File size: 4,631 Bytes
bc1321c
 
 
 
 
 
833aed9
bc1321c
 
 
833aed9
bc1321c
833aed9
 
bc1321c
 
 
 
 
 
 
 
 
 
 
 
 
 
8441e47
bc1321c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
833aed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""
utils.py
"""

# Standard imports
import os
from typing import List, Tuple

# Third party imports
import numpy as np
from google import genai
from openai import OpenAI
from sentence_transformers import SentenceTransformer
from transformers import AutoModel

client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

# Maximum tokens for text-embedding-3-small
MAX_TOKENS = 8191  # We don't have access to the tokenizer for text-embedding-3-small, and just assume 1 character = 1 token here


def get_embeddings(
    texts: List[str], model: str = "text-embedding-3-large"
) -> List[List[float]]:
    """
    Generate embeddings for a list of texts using OpenAI API synchronously.
    Args:
        texts: List of strings to embed.
        model: OpenAI embedding model to use (default: text-embedding-3-large).
    Returns:
        A list of embeddings (each embedding is a list of floats).
    Raises:
        Exception: If the OpenAI API call fails.
    """

    # Truncate texts to max token limit
    truncated_texts = [text[:MAX_TOKENS] for text in texts]

    # Make the API call
    response = client.embeddings.create(input=truncated_texts, model=model)

    # Extract embeddings from response
    embeddings = np.array([data.embedding for data in response.data])
    return embeddings


MODEL_CONFIGS = {
    "lionguard-2": {
        "label": "LionGuard 2",
        "repo_id": "govtech/lionguard-2",
        "embedding_strategy": "openai",
        "embedding_model": "text-embedding-3-large",
    },
    "lionguard-2-lite": {
        "label": "LionGuard 2 Lite",
        "repo_id": "govtech/lionguard-2-lite",
        "embedding_strategy": "sentence_transformer",
        "embedding_model": "google/embeddinggemma-300m",
    },
    "lionguard-2.1": {
        "label": "LionGuard 2.1",
        "repo_id": "govtech/lionguard-2.1",
        "embedding_strategy": "gemini",
        "embedding_model": "gemini-embedding-001",
    },
}

DEFAULT_MODEL_KEY = "lionguard-2.1"
MODEL_CACHE = {}
EMBEDDING_MODEL_CACHE = {}
current_model_choice = DEFAULT_MODEL_KEY
GEMINI_CLIENT = None


def resolve_model_key(model_key: str = None) -> str:
    key = model_key or current_model_choice
    if key not in MODEL_CONFIGS:
        raise ValueError(f"Unknown model selection: {key}")
    return key


def load_model_instance(model_key: str):
    key = resolve_model_key(model_key)
    if key not in MODEL_CACHE:
        repo_id = MODEL_CONFIGS[key]["repo_id"]
        MODEL_CACHE[key] = AutoModel.from_pretrained(repo_id, trust_remote_code=True)
    return MODEL_CACHE[key]


def get_sentence_transformer(model_name: str):
    if model_name not in EMBEDDING_MODEL_CACHE:
        EMBEDDING_MODEL_CACHE[model_name] = SentenceTransformer(model_name)
    return EMBEDDING_MODEL_CACHE[model_name]


def get_gemini_client():
    global GEMINI_CLIENT
    if GEMINI_CLIENT is None:
        api_key = os.getenv("GEMINI_API_KEY")
        if not api_key:
            raise EnvironmentError(
                "GEMINI_API_KEY environment variable is required for LionGuard 2.1."
            )
        GEMINI_CLIENT = genai.Client(api_key=api_key)
    return GEMINI_CLIENT


def get_model_embeddings(model_key: str, texts: List[str]) -> np.ndarray:
    key = resolve_model_key(model_key)
    config = MODEL_CONFIGS[key]
    strategy = config["embedding_strategy"]
    model_name = config.get("embedding_model")

    if strategy == "openai":
        return get_embeddings(texts, model=model_name)
    if strategy == "sentence_transformer":
        embedder = get_sentence_transformer(model_name)
        formatted_texts = [f"task: classification | query: {text}" for text in texts]
        embeddings = embedder.encode(formatted_texts)
        return np.array(embeddings)
    if strategy == "gemini":
        client = get_gemini_client()
        result = client.models.embed_content(model=model_name, contents=texts)
        return np.array([embedding.values for embedding in result.embeddings])

    raise ValueError(f"Unsupported embedding strategy: {strategy}")


def predict_with_model(texts: List[str], model_key: str = None) -> Tuple[dict, str]:
    key = resolve_model_key(model_key)
    embeddings = get_model_embeddings(key, texts)
    model = load_model_instance(key)
    return model.predict(embeddings), key


def set_active_model(model_key: str) -> str:
    if model_key not in MODEL_CONFIGS:
        return f"⚠️ Unknown model {model_key}"
    global current_model_choice
    current_model_choice = model_key
    load_model_instance(model_key)
    label = MODEL_CONFIGS[model_key]["label"]
    return f"🦁 Using {label} ({model_key})"