sight_chat / query_graph.py
fmegahed's picture
version 2.0.0
ef821d9 verified
raw
history blame
13.8 kB
"""
Graph-based RAG using NetworkX.
Updated to match the common query signature used by other methods.
"""
import numpy as np
import logging
from typing import Tuple, List, Optional
from openai import OpenAI
import networkx as nx
from sklearn.metrics.pairwise import cosine_similarity
from config import *
from utils import classify_image
logger = logging.getLogger(__name__)
# Initialize OpenAI client
client = OpenAI(api_key=OPENAI_API_KEY)
# Global variables for lazy loading
_graph = None
_enodes = None
_embeddings = None
def _load_graph():
"""Lazy load graph database."""
global _graph, _enodes, _embeddings
if _graph is None:
try:
if GRAPH_FILE.exists():
logger.info("Loading graph database...")
_graph = nx.read_gml(str(GRAPH_FILE))
_enodes = list(_graph.nodes)
# Convert embeddings from lists back to numpy arrays
embeddings_list = []
for n in _enodes:
embedding = _graph.nodes[n]['embedding']
if isinstance(embedding, list):
embeddings_list.append(np.array(embedding))
else:
embeddings_list.append(embedding)
_embeddings = np.array(embeddings_list)
logger.info(f"✓ Loaded graph with {len(_enodes)} nodes")
else:
logger.warning("Graph database not found. Run preprocess.py first.")
_graph = nx.Graph()
_enodes = []
_embeddings = np.array([])
except Exception as e:
logger.error(f"Error loading graph: {e}")
_graph = nx.Graph()
_enodes = []
_embeddings = np.array([])
def query(question: str, image_path: Optional[str] = None, top_k: int = DEFAULT_TOP_K) -> Tuple[str, List[dict]]:
"""
Query using graph-based retrieval.
Args:
question: User's question
image_path: Optional path to an image (for multimodal queries)
top_k: Number of relevant chunks to retrieve
Returns:
Tuple of (answer, citations)
"""
# Load graph if not already loaded
_load_graph()
if len(_enodes) == 0:
return "Graph database is empty. Please run preprocess.py first.", []
# Embed question using OpenAI
emb_resp = client.embeddings.create(
model=OPENAI_EMBEDDING_MODEL,
input=question
)
q_vec = np.array(emb_resp.data[0].embedding)
# Compute cosine similarities
sims = cosine_similarity([q_vec], _embeddings)[0]
idxs = sims.argsort()[::-1][:top_k]
# Collect chunk-level info
chunks = []
citations = []
sources_seen = set()
for rank, i in enumerate(idxs, start=1):
node = _enodes[i]
node_data = _graph.nodes[node]
text = node_data['text']
# Extract header from text
header = text.split('\n', 1)[0].lstrip('#').strip()
score = sims[i]
# Extract citation format - get source from metadata or node_data
metadata = node_data.get('metadata', {})
source = metadata.get('source') or node_data.get('source')
if not source:
continue
if 'url' in metadata: # HTML source
citation_ref = metadata['url']
cite_type = 'html'
elif 'path' in metadata: # PDF source
citation_ref = metadata['path']
cite_type = 'pdf'
elif 'url' in node_data: # Legacy format
citation_ref = node_data['url']
cite_type = 'html'
elif 'path' in node_data: # Legacy format
citation_ref = node_data['path']
cite_type = 'pdf'
else:
citation_ref = source
cite_type = 'unknown'
chunks.append({
'header': header,
'score': score,
'text': text,
'citation': citation_ref
})
# Add unique citation
if source not in sources_seen:
citation_entry = {
'source': source,
'type': cite_type,
'relevance_score': round(float(score), 3)
}
if cite_type == 'html':
citation_entry['url'] = citation_ref
elif cite_type == 'pdf':
citation_entry['path'] = citation_ref
citations.append(citation_entry)
sources_seen.add(source)
# Handle image if provided
image_context = ""
if image_path:
try:
# Classify the image
classification = classify_image(image_path)
image_context = f"\n\n[Image Context: The provided image appears to be a {classification}.]"
# Optionally, find related nodes in graph based on image classification
# This would require storing image-related metadata in the graph
except Exception as e:
print(f"Error processing image: {e}")
# Assemble context for prompt
context = "\n\n---\n\n".join([c['text'] for c in chunks])
prompt = f"""Use the following context to answer the question:
{context}{image_context}
Question: {question}
Please provide a comprehensive answer based on the context provided. Cite specific sources when providing information."""
# For GPT-5, temperature must be default (1.0)
chat_resp = client.chat.completions.create(
model=OPENAI_CHAT_MODEL,
messages=[
{"role": "system", "content": "You are a helpful assistant for manufacturing equipment safety. Always provide accurate information based on the given context."},
{"role": "user", "content": prompt}
],
max_completion_tokens=DEFAULT_MAX_TOKENS
)
answer = chat_resp.choices[0].message.content
return answer, citations
def query_with_graph_traversal(question: str, top_k: int = 5, max_hops: int = 2) -> Tuple[str, List[dict]]:
"""
Enhanced graph query that can traverse edges to find related information.
Args:
question: User's question
top_k: Number of initial nodes to retrieve
max_hops: Maximum graph traversal depth
Returns:
Tuple of (answer, citations)
"""
# Load graph if not already loaded
_load_graph()
if len(_enodes) == 0:
return "Graph database is empty. Please run preprocess.py first.", []
# Get initial nodes using standard query
initial_answer, initial_citations = query(question, top_k=top_k)
# For a more sophisticated implementation, you would:
# 1. Add edges between related nodes during preprocessing
# 2. Traverse from initial nodes to find related content
# 3. Score the related nodes based on path distance and relevance
# For now, return the standard query results
return initial_answer, initial_citations
def query_subgraph(question: str, source_filter: str = None, top_k: int = 5) -> Tuple[str, List[dict]]:
"""
Query a specific subgraph filtered by source.
Args:
question: User's question
source_filter: Filter nodes by source (e.g., specific PDF name)
top_k: Number of relevant chunks to retrieve
Returns:
Tuple of (answer, citations)
"""
# Load graph if not already loaded
_load_graph()
# Filter nodes if source specified
if source_filter:
filtered_nodes = []
for n in _enodes:
node_data = _graph.nodes[n]
metadata = node_data.get('metadata', {})
source = metadata.get('source') or node_data.get('source', '')
source_from_meta = metadata.get('source', '')
# Check both direct source and metadata source
if (source_filter.lower() in source.lower() or
source_filter.lower() in source_from_meta.lower()):
filtered_nodes.append(n)
if not filtered_nodes:
return f"No nodes found for source: {source_filter}", []
else:
filtered_nodes = _enodes
# Get embeddings for filtered nodes
filtered_embeddings = np.array([_graph.nodes[n]['embedding'] for n in filtered_nodes])
# Embed question
emb_resp = client.embeddings.create(
model=OPENAI_EMBEDDING_MODEL,
input=question
)
q_vec = np.array(emb_resp.data[0].embedding)
# Compute similarities
sims = cosine_similarity([q_vec], filtered_embeddings)[0]
idxs = sims.argsort()[::-1][:top_k]
# Collect results
chunks = []
citations = []
sources_seen = set()
for i in idxs:
if i < len(filtered_nodes):
node = filtered_nodes[i]
node_data = _graph.nodes[node]
chunks.append(node_data['text'])
# Skip if source information missing
metadata = node_data.get('metadata', {})
source = metadata.get('source') or node_data.get('source')
if not source:
continue
if source not in sources_seen:
citation = {
'source': source,
'type': 'pdf' if ('path' in metadata or 'path' in node_data) else 'html',
'relevance_score': round(float(sims[i]), 3)
}
# Check metadata first, then node_data for legacy support
if 'url' in metadata:
citation['url'] = metadata['url']
elif 'path' in metadata:
citation['path'] = metadata['path']
elif 'url' in node_data:
citation['url'] = node_data['url']
elif 'path' in node_data:
citation['path'] = node_data['path']
citations.append(citation)
sources_seen.add(source)
# Build context and generate answer
context = "\n\n---\n\n".join(chunks)
prompt = f"""Answer the following question using the provided context:
Context from {source_filter if source_filter else 'all sources'}:
{context}
Question: {question}
Provide a detailed answer based on the context."""
# For GPT-5, temperature must be default (1.0)
response = client.chat.completions.create(
model=OPENAI_CHAT_MODEL,
messages=[
{"role": "system", "content": "You are an expert on manufacturing safety. Answer based on the provided context."},
{"role": "user", "content": prompt}
],
max_completion_tokens=DEFAULT_MAX_TOKENS
)
answer = response.choices[0].message.content
return answer, citations
# Maintain backward compatibility with original function signature
def query_graph(question: str, top_k: int = 5) -> Tuple[str, List[str], List[tuple]]:
"""
Original query_graph function signature for backward compatibility.
Args:
question: User's question
top_k: Number of relevant chunks to retrieve
Returns:
Tuple of (answer, sources, chunks)
"""
# Call the new query function
answer, citations = query(question, top_k=top_k)
# Convert citations to old format
sources = [c['source'] for c in citations]
# Get chunks in old format (header, score, text, citation)
_load_graph()
if len(_enodes) == 0:
return answer, sources, []
# Regenerate chunks for backward compatibility
emb_resp = client.embeddings.create(
model=OPENAI_EMBEDDING_MODEL,
input=question
)
q_vec = np.array(emb_resp.data[0].embedding)
sims = cosine_similarity([q_vec], _embeddings)[0]
idxs = sims.argsort()[::-1][:top_k]
chunks = []
for i in idxs:
node = _enodes[i]
node_data = _graph.nodes[node]
text = node_data['text']
header = text.split('\n', 1)[0].lstrip('#').strip()
score = sims[i]
# Skip if source information missing
metadata = node_data.get('metadata', {})
source = metadata.get('source') or node_data.get('source')
if not source:
continue
if 'url' in metadata:
citation = metadata['url']
elif 'path' in metadata:
citation = metadata['path']
elif 'url' in node_data:
citation = node_data['url']
elif 'path' in node_data:
citation = node_data['path']
else:
citation = source
chunks.append((header, score, text, citation))
return answer, sources, chunks
if __name__ == "__main__":
# Test the updated graph query
test_questions = [
"What are general machine guarding requirements?",
"How do I perform lockout/tagout procedures?",
"What safety measures are needed for robotic systems?"
]
for q in test_questions:
print(f"\nQuestion: {q}")
answer, citations = query(q)
print(f"Answer: {answer[:200]}...")
print(f"Citations: {[c['source'] for c in citations]}")
print("-" * 50)