update api constants
Browse files- api.py +7 -3
- eval_multiple.py +2 -4
- models/cvvp.py +0 -0
api.py
CHANGED
|
@@ -186,7 +186,9 @@ class TextToSpeech:
|
|
| 186 |
'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
|
| 187 |
"""
|
| 188 |
# Use generally found best tuning knobs for generation.
|
| 189 |
-
kwargs.update({'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
|
|
|
|
|
|
|
| 190 |
'cond_free_k': 2.0, 'diffusion_temperature': 1.0})
|
| 191 |
# Presets are defined here.
|
| 192 |
presets = {
|
|
@@ -202,7 +204,8 @@ class TextToSpeech:
|
|
| 202 |
# autoregressive generation parameters follow
|
| 203 |
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8,
|
| 204 |
# diffusion generation parameters follow
|
| 205 |
-
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
|
|
|
|
| 206 |
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
| 207 |
text = F.pad(text, (0, 1)) # This may not be necessary.
|
| 208 |
|
|
@@ -228,7 +231,8 @@ class TextToSpeech:
|
|
| 228 |
temperature=temperature,
|
| 229 |
num_return_sequences=self.autoregressive_batch_size,
|
| 230 |
length_penalty=length_penalty,
|
| 231 |
-
repetition_penalty=repetition_penalty
|
|
|
|
| 232 |
padding_needed = self.autoregressive.max_mel_tokens - codes.shape[1]
|
| 233 |
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
| 234 |
samples.append(codes)
|
|
|
|
| 186 |
'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
|
| 187 |
"""
|
| 188 |
# Use generally found best tuning knobs for generation.
|
| 189 |
+
kwargs.update({'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
|
| 190 |
+
#'typical_sampling': True,
|
| 191 |
+
'top_p': .8,
|
| 192 |
'cond_free_k': 2.0, 'diffusion_temperature': 1.0})
|
| 193 |
# Presets are defined here.
|
| 194 |
presets = {
|
|
|
|
| 204 |
# autoregressive generation parameters follow
|
| 205 |
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8,
|
| 206 |
# diffusion generation parameters follow
|
| 207 |
+
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
|
| 208 |
+
**hf_generate_kwargs):
|
| 209 |
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
| 210 |
text = F.pad(text, (0, 1)) # This may not be necessary.
|
| 211 |
|
|
|
|
| 231 |
temperature=temperature,
|
| 232 |
num_return_sequences=self.autoregressive_batch_size,
|
| 233 |
length_penalty=length_penalty,
|
| 234 |
+
repetition_penalty=repetition_penalty,
|
| 235 |
+
**hf_generate_kwargs)
|
| 236 |
padding_needed = self.autoregressive.max_mel_tokens - codes.shape[1]
|
| 237 |
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
| 238 |
samples.append(codes)
|
eval_multiple.py
CHANGED
|
@@ -16,7 +16,7 @@ if __name__ == '__main__':
|
|
| 16 |
lines = [l.strip().split('\t') for l in f.readlines()]
|
| 17 |
|
| 18 |
tts = TextToSpeech()
|
| 19 |
-
for k in range(
|
| 20 |
outpath = f'{outpath_base}_{k}'
|
| 21 |
os.makedirs(outpath, exist_ok=True)
|
| 22 |
recorder = open(os.path.join(outpath, 'transcript.tsv'), 'w', encoding='utf-8')
|
|
@@ -27,9 +27,7 @@ if __name__ == '__main__':
|
|
| 27 |
path = os.path.join(os.path.dirname(fname), line[1])
|
| 28 |
cond_audio = load_audio(path, 22050)
|
| 29 |
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
| 30 |
-
sample = tts.
|
| 31 |
-
repetition_penalty=2.0, length_penalty=2, temperature=.5, top_p=.5,
|
| 32 |
-
diffusion_temperature=.7, cond_free_k=2, diffusion_iterations=70)
|
| 33 |
|
| 34 |
down = torchaudio.functional.resample(sample, 24000, 22050)
|
| 35 |
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
|
|
|
| 16 |
lines = [l.strip().split('\t') for l in f.readlines()]
|
| 17 |
|
| 18 |
tts = TextToSpeech()
|
| 19 |
+
for k in range(3):
|
| 20 |
outpath = f'{outpath_base}_{k}'
|
| 21 |
os.makedirs(outpath, exist_ok=True)
|
| 22 |
recorder = open(os.path.join(outpath, 'transcript.tsv'), 'w', encoding='utf-8')
|
|
|
|
| 27 |
path = os.path.join(os.path.dirname(fname), line[1])
|
| 28 |
cond_audio = load_audio(path, 22050)
|
| 29 |
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
| 30 |
+
sample = tts.tts_with_preset(transcript, [cond_audio, cond_audio], preset='standard')
|
|
|
|
|
|
|
| 31 |
|
| 32 |
down = torchaudio.functional.resample(sample, 24000, 22050)
|
| 33 |
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
models/cvvp.py
ADDED
|
File without changes
|