
|
| 139 |
+
st.success(f"Uploaded {len(nominal_files)} nominal images.")
|
| 140 |
+
|
| 141 |
+
if defective_files:
|
| 142 |
+
st.session_state.defective_images = [preprocess(Image.open(file).convert("RGB")).to(device) for file in defective_files]
|
| 143 |
+
st.session_state.defective_descriptions = [file.name for file in defective_files]
|
| 144 |
+
st.success(f"Uploaded {len(defective_files)} defective images.")
|
| 145 |
+
|
| 146 |
+
# --- Tab 2: Classify Test Images ---
|
| 147 |
+
with tab2:
|
| 148 |
+
st.header("Upload Test Image(s)")
|
| 149 |
+
|
| 150 |
+
test_files = st.file_uploader("Upload Test Images", accept_multiple_files=True, type=['png', 'jpg', 'jpeg'])
|
| 151 |
+
|
| 152 |
+
if st.button("🔍 Run Classification") and test_files:
|
| 153 |
+
test_images = [preprocess(Image.open(file).convert("RGB")).to(device) for file in test_files]
|
| 154 |
+
test_filenames = [file.name for file in test_files]
|
| 155 |
+
|
| 156 |
+
few_shot_fault_classification(
|
| 157 |
+
test_images=test_images,
|
| 158 |
+
test_image_filenames=test_filenames,
|
| 159 |
+
nominal_images=st.session_state.nominal_images,
|
| 160 |
+
nominal_descriptions=st.session_state.nominal_descriptions,
|
| 161 |
+
defective_images=st.session_state.defective_images,
|
| 162 |
+
defective_descriptions=st.session_state.defective_descriptions,
|
| 163 |
+
num_few_shot_nominal_imgs=len(st.session_state.nominal_images),
|
| 164 |
+
file_path=".",
|
| 165 |
+
file_name="streamlit_results.csv",
|
| 166 |
+
print_one_liner=False
|
| 167 |
)
|
| 168 |
|
| 169 |
+
st.success("Classification complete!")
|
| 170 |
+
st.session_state.results = "streamlit_results.csv"
|
| 171 |
+
|
| 172 |
+
# --- Tab 3: View/Download Results ---
|
| 173 |
+
with tab3:
|
| 174 |
+
st.header("Classification Results")
|
| 175 |
+
|
| 176 |
+
if os.path.exists("streamlit_results.csv"):
|
| 177 |
+
df = pd.read_csv("streamlit_results.csv")
|
| 178 |
+
st.dataframe(df)
|
| 179 |
+
st.download_button("📥 Download Results", data=df.to_csv(index=False), file_name="classification_results.csv", mime="text/csv")
|
| 180 |
+
else:
|
| 181 |
+
st.info("No results yet. Please classify some test images.")
|