sight_chat / utils.py
fmegahed's picture
version 2.0.0
ef821d9 verified
raw
history blame
26.1 kB
"""
Utility functions for the Multi-Method RAG System.
Directory Layout:
/data/ # Original PDFs, HTML
/embeddings/ # FAISS, Chroma, DPR vector stores
/graph/ # Graph database files
/metadata/ # Image metadata (SQLite or MongoDB)
"""
import os
import json
import pickle
import sqlite3
import base64
from pathlib import Path
from typing import List, Dict, Tuple, Optional, Any, Union
from dataclasses import dataclass
import logging
import pymupdf4llm
import pymupdf
import numpy as np
import pandas as pd
from PIL import Image
import requests
from bs4 import BeautifulSoup
# Vector stores and search
import faiss
import chromadb
from rank_bm25 import BM25Okapi
import networkx as nx
# ML models
from openai import OpenAI
from sentence_transformers import SentenceTransformer, CrossEncoder
import torch
# import clip
# Text processing
from sklearn.feature_extraction.text import TfidfVectorizer
import tiktoken
from config import *
logger = logging.getLogger(__name__)
@dataclass
class DocumentChunk:
"""Data structure for document chunks."""
text: str
metadata: Dict[str, Any]
chunk_id: str
embedding: Optional[np.ndarray] = None
@dataclass
class ImageData:
"""Data structure for image metadata."""
image_path: str
image_id: str
classification: Optional[str] = None
embedding: Optional[np.ndarray] = None
metadata: Optional[Dict[str, Any]] = None
class DocumentLoader:
"""Load and extract text from various document formats."""
def __init__(self):
self.client = OpenAI(api_key=OPENAI_API_KEY)
validate_api_key()
def load_pdf_documents(self, pdf_paths: List[Union[str, Path]]) -> List[Dict[str, Any]]:
"""Load text from PDF files using pymupdf4llm."""
documents = []
for pdf_path in pdf_paths:
try:
pdf_path = Path(pdf_path)
logger.info(f"Loading PDF: {pdf_path}")
# Extract text using pymupdf4llm
text = pymupdf4llm.to_markdown(str(pdf_path))
# Extract images if present
images = self._extract_pdf_images(pdf_path)
doc = {
'text': text,
'source': str(pdf_path.name),
'path': str(pdf_path),
'type': 'pdf',
'images': images,
'metadata': {
'file_size': pdf_path.stat().st_size,
'modified': pdf_path.stat().st_mtime
}
}
documents.append(doc)
except Exception as e:
logger.error(f"Error loading PDF {pdf_path}: {e}")
continue
return documents
def _extract_pdf_images(self, pdf_path: Path) -> List[Dict[str, Any]]:
"""Extract images from PDF using pymupdf."""
images = []
try:
doc = pymupdf.open(str(pdf_path))
for page_num in range(len(doc)):
page = doc[page_num]
image_list = page.get_images(full=True)
for img_index, img in enumerate(image_list):
try:
# Extract image
xref = img[0]
pix = pymupdf.Pixmap(doc, xref)
# Skip if pixmap is invalid or has no colorspace
if not pix or pix.colorspace is None:
if pix:
pix = None
continue
# Only process images with valid color channels
if pix.n - pix.alpha < 4: # GRAY or RGB
image_id = f"{pdf_path.stem}_p{page_num}_img{img_index}"
image_path = IMAGES_DIR / f"{image_id}.png"
# Convert to RGB if grayscale or other formats
if pix.n == 1: # Grayscale
rgb_pix = pymupdf.Pixmap(pymupdf.csRGB, pix)
pix = None # Clean up original
pix = rgb_pix
elif pix.n == 4 and pix.alpha == 0: # CMYK
rgb_pix = pymupdf.Pixmap(pymupdf.csRGB, pix)
pix = None # Clean up original
pix = rgb_pix
# Save image
pix.save(str(image_path))
images.append({
'image_id': image_id,
'image_path': str(image_path),
'page': page_num,
'source': str(pdf_path.name)
})
pix = None
except Exception as e:
logger.warning(f"Error extracting image {img_index} from page {page_num}: {e}")
if 'pix' in locals() and pix:
pix = None
continue
doc.close()
except Exception as e:
logger.error(f"Error extracting images from {pdf_path}: {e}")
return images
def load_html_documents(self, html_sources: List[Dict[str, str]]) -> List[Dict[str, Any]]:
"""Load text from HTML sources."""
documents = []
for source in html_sources:
try:
logger.info(f"Loading HTML: {source.get('title', source['url'])}")
# Fetch HTML content
response = requests.get(source['url'], timeout=30)
response.raise_for_status()
# Parse with BeautifulSoup
soup = BeautifulSoup(response.text, 'html.parser')
# Extract text
text = soup.get_text(separator=' ', strip=True)
doc = {
'text': text,
'source': source.get('title', source['url']),
'path': source['url'],
'type': 'html',
'images': [],
'metadata': {
'url': source['url'],
'title': source.get('title', ''),
'year': source.get('year', ''),
'category': source.get('category', ''),
'format': source.get('format', 'HTML')
}
}
documents.append(doc)
except Exception as e:
logger.error(f"Error loading HTML {source['url']}: {e}")
continue
return documents
def load_text_documents(self, data_dir: Path = DATA_DIR) -> List[Dict[str, Any]]:
"""Load all supported document types from data directory."""
documents = []
# Load PDFs
pdf_files = list(data_dir.glob("*.pdf"))
if pdf_files:
documents.extend(self.load_pdf_documents(pdf_files))
# Load HTML sources (from config)
if DEFAULT_HTML_SOURCES:
documents.extend(self.load_html_documents(DEFAULT_HTML_SOURCES))
logger.info(f"Loaded {len(documents)} documents total")
return documents
class TextPreprocessor:
"""Preprocess text for different retrieval methods."""
def __init__(self):
self.encoding = tiktoken.get_encoding("cl100k_base")
def chunk_text_by_tokens(self, text: str, chunk_size: int = CHUNK_SIZE,
overlap: int = CHUNK_OVERLAP) -> List[str]:
"""Split text into chunks by token count."""
tokens = self.encoding.encode(text)
chunks = []
start = 0
while start < len(tokens):
end = start + chunk_size
chunk_tokens = tokens[start:end]
chunk_text = self.encoding.decode(chunk_tokens)
chunks.append(chunk_text)
start = end - overlap
return chunks
def chunk_text_by_sections(self, text: str, method: str = "vanilla") -> List[str]:
"""Split text by sections based on method requirements."""
if method in ["vanilla", "dpr"]:
return self.chunk_text_by_tokens(text)
elif method == "bm25":
# BM25 works better with paragraph-level chunks
paragraphs = [p.strip() for p in text.split('\n\n') if p.strip()]
return paragraphs
elif method == "graph":
# Graph method uses larger sections
return self.chunk_text_by_tokens(text, chunk_size=CHUNK_SIZE*2)
elif method == "context_stuffing":
# Context stuffing uses full documents
return [text]
else:
return self.chunk_text_by_tokens(text)
def preprocess_for_method(self, documents: List[Dict[str, Any]],
method: str) -> List[DocumentChunk]:
"""Preprocess documents for specific retrieval method."""
chunks = []
for doc in documents:
text_chunks = self.chunk_text_by_sections(doc['text'], method)
for i, chunk_text in enumerate(text_chunks):
chunk_id = f"{doc['source']}_{method}_chunk_{i}"
chunk = DocumentChunk(
text=chunk_text,
metadata={
'source': doc['source'],
'path': doc['path'],
'type': doc['type'],
'chunk_index': i,
'method': method,
**doc.get('metadata', {})
},
chunk_id=chunk_id
)
chunks.append(chunk)
logger.info(f"Created {len(chunks)} chunks for method '{method}'")
return chunks
class EmbeddingGenerator:
"""Generate embeddings using various models."""
def __init__(self):
self.openai_client = OpenAI(api_key=OPENAI_API_KEY)
self.sentence_transformer = None
# self.clip_model = None
# self.clip_preprocess = None
def _get_sentence_transformer(self):
"""Lazy loading of sentence transformer."""
if self.sentence_transformer is None:
self.sentence_transformer = SentenceTransformer(SENTENCE_TRANSFORMER_MODEL)
if DEVICE == "cuda":
self.sentence_transformer = self.sentence_transformer.to(DEVICE)
return self.sentence_transformer
# def _get_clip_model(self):
# """Lazy loading of CLIP model."""
# if self.clip_model is None:
# self.clip_model, self.clip_preprocess = clip.load(CLIP_MODEL, device=DEVICE)
# return self.clip_model, self.clip_preprocess
def embed_text_openai(self, texts: List[str]) -> np.ndarray:
"""Generate embeddings using OpenAI API."""
embeddings = []
# Process in batches
for i in range(0, len(texts), EMBEDDING_BATCH_SIZE):
batch = texts[i:i + EMBEDDING_BATCH_SIZE]
try:
response = self.openai_client.embeddings.create(
model=OPENAI_EMBEDDING_MODEL,
input=batch
)
batch_embeddings = [data.embedding for data in response.data]
embeddings.extend(batch_embeddings)
except Exception as e:
logger.error(f"Error generating OpenAI embeddings: {e}")
raise
return np.array(embeddings)
def embed_text_sentence_transformer(self, texts: List[str]) -> np.ndarray:
"""Generate embeddings using sentence transformers."""
model = self._get_sentence_transformer()
try:
embeddings = model.encode(texts, convert_to_numpy=True,
show_progress_bar=True, batch_size=32)
return embeddings
except Exception as e:
logger.error(f"Error generating sentence transformer embeddings: {e}")
raise
def embed_image_clip(self, image_paths: List[str]) -> np.ndarray:
"""Generate image embeddings using CLIP."""
# model, preprocess = self._get_clip_model()
# embeddings = []
# for image_path in image_paths:
# try:
# image = preprocess(Image.open(image_path)).unsqueeze(0).to(DEVICE)
#
# with torch.no_grad():
# image_features = model.encode_image(image)
# image_features /= image_features.norm(dim=-1, keepdim=True)
#
# embeddings.append(image_features.cpu().numpy().flatten())
#
# except Exception as e:
# logger.error(f"Error embedding image {image_path}: {e}")
# continue
# return np.array(embeddings) if embeddings else np.array([])
# Placeholder for CLIP embeddings
logger.warning("CLIP embeddings not implemented - returning dummy embeddings")
return np.random.rand(len(image_paths), 512)
class VectorStoreManager:
"""Manage vector stores for different methods."""
def __init__(self):
self.embedding_generator = EmbeddingGenerator()
def build_faiss_index(self, chunks: List[DocumentChunk], method: str = "vanilla") -> Tuple[Any, List[Dict]]:
"""Build FAISS index for vanilla or DPR method."""
# Generate embeddings
texts = [chunk.text for chunk in chunks]
if method == "vanilla":
embeddings = self.embedding_generator.embed_text_openai(texts)
elif method == "dpr":
embeddings = self.embedding_generator.embed_text_sentence_transformer(texts)
else:
raise ValueError(f"Unsupported method for FAISS: {method}")
# Build FAISS index
dimension = embeddings.shape[1]
index = faiss.IndexFlatIP(dimension) # Inner product for cosine similarity
# Ensure embeddings are float32 and normalize for cosine similarity
embeddings = embeddings.astype(np.float32)
faiss.normalize_L2(embeddings)
index.add(embeddings)
# Store chunk metadata
metadata = []
for i, chunk in enumerate(chunks):
metadata.append({
'chunk_id': chunk.chunk_id,
'text': chunk.text,
'metadata': chunk.metadata,
'embedding': embeddings[i].tolist()
})
logger.info(f"Built FAISS index with {index.ntotal} vectors for method '{method}'")
return index, metadata
def build_chroma_index(self, chunks: List[DocumentChunk], method: str = "vanilla") -> Any:
"""Build Chroma vector database."""
# Initialize Chroma client
chroma_client = chromadb.PersistentClient(path=str(CHROMA_PATH / method))
collection = chroma_client.get_or_create_collection(
name=f"{method}_collection",
metadata={"method": method}
)
# Prepare data for Chroma
texts = [chunk.text for chunk in chunks]
ids = [chunk.chunk_id for chunk in chunks]
metadatas = [chunk.metadata for chunk in chunks]
# Add to collection (Chroma handles embeddings internally)
collection.add(
documents=texts,
ids=ids,
metadatas=metadatas
)
logger.info(f"Built Chroma collection with {collection.count()} documents for method '{method}'")
return collection
def build_bm25_index(self, chunks: List[DocumentChunk]) -> BM25Okapi:
"""Build BM25 index for keyword search."""
# Tokenize texts
tokenized_corpus = []
for chunk in chunks:
tokens = chunk.text.lower().split()
tokenized_corpus.append(tokens)
# Build BM25 index
bm25 = BM25Okapi(tokenized_corpus, k1=BM25_K1, b=BM25_B)
logger.info(f"Built BM25 index with {len(tokenized_corpus)} documents")
return bm25
def build_graph_index(self, chunks: List[DocumentChunk]) -> nx.Graph:
"""Build NetworkX graph for graph-based retrieval."""
# Create graph
G = nx.Graph()
# Generate embeddings for similarity calculation
texts = [chunk.text for chunk in chunks]
embeddings = self.embedding_generator.embed_text_openai(texts)
# Add nodes (convert embeddings to lists for GML serialization)
for i, chunk in enumerate(chunks):
G.add_node(chunk.chunk_id,
text=chunk.text,
metadata=chunk.metadata,
embedding=embeddings[i].tolist()) # Convert to list for serialization
# Add edges based on similarity
threshold = 0.7 # Similarity threshold
for i in range(len(chunks)):
for j in range(i + 1, len(chunks)):
# Calculate cosine similarity
sim = np.dot(embeddings[i], embeddings[j]) / (
np.linalg.norm(embeddings[i]) * np.linalg.norm(embeddings[j])
)
if sim > threshold:
G.add_edge(chunks[i].chunk_id, chunks[j].chunk_id,
weight=float(sim))
logger.info(f"Built graph with {G.number_of_nodes()} nodes and {G.number_of_edges()} edges")
return G
def save_index(self, index: Any, metadata: Any, method: str):
"""Save index and metadata to disk."""
if method == "vanilla":
faiss.write_index(index, str(VANILLA_FAISS_INDEX))
with open(VANILLA_METADATA, 'wb') as f:
pickle.dump(metadata, f)
elif method == "dpr":
faiss.write_index(index, str(DPR_FAISS_INDEX))
with open(DPR_METADATA, 'wb') as f:
pickle.dump(metadata, f)
elif method == "bm25":
with open(BM25_INDEX, 'wb') as f:
pickle.dump({'index': index, 'texts': metadata}, f)
elif method == "context_stuffing":
with open(CONTEXT_DOCS, 'wb') as f:
pickle.dump(metadata, f)
elif method == "graph":
nx.write_gml(index, str(GRAPH_FILE))
logger.info(f"Saved {method} index to disk")
class ImageProcessor:
"""Process and classify images."""
def __init__(self):
self.embedding_generator = EmbeddingGenerator()
self.openai_client = OpenAI(api_key=OPENAI_API_KEY)
self._init_database()
def _init_database(self):
"""Initialize SQLite database for image metadata."""
conn = sqlite3.connect(IMAGES_DB)
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS images (
image_id TEXT PRIMARY KEY,
image_path TEXT NOT NULL,
classification TEXT,
metadata TEXT,
embedding BLOB,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''')
conn.commit()
conn.close()
def classify_image(self, image_path: str) -> str:
"""Classify image using GPT-5 Vision."""
try:
# Convert image to base64
with open(image_path, "rb") as image_file:
image_b64 = base64.b64encode(image_file.read()).decode()
messages = [{
"role": "user",
"content": [
{"type": "text", "text": "Classify this image in 1-2 words (e.g., 'machine guard', 'press brake', 'conveyor belt', 'safety sign')."},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_b64}", "detail": "low"}}
]
}]
# For GPT-5 vision, temperature must be default (1.0)
response = self.openai_client.chat.completions.create(
model=OPENAI_CHAT_MODEL,
messages=messages,
max_completion_tokens=50
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error classifying image {image_path}: {e}")
return "unknown"
def should_filter_image(self, image_path: str) -> tuple[bool, str]:
"""
Check if image should be filtered out based on height and black image criteria.
Args:
image_path: Path to the image file
Returns:
Tuple of (should_filter: bool, reason: str)
"""
try:
from PIL import Image
import numpy as np
# Open and analyze the image
with Image.open(image_path) as img:
# Convert to RGB if needed
if img.mode != 'RGB':
img = img.convert('RGB')
width, height = img.size
# Filter 1: Height less than 40 pixels
if height < 40:
return True, f"height too small ({height}px)"
# Filter 2: Check if image is mostly black
img_array = np.array(img)
mean_brightness = np.mean(img_array)
# If mean brightness is very low (mostly black)
if mean_brightness < 10: # Adjust threshold as needed
return True, "mostly black image"
except Exception as e:
logger.warning(f"Error analyzing image {image_path}: {e}")
# If we can't analyze it, don't filter it out
return False, "analysis failed"
return False, "passed all filters"
def store_image_metadata(self, image_data: ImageData):
"""Store image metadata in database."""
conn = sqlite3.connect(IMAGES_DB)
cursor = conn.cursor()
# Serialize metadata and embedding
metadata_json = json.dumps(image_data.metadata) if image_data.metadata else None
embedding_blob = image_data.embedding.tobytes() if image_data.embedding is not None else None
cursor.execute('''
INSERT OR REPLACE INTO images
(image_id, image_path, classification, metadata, embedding)
VALUES (?, ?, ?, ?, ?)
''', (image_data.image_id, image_data.image_path,
image_data.classification, metadata_json, embedding_blob))
conn.commit()
conn.close()
def get_image_metadata(self, image_id: str) -> Optional[ImageData]:
"""Retrieve image metadata from database."""
conn = sqlite3.connect(IMAGES_DB)
cursor = conn.cursor()
cursor.execute('''
SELECT image_id, image_path, classification, metadata, embedding
FROM images WHERE image_id = ?
''', (image_id,))
row = cursor.fetchone()
conn.close()
if row:
image_id, image_path, classification, metadata_json, embedding_blob = row
metadata = json.loads(metadata_json) if metadata_json else None
embedding = np.frombuffer(embedding_blob, dtype=np.float32) if embedding_blob else None
return ImageData(
image_path=image_path,
image_id=image_id,
classification=classification,
embedding=embedding,
metadata=metadata
)
return None
def load_text_documents() -> List[Dict[str, Any]]:
"""Convenience function to load all text documents."""
loader = DocumentLoader()
return loader.load_text_documents()
def embed_image_clip(image_paths: List[str]) -> np.ndarray:
"""Convenience function to embed images with CLIP."""
generator = EmbeddingGenerator()
return generator.embed_image_clip(image_paths)
def store_image_metadata(image_data: ImageData):
"""Convenience function to store image metadata."""
processor = ImageProcessor()
processor.store_image_metadata(image_data)
def classify_image(image_path: str) -> str:
"""Convenience function to classify an image."""
processor = ImageProcessor()
return processor.classify_image(image_path)