Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import pandas as pd
|
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import gradio as gr
|
| 4 |
import tempfile
|
|
|
|
| 5 |
|
| 6 |
from statsforecast import StatsForecast
|
| 7 |
from statsforecast.models import (
|
|
@@ -17,8 +18,7 @@ from statsforecast.models import (
|
|
| 17 |
from utilsforecast.evaluation import evaluate
|
| 18 |
from utilsforecast.losses import *
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
def load_data(file):
|
| 23 |
if file is None:
|
| 24 |
return None, "Please upload a CSV file"
|
|
@@ -34,29 +34,49 @@ def load_data(file):
|
|
| 34 |
except Exception as e:
|
| 35 |
return None, f"Error loading data: {str(e)}"
|
| 36 |
|
| 37 |
-
|
|
|
|
| 38 |
plt.figure(figsize=(10, 6))
|
| 39 |
unique_ids = forecast_df['unique_id'].unique()
|
| 40 |
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds', 'cutoff']]
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
| 45 |
for unique_id in unique_ids:
|
| 46 |
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 47 |
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Actual')
|
| 48 |
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
| 52 |
|
| 53 |
-
plt.title(
|
| 54 |
plt.xlabel('Date')
|
| 55 |
plt.ylabel('Value')
|
| 56 |
plt.legend()
|
| 57 |
plt.grid(True)
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
|
|
|
| 60 |
def run_forecast(
|
| 61 |
file,
|
| 62 |
frequency,
|
|
@@ -77,7 +97,7 @@ def run_forecast(
|
|
| 77 |
):
|
| 78 |
df, message = load_data(file)
|
| 79 |
if df is None:
|
| 80 |
-
return None, None, None,
|
| 81 |
|
| 82 |
models = []
|
| 83 |
model_aliases = []
|
|
@@ -105,31 +125,35 @@ def run_forecast(
|
|
| 105 |
model_aliases.append('autoarima')
|
| 106 |
|
| 107 |
if not models:
|
| 108 |
-
return None, None, None, "Please select at least one forecasting model"
|
| 109 |
|
| 110 |
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
| 111 |
|
| 112 |
try:
|
| 113 |
if eval_strategy == "Cross Validation":
|
| 114 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
| 115 |
-
|
| 116 |
-
# Store for dropdown selection
|
| 117 |
-
forecast_store['forecast'] = cv_results
|
| 118 |
-
forecast_store['original'] = df
|
| 119 |
-
|
| 120 |
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
| 121 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 122 |
-
|
| 123 |
-
#
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
train_size = len(df) - horizon
|
| 131 |
if train_size <= 0:
|
| 132 |
-
return None, None, None, f"Not enough data for horizon={horizon}"
|
| 133 |
|
| 134 |
train_df = df.iloc[:train_size]
|
| 135 |
test_df = df.iloc[train_size:]
|
|
@@ -138,18 +162,13 @@ def run_forecast(
|
|
| 138 |
evaluation = evaluate(df=forecast, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
| 139 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 140 |
fig_forecast = create_forecast_plot(forecast, df)
|
| 141 |
-
|
|
|
|
| 142 |
|
| 143 |
except Exception as e:
|
| 144 |
-
return None, None, None, f"Error during forecasting: {str(e)}"
|
| 145 |
-
|
| 146 |
-
def update_window_plot(window_str):
|
| 147 |
-
if 'forecast' not in forecast_store:
|
| 148 |
-
return None
|
| 149 |
-
forecast_df = forecast_store['forecast']
|
| 150 |
-
original_df = forecast_store['original']
|
| 151 |
-
return create_forecast_plot(forecast_df, original_df, window=pd.to_datetime(window_str))
|
| 152 |
|
|
|
|
| 153 |
def download_sample():
|
| 154 |
sample_data = """unique_id,ds,y
|
| 155 |
series1,2023-01-01,100
|
|
@@ -173,30 +192,37 @@ series1,2023-01-15,131
|
|
| 173 |
temp.close()
|
| 174 |
return temp.name
|
| 175 |
|
|
|
|
| 176 |
with gr.Blocks(title="StatsForecast Demo") as app:
|
| 177 |
gr.Markdown("# 📈 StatsForecast Demo App")
|
| 178 |
gr.Markdown("Upload a CSV with `unique_id`, `ds`, and `y` columns to apply forecasting models.")
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
with gr.Row():
|
| 181 |
with gr.Column(scale=2):
|
| 182 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
|
|
|
| 183 |
download_btn = gr.Button("Download Sample Data")
|
| 184 |
download_output = gr.File(label="Click to download", visible=True)
|
| 185 |
download_btn.click(fn=download_sample, outputs=download_output)
|
| 186 |
|
| 187 |
frequency = gr.Dropdown(choices=["H", "D", "WS", "MS", "QS", "YS"], label="Frequency", value="D")
|
| 188 |
eval_strategy = gr.Radio(choices=["Fixed Window", "Cross Validation"], label="Evaluation Strategy", value="Cross Validation")
|
| 189 |
-
horizon = gr.Slider(1, 100, value=
|
| 190 |
step_size = gr.Slider(1, 50, value=5, step=1, label="Step Size")
|
| 191 |
num_windows = gr.Slider(1, 20, value=3, step=1, label="Number of Windows")
|
| 192 |
|
|
|
|
| 193 |
gr.Markdown("### Model Configuration")
|
| 194 |
use_historical_avg = gr.Checkbox(label="Use Historical Average", value=True)
|
| 195 |
use_naive = gr.Checkbox(label="Use Naive", value=True)
|
| 196 |
use_seasonal_naive = gr.Checkbox(label="Use Seasonal Naive")
|
| 197 |
-
seasonality = gr.Number(label="Seasonality", value=
|
| 198 |
use_window_avg = gr.Checkbox(label="Use Window Average")
|
| 199 |
-
window_size = gr.Number(label="Window Size", value=
|
| 200 |
use_seasonal_window_avg = gr.Checkbox(label="Use Seasonal Window Average")
|
| 201 |
seasonal_window_size = gr.Number(label="Seasonal Window Size", value=2)
|
| 202 |
use_autoets = gr.Checkbox(label="Use AutoETS")
|
|
@@ -207,10 +233,19 @@ with gr.Blocks(title="StatsForecast Demo") as app:
|
|
| 207 |
with gr.Column(scale=3):
|
| 208 |
eval_output = gr.Dataframe(label="Evaluation Results")
|
| 209 |
forecast_output = gr.Dataframe(label="Forecast Data")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
plot_output = gr.Plot(label="Forecast Plot")
|
| 211 |
message_output = gr.Textbox(label="Message")
|
| 212 |
-
window_selector = gr.Dropdown(label="Select Forecast Window", choices=[], visible=False)
|
| 213 |
|
|
|
|
| 214 |
submit_btn.click(
|
| 215 |
fn=run_forecast,
|
| 216 |
inputs=[
|
|
@@ -219,12 +254,25 @@ with gr.Blocks(title="StatsForecast Demo") as app:
|
|
| 219 |
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
|
| 220 |
use_autoets, use_autoarima
|
| 221 |
],
|
| 222 |
-
outputs=[
|
| 223 |
-
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
)
|
| 226 |
-
|
| 227 |
-
window_selector.change(fn=update_window_plot, inputs=window_selector, outputs=plot_output)
|
| 228 |
|
| 229 |
if __name__ == "__main__":
|
| 230 |
-
app.launch(share=False)
|
|
|
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import gradio as gr
|
| 4 |
import tempfile
|
| 5 |
+
import numpy as np
|
| 6 |
|
| 7 |
from statsforecast import StatsForecast
|
| 8 |
from statsforecast.models import (
|
|
|
|
| 18 |
from utilsforecast.evaluation import evaluate
|
| 19 |
from utilsforecast.losses import *
|
| 20 |
|
| 21 |
+
# Function to load and process uploaded CSV
|
|
|
|
| 22 |
def load_data(file):
|
| 23 |
if file is None:
|
| 24 |
return None, "Please upload a CSV file"
|
|
|
|
| 34 |
except Exception as e:
|
| 35 |
return None, f"Error loading data: {str(e)}"
|
| 36 |
|
| 37 |
+
# Function to generate and return a plot
|
| 38 |
+
def create_forecast_plot(forecast_df, original_df, selected_cutoff=None):
|
| 39 |
plt.figure(figsize=(10, 6))
|
| 40 |
unique_ids = forecast_df['unique_id'].unique()
|
| 41 |
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds', 'cutoff']]
|
| 42 |
+
|
| 43 |
+
# Filter by cutoff if provided and if 'cutoff' column exists
|
| 44 |
+
if selected_cutoff is not None and 'cutoff' in forecast_df.columns:
|
| 45 |
+
forecast_df = forecast_df[forecast_df['cutoff'] == selected_cutoff]
|
| 46 |
+
|
| 47 |
for unique_id in unique_ids:
|
| 48 |
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 49 |
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Actual')
|
| 50 |
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 51 |
+
if len(forecast_data) > 0: # Only plot if there's data after filtering
|
| 52 |
+
for col in forecast_cols:
|
| 53 |
+
if col in forecast_data.columns:
|
| 54 |
+
plt.plot(forecast_data['ds'], forecast_data[col], label=col)
|
| 55 |
|
| 56 |
+
plt.title('Forecasting Results')
|
| 57 |
plt.xlabel('Date')
|
| 58 |
plt.ylabel('Value')
|
| 59 |
plt.legend()
|
| 60 |
plt.grid(True)
|
| 61 |
+
fig = plt.gcf()
|
| 62 |
+
return fig
|
| 63 |
+
|
| 64 |
+
# Function to update plot based on selected cutoff
|
| 65 |
+
def update_plot(selected_cutoff, cv_results, original_df):
|
| 66 |
+
if cv_results is None or original_df is None:
|
| 67 |
+
return None, "No forecast data available."
|
| 68 |
+
|
| 69 |
+
try:
|
| 70 |
+
# Convert string back to datetime if needed
|
| 71 |
+
if isinstance(selected_cutoff, str):
|
| 72 |
+
selected_cutoff = pd.to_datetime(selected_cutoff)
|
| 73 |
+
|
| 74 |
+
fig = create_forecast_plot(cv_results, original_df, selected_cutoff)
|
| 75 |
+
return fig, f"Showing forecast for cutoff: {selected_cutoff}"
|
| 76 |
+
except Exception as e:
|
| 77 |
+
return None, f"Error updating plot: {str(e)}"
|
| 78 |
|
| 79 |
+
# Main forecasting logic
|
| 80 |
def run_forecast(
|
| 81 |
file,
|
| 82 |
frequency,
|
|
|
|
| 97 |
):
|
| 98 |
df, message = load_data(file)
|
| 99 |
if df is None:
|
| 100 |
+
return None, None, None, None, [], message
|
| 101 |
|
| 102 |
models = []
|
| 103 |
model_aliases = []
|
|
|
|
| 125 |
model_aliases.append('autoarima')
|
| 126 |
|
| 127 |
if not models:
|
| 128 |
+
return None, None, None, None, [], "Please select at least one forecasting model"
|
| 129 |
|
| 130 |
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
| 131 |
|
| 132 |
try:
|
| 133 |
if eval_strategy == "Cross Validation":
|
| 134 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
| 136 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 137 |
+
|
| 138 |
+
# Get unique cutoff dates for the dropdown
|
| 139 |
+
cutoff_dates = cv_results['cutoff'].unique().tolist()
|
| 140 |
+
|
| 141 |
+
# Sort cutoff dates (newest first)
|
| 142 |
+
cutoff_dates.sort(reverse=True)
|
| 143 |
+
|
| 144 |
+
# Use the most recent cutoff for initial plot
|
| 145 |
+
if cutoff_dates:
|
| 146 |
+
latest_cutoff = cutoff_dates[0]
|
| 147 |
+
fig_forecast = create_forecast_plot(cv_results, df, latest_cutoff)
|
| 148 |
+
else:
|
| 149 |
+
fig_forecast = create_forecast_plot(cv_results, df)
|
| 150 |
+
|
| 151 |
+
return eval_df, cv_results, fig_forecast, df, cutoff_dates, "Cross validation completed successfully!"
|
| 152 |
+
|
| 153 |
+
else: # Fixed window
|
| 154 |
train_size = len(df) - horizon
|
| 155 |
if train_size <= 0:
|
| 156 |
+
return None, None, None, None, [], f"Not enough data for horizon={horizon}"
|
| 157 |
|
| 158 |
train_df = df.iloc[:train_size]
|
| 159 |
test_df = df.iloc[train_size:]
|
|
|
|
| 162 |
evaluation = evaluate(df=forecast, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
| 163 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 164 |
fig_forecast = create_forecast_plot(forecast, df)
|
| 165 |
+
# For fixed window, we don't have cutoff dates
|
| 166 |
+
return eval_df, forecast, fig_forecast, df, [], "Fixed window evaluation completed successfully!"
|
| 167 |
|
| 168 |
except Exception as e:
|
| 169 |
+
return None, None, None, None, [], f"Error during forecasting: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
+
# Sample CSV file generation
|
| 172 |
def download_sample():
|
| 173 |
sample_data = """unique_id,ds,y
|
| 174 |
series1,2023-01-01,100
|
|
|
|
| 192 |
temp.close()
|
| 193 |
return temp.name
|
| 194 |
|
| 195 |
+
# Gradio interface
|
| 196 |
with gr.Blocks(title="StatsForecast Demo") as app:
|
| 197 |
gr.Markdown("# 📈 StatsForecast Demo App")
|
| 198 |
gr.Markdown("Upload a CSV with `unique_id`, `ds`, and `y` columns to apply forecasting models.")
|
| 199 |
|
| 200 |
+
# Store state variables
|
| 201 |
+
cv_results_state = gr.State(None)
|
| 202 |
+
original_df_state = gr.State(None)
|
| 203 |
+
|
| 204 |
with gr.Row():
|
| 205 |
with gr.Column(scale=2):
|
| 206 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
| 207 |
+
|
| 208 |
download_btn = gr.Button("Download Sample Data")
|
| 209 |
download_output = gr.File(label="Click to download", visible=True)
|
| 210 |
download_btn.click(fn=download_sample, outputs=download_output)
|
| 211 |
|
| 212 |
frequency = gr.Dropdown(choices=["H", "D", "WS", "MS", "QS", "YS"], label="Frequency", value="D")
|
| 213 |
eval_strategy = gr.Radio(choices=["Fixed Window", "Cross Validation"], label="Evaluation Strategy", value="Cross Validation")
|
| 214 |
+
horizon = gr.Slider(1, 100, value=14, step=1, label="Horizon")
|
| 215 |
step_size = gr.Slider(1, 50, value=5, step=1, label="Step Size")
|
| 216 |
num_windows = gr.Slider(1, 20, value=3, step=1, label="Number of Windows")
|
| 217 |
|
| 218 |
+
|
| 219 |
gr.Markdown("### Model Configuration")
|
| 220 |
use_historical_avg = gr.Checkbox(label="Use Historical Average", value=True)
|
| 221 |
use_naive = gr.Checkbox(label="Use Naive", value=True)
|
| 222 |
use_seasonal_naive = gr.Checkbox(label="Use Seasonal Naive")
|
| 223 |
+
seasonality = gr.Number(label="Seasonality", value=7)
|
| 224 |
use_window_avg = gr.Checkbox(label="Use Window Average")
|
| 225 |
+
window_size = gr.Number(label="Window Size", value=3)
|
| 226 |
use_seasonal_window_avg = gr.Checkbox(label="Use Seasonal Window Average")
|
| 227 |
seasonal_window_size = gr.Number(label="Seasonal Window Size", value=2)
|
| 228 |
use_autoets = gr.Checkbox(label="Use AutoETS")
|
|
|
|
| 233 |
with gr.Column(scale=3):
|
| 234 |
eval_output = gr.Dataframe(label="Evaluation Results")
|
| 235 |
forecast_output = gr.Dataframe(label="Forecast Data")
|
| 236 |
+
|
| 237 |
+
# Add cutoff selection dropdown
|
| 238 |
+
cutoff_dropdown = gr.Dropdown(
|
| 239 |
+
label="Select Validation Window (Cutoff Date)",
|
| 240 |
+
choices=[],
|
| 241 |
+
interactive=True,
|
| 242 |
+
visible=False
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
plot_output = gr.Plot(label="Forecast Plot")
|
| 246 |
message_output = gr.Textbox(label="Message")
|
|
|
|
| 247 |
|
| 248 |
+
# Run forecast function with updated outputs
|
| 249 |
submit_btn.click(
|
| 250 |
fn=run_forecast,
|
| 251 |
inputs=[
|
|
|
|
| 254 |
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
|
| 255 |
use_autoets, use_autoarima
|
| 256 |
],
|
| 257 |
+
outputs=[eval_output, cv_results_state, plot_output, original_df_state, cutoff_dropdown, message_output]
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
# Update cutoff dropdown visibility based on evaluation strategy
|
| 261 |
+
def update_dropdown_visibility(strategy):
|
| 262 |
+
return gr.update(visible=strategy == "Cross Validation")
|
| 263 |
+
|
| 264 |
+
eval_strategy.change(
|
| 265 |
+
fn=update_dropdown_visibility,
|
| 266 |
+
inputs=[eval_strategy],
|
| 267 |
+
outputs=[cutoff_dropdown]
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
# Update plot when cutoff is selected
|
| 271 |
+
cutoff_dropdown.change(
|
| 272 |
+
fn=update_plot,
|
| 273 |
+
inputs=[cutoff_dropdown, cv_results_state, original_df_state],
|
| 274 |
+
outputs=[plot_output, message_output]
|
| 275 |
)
|
|
|
|
|
|
|
| 276 |
|
| 277 |
if __name__ == "__main__":
|
| 278 |
+
app.launch(share=False)
|