Spaces:
Runtime error
Runtime error
Create app.py
#1
by
dims
- opened
app.py
CHANGED
|
@@ -1,348 +1,7 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import cv2
|
| 3 |
-
import glob
|
| 4 |
-
import numpy as np
|
| 5 |
import gradio as gr
|
| 6 |
-
from collections import OrderedDict
|
| 7 |
-
import os
|
| 8 |
-
import torch
|
| 9 |
-
import requests
|
| 10 |
-
from PIL import Image
|
| 11 |
-
from models.network_swin2sr import Swin2SR as net
|
| 12 |
-
from utils import util_calculate_psnr_ssim as util
|
| 13 |
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
model = define_model(args)
|
| 18 |
-
model.eval()
|
| 19 |
-
model = model.to(device)
|
| 20 |
-
|
| 21 |
-
return model
|
| 22 |
-
|
| 23 |
-
def main(img):
|
| 24 |
-
|
| 25 |
-
# setup folder and path
|
| 26 |
-
#basewidth = 256
|
| 27 |
-
#wpercent = (basewidth/float(img.size[0]))
|
| 28 |
-
#hsize = int((float(img.size[1])*float(wpercent)))
|
| 29 |
-
#img = img.resize((basewidth,hsize), Image.ANTIALIAS)
|
| 30 |
-
img.save("test/1.png", "PNG")
|
| 31 |
-
|
| 32 |
-
folder, save_dir, border, window_size = setup(args)
|
| 33 |
-
os.makedirs(save_dir, exist_ok=True)
|
| 34 |
-
test_results = OrderedDict()
|
| 35 |
-
test_results['psnr'] = []
|
| 36 |
-
test_results['ssim'] = []
|
| 37 |
-
test_results['psnr_y'] = []
|
| 38 |
-
test_results['ssim_y'] = []
|
| 39 |
-
test_results['psnrb'] = []
|
| 40 |
-
test_results['psnrb_y'] = []
|
| 41 |
-
psnr, ssim, psnr_y, ssim_y, psnrb, psnrb_y = 0, 0, 0, 0, 0, 0
|
| 42 |
-
|
| 43 |
-
for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, '*')))):
|
| 44 |
-
# read image
|
| 45 |
-
imgname, img_lq, img_gt = get_image_pair(args, path) # image to HWC-BGR, float32
|
| 46 |
-
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB
|
| 47 |
-
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB
|
| 48 |
-
|
| 49 |
-
# inference
|
| 50 |
-
with torch.no_grad():
|
| 51 |
-
# pad input image to be a multiple of window_size
|
| 52 |
-
_, _, h_old, w_old = img_lq.size()
|
| 53 |
-
h_pad = (h_old // window_size + 1) * window_size - h_old
|
| 54 |
-
w_pad = (w_old // window_size + 1) * window_size - w_old
|
| 55 |
-
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]
|
| 56 |
-
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
|
| 57 |
-
output = test(img_lq, model, args, window_size)
|
| 58 |
-
|
| 59 |
-
if args.task == 'compressed_sr':
|
| 60 |
-
output = output[0][..., :h_old * args.scale, :w_old * args.scale]
|
| 61 |
-
else:
|
| 62 |
-
output = output[..., :h_old * args.scale, :w_old * args.scale]
|
| 63 |
-
|
| 64 |
-
# save image
|
| 65 |
-
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
| 66 |
-
if output.ndim == 3:
|
| 67 |
-
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
|
| 68 |
-
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
| 69 |
-
cv2.imwrite(f'{save_dir}/{imgname}_Swin2SR.png', output)
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
# evaluate psnr/ssim/psnr_b
|
| 73 |
-
if img_gt is not None:
|
| 74 |
-
img_gt = (img_gt * 255.0).round().astype(np.uint8) # float32 to uint8
|
| 75 |
-
img_gt = img_gt[:h_old * args.scale, :w_old * args.scale, ...] # crop gt
|
| 76 |
-
img_gt = np.squeeze(img_gt)
|
| 77 |
-
|
| 78 |
-
psnr = util.calculate_psnr(output, img_gt, crop_border=border)
|
| 79 |
-
ssim = util.calculate_ssim(output, img_gt, crop_border=border)
|
| 80 |
-
test_results['psnr'].append(psnr)
|
| 81 |
-
test_results['ssim'].append(ssim)
|
| 82 |
-
if img_gt.ndim == 3: # RGB image
|
| 83 |
-
psnr_y = util.calculate_psnr(output, img_gt, crop_border=border, test_y_channel=True)
|
| 84 |
-
ssim_y = util.calculate_ssim(output, img_gt, crop_border=border, test_y_channel=True)
|
| 85 |
-
test_results['psnr_y'].append(psnr_y)
|
| 86 |
-
test_results['ssim_y'].append(ssim_y)
|
| 87 |
-
if args.task in ['jpeg_car', 'color_jpeg_car']:
|
| 88 |
-
psnrb = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=False)
|
| 89 |
-
test_results['psnrb'].append(psnrb)
|
| 90 |
-
if args.task in ['color_jpeg_car']:
|
| 91 |
-
psnrb_y = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=True)
|
| 92 |
-
test_results['psnrb_y'].append(psnrb_y)
|
| 93 |
-
print('Testing {:d} {:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; PSNRB: {:.2f} dB;'
|
| 94 |
-
'PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}; PSNRB_Y: {:.2f} dB.'.
|
| 95 |
-
format(idx, imgname, psnr, ssim, psnrb, psnr_y, ssim_y, psnrb_y))
|
| 96 |
-
else:
|
| 97 |
-
print('Testing {:d} {:20s}'.format(idx, imgname))
|
| 98 |
-
|
| 99 |
-
# summarize psnr/ssim
|
| 100 |
-
if img_gt is not None:
|
| 101 |
-
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
|
| 102 |
-
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
|
| 103 |
-
print('\n{} \n-- Average PSNR/SSIM(RGB): {:.2f} dB; {:.4f}'.format(save_dir, ave_psnr, ave_ssim))
|
| 104 |
-
if img_gt.ndim == 3:
|
| 105 |
-
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
|
| 106 |
-
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
|
| 107 |
-
print('-- Average PSNR_Y/SSIM_Y: {:.2f} dB; {:.4f}'.format(ave_psnr_y, ave_ssim_y))
|
| 108 |
-
if args.task in ['jpeg_car', 'color_jpeg_car']:
|
| 109 |
-
ave_psnrb = sum(test_results['psnrb']) / len(test_results['psnrb'])
|
| 110 |
-
print('-- Average PSNRB: {:.2f} dB'.format(ave_psnrb))
|
| 111 |
-
if args.task in ['color_jpeg_car']:
|
| 112 |
-
ave_psnrb_y = sum(test_results['psnrb_y']) / len(test_results['psnrb_y'])
|
| 113 |
-
print('-- Average PSNRB_Y: {:.2f} dB'.format(ave_psnrb_y))
|
| 114 |
-
|
| 115 |
-
return f"results/swin2sr_{args.task}_x{args.scale}/1_Swin2SR.png"
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
def define_model(args):
|
| 119 |
-
# 001 classical image sr
|
| 120 |
-
if args.task == 'classical_sr':
|
| 121 |
-
model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
|
| 122 |
-
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
| 123 |
-
mlp_ratio=2, upsampler='pixelshuffle', resi_connection='1conv')
|
| 124 |
-
param_key_g = 'params'
|
| 125 |
-
|
| 126 |
-
# 002 lightweight image sr
|
| 127 |
-
# use 'pixelshuffledirect' to save parameters
|
| 128 |
-
elif args.task in ['lightweight_sr']:
|
| 129 |
-
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
|
| 130 |
-
img_range=1., depths=[6, 6, 6, 6], embed_dim=60, num_heads=[6, 6, 6, 6],
|
| 131 |
-
mlp_ratio=2, upsampler='pixelshuffledirect', resi_connection='1conv')
|
| 132 |
-
param_key_g = 'params'
|
| 133 |
-
|
| 134 |
-
elif args.task == 'compressed_sr':
|
| 135 |
-
model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
|
| 136 |
-
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
| 137 |
-
mlp_ratio=2, upsampler='pixelshuffle_aux', resi_connection='1conv')
|
| 138 |
-
param_key_g = 'params'
|
| 139 |
-
|
| 140 |
-
# 003 real-world image sr
|
| 141 |
-
elif args.task == 'real_sr':
|
| 142 |
-
if not args.large_model:
|
| 143 |
-
# use 'nearest+conv' to avoid block artifacts
|
| 144 |
-
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
|
| 145 |
-
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
| 146 |
-
mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv')
|
| 147 |
-
else:
|
| 148 |
-
# larger model size; use '3conv' to save parameters and memory; use ema for GAN training
|
| 149 |
-
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
|
| 150 |
-
img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240,
|
| 151 |
-
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
|
| 152 |
-
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
|
| 153 |
-
param_key_g = 'params_ema'
|
| 154 |
-
|
| 155 |
-
# 006 grayscale JPEG compression artifact reduction
|
| 156 |
-
# use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
|
| 157 |
-
elif args.task == 'jpeg_car':
|
| 158 |
-
model = net(upscale=1, in_chans=1, img_size=126, window_size=7,
|
| 159 |
-
img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
| 160 |
-
mlp_ratio=2, upsampler='', resi_connection='1conv')
|
| 161 |
-
param_key_g = 'params'
|
| 162 |
-
|
| 163 |
-
# 006 color JPEG compression artifact reduction
|
| 164 |
-
# use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
|
| 165 |
-
elif args.task == 'color_jpeg_car':
|
| 166 |
-
model = net(upscale=1, in_chans=3, img_size=126, window_size=7,
|
| 167 |
-
img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
| 168 |
-
mlp_ratio=2, upsampler='', resi_connection='1conv')
|
| 169 |
-
param_key_g = 'params'
|
| 170 |
-
|
| 171 |
-
pretrained_model = torch.load(args.model_path)
|
| 172 |
-
model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True)
|
| 173 |
-
|
| 174 |
-
return model
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
def setup(args):
|
| 178 |
-
# 001 classical image sr/ 002 lightweight image sr
|
| 179 |
-
if args.task in ['classical_sr', 'lightweight_sr', 'compressed_sr']:
|
| 180 |
-
save_dir = f'results/swin2sr_{args.task}_x{args.scale}'
|
| 181 |
-
if args.save_img_only:
|
| 182 |
-
folder = args.folder_lq
|
| 183 |
-
else:
|
| 184 |
-
folder = args.folder_gt
|
| 185 |
-
border = args.scale
|
| 186 |
-
window_size = 8
|
| 187 |
-
|
| 188 |
-
# 003 real-world image sr
|
| 189 |
-
elif args.task in ['real_sr']:
|
| 190 |
-
save_dir = f'results/swin2sr_{args.task}_x{args.scale}'
|
| 191 |
-
if args.large_model:
|
| 192 |
-
save_dir += '_large'
|
| 193 |
-
folder = args.folder_lq
|
| 194 |
-
border = 0
|
| 195 |
-
window_size = 8
|
| 196 |
-
|
| 197 |
-
# 006 JPEG compression artifact reduction
|
| 198 |
-
elif args.task in ['jpeg_car', 'color_jpeg_car']:
|
| 199 |
-
save_dir = f'results/swin2sr_{args.task}_jpeg{args.jpeg}'
|
| 200 |
-
folder = args.folder_gt
|
| 201 |
-
border = 0
|
| 202 |
-
window_size = 7
|
| 203 |
-
|
| 204 |
-
return folder, save_dir, border, window_size
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
def get_image_pair(args, path):
|
| 208 |
-
(imgname, imgext) = os.path.splitext(os.path.basename(path))
|
| 209 |
-
|
| 210 |
-
# 001 classical image sr/ 002 lightweight image sr (load lq-gt image pairs)
|
| 211 |
-
if args.task in ['classical_sr', 'lightweight_sr']:
|
| 212 |
-
if args.save_img_only:
|
| 213 |
-
img_gt = None
|
| 214 |
-
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
| 215 |
-
else:
|
| 216 |
-
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
| 217 |
-
img_lq = cv2.imread(f'{args.folder_lq}/{imgname}x{args.scale}{imgext}', cv2.IMREAD_COLOR).astype(
|
| 218 |
-
np.float32) / 255.
|
| 219 |
-
|
| 220 |
-
elif args.task in ['compressed_sr']:
|
| 221 |
-
if args.save_img_only:
|
| 222 |
-
img_gt = None
|
| 223 |
-
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
| 224 |
-
else:
|
| 225 |
-
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
| 226 |
-
img_lq = cv2.imread(f'{args.folder_lq}/{imgname}.jpg', cv2.IMREAD_COLOR).astype(
|
| 227 |
-
np.float32) / 255.
|
| 228 |
-
|
| 229 |
-
# 003 real-world image sr (load lq image only)
|
| 230 |
-
elif args.task in ['real_sr', 'lightweight_sr_infer']:
|
| 231 |
-
img_gt = None
|
| 232 |
-
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
| 233 |
-
|
| 234 |
-
# 006 grayscale JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
|
| 235 |
-
elif args.task in ['jpeg_car']:
|
| 236 |
-
img_gt = cv2.imread(path, cv2.IMREAD_UNCHANGED)
|
| 237 |
-
if img_gt.ndim != 2:
|
| 238 |
-
img_gt = util.bgr2ycbcr(img_gt, y_only=True)
|
| 239 |
-
result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
|
| 240 |
-
img_lq = cv2.imdecode(encimg, 0)
|
| 241 |
-
img_gt = np.expand_dims(img_gt, axis=2).astype(np.float32) / 255.
|
| 242 |
-
img_lq = np.expand_dims(img_lq, axis=2).astype(np.float32) / 255.
|
| 243 |
-
|
| 244 |
-
# 006 JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
|
| 245 |
-
elif args.task in ['color_jpeg_car']:
|
| 246 |
-
img_gt = cv2.imread(path)
|
| 247 |
-
result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
|
| 248 |
-
img_lq = cv2.imdecode(encimg, 1)
|
| 249 |
-
img_gt = img_gt.astype(np.float32)/ 255.
|
| 250 |
-
img_lq = img_lq.astype(np.float32)/ 255.
|
| 251 |
-
|
| 252 |
-
return imgname, img_lq, img_gt
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
def test(img_lq, model, args, window_size):
|
| 256 |
-
if args.tile is None:
|
| 257 |
-
# test the image as a whole
|
| 258 |
-
output = model(img_lq)
|
| 259 |
-
else:
|
| 260 |
-
# test the image tile by tile
|
| 261 |
-
b, c, h, w = img_lq.size()
|
| 262 |
-
tile = min(args.tile, h, w)
|
| 263 |
-
assert tile % window_size == 0, "tile size should be a multiple of window_size"
|
| 264 |
-
tile_overlap = args.tile_overlap
|
| 265 |
-
sf = args.scale
|
| 266 |
-
|
| 267 |
-
stride = tile - tile_overlap
|
| 268 |
-
h_idx_list = list(range(0, h-tile, stride)) + [h-tile]
|
| 269 |
-
w_idx_list = list(range(0, w-tile, stride)) + [w-tile]
|
| 270 |
-
E = torch.zeros(b, c, h*sf, w*sf).type_as(img_lq)
|
| 271 |
-
W = torch.zeros_like(E)
|
| 272 |
-
|
| 273 |
-
for h_idx in h_idx_list:
|
| 274 |
-
for w_idx in w_idx_list:
|
| 275 |
-
in_patch = img_lq[..., h_idx:h_idx+tile, w_idx:w_idx+tile]
|
| 276 |
-
out_patch = model(in_patch)
|
| 277 |
-
out_patch_mask = torch.ones_like(out_patch)
|
| 278 |
-
|
| 279 |
-
E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch)
|
| 280 |
-
W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask)
|
| 281 |
-
output = E.div_(W)
|
| 282 |
-
|
| 283 |
-
return output
|
| 284 |
-
|
| 285 |
-
if __name__ == '__main__':
|
| 286 |
-
|
| 287 |
-
parser = argparse.ArgumentParser()
|
| 288 |
-
parser.add_argument('--task', type=str, default='compressed_sr', help='classical_sr, lightweight_sr, real_sr, '
|
| 289 |
-
'gray_dn, color_dn, jpeg_car, color_jpeg_car')
|
| 290 |
-
parser.add_argument('--scale', type=int, default=4, help='scale factor: 1, 2, 3, 4, 8') # 1 for dn and jpeg car
|
| 291 |
-
parser.add_argument('--noise', type=int, default=15, help='noise level: 15, 25, 50')
|
| 292 |
-
parser.add_argument('--jpeg', type=int, default=10, help='scale factor: 10, 20, 30, 40')
|
| 293 |
-
parser.add_argument('--training_patch_size', type=int, default=48, help='patch size used in training Swin2SR. '
|
| 294 |
-
'Just used to differentiate two different settings in Table 2 of the paper. '
|
| 295 |
-
'Images are NOT tested patch by patch.')
|
| 296 |
-
parser.add_argument('--large_model', action='store_true', help='use large model, only provided for real image sr')
|
| 297 |
-
parser.add_argument('--model_path', type=str,
|
| 298 |
-
default='experiments/pretrained_models/Swin2SR_CompressedSR_X4_48.pth')
|
| 299 |
-
parser.add_argument('--folder_lq', type=str, default="test", help='input low-quality test image folder')
|
| 300 |
-
parser.add_argument('--folder_gt', type=str, default=None, help='input ground-truth test image folder')
|
| 301 |
-
parser.add_argument('--tile', type=int, default=None, help='Tile size, None for no tile during testing (testing as a whole)')
|
| 302 |
-
parser.add_argument('--tile_overlap', type=int, default=32, help='Overlapping of different tiles')
|
| 303 |
-
parser.add_argument('--save_img_only', default=True, action='store_true', help='save image and do not evaluate')
|
| 304 |
-
args = parser.parse_args()
|
| 305 |
-
|
| 306 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 307 |
-
# set up model
|
| 308 |
-
if os.path.exists(args.model_path):
|
| 309 |
-
print(f'loading model from {args.model_path}')
|
| 310 |
-
else:
|
| 311 |
-
os.makedirs(os.path.dirname(args.model_path), exist_ok=True)
|
| 312 |
-
url = 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/{}'.format(os.path.basename(args.model_path))
|
| 313 |
-
r = requests.get(url, allow_redirects=True)
|
| 314 |
-
print(f'downloading model {args.model_path}')
|
| 315 |
-
open(args.model_path, 'wb').write(r.content)
|
| 316 |
-
|
| 317 |
-
model = setup_model(args)
|
| 318 |
-
|
| 319 |
-
os.makedirs("test", exist_ok=True)
|
| 320 |
-
|
| 321 |
-
#main(img)
|
| 322 |
-
|
| 323 |
-
title = "Super-Resolution Demo Swin2SR Official 🚀🚀🔥"
|
| 324 |
-
description = '''
|
| 325 |
-
<br>
|
| 326 |
-
|
| 327 |
-
**This Demo expects low-quality and low-resolution JPEG compressed images, in the near future we will support any kind of input**
|
| 328 |
-
|
| 329 |
-
**We are looking for collaborators! Collaborator를 찾고 있습니다!** 🇬🇧 🇪🇸 🇰🇷 🇫🇷 🇷🇴 🇩🇪 🇨🇳
|
| 330 |
-
|
| 331 |
-
**Please check our github project: https://github.com/mv-lab/swin2sr and feel free to contact us**
|
| 332 |
-
|
| 333 |
-
**Demos also available at [google colab](https://colab.research.google.com/drive/1paPrt62ydwLv2U2eZqfcFsePI4X4WRR1?usp=sharing) and [Kaggle](https://www.kaggle.com/code/jesucristo/super-resolution-demo-swin2sr-official/)**
|
| 334 |
-
</br>
|
| 335 |
-
'''
|
| 336 |
-
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2209.11345' target='_blank'>Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration</a> | <a href='https://github.com/mv-lab/swin2sr' target='_blank'>Github Repo</a></p>"
|
| 337 |
-
|
| 338 |
-
examples= glob.glob("testsets/real-inputs/*.jpg")
|
| 339 |
-
gr.Interface(
|
| 340 |
-
main,
|
| 341 |
-
#gr.Image().style(full_width=True, height=60),
|
| 342 |
-
gr.inputs.Image(type="pil", label="Input").style(height=260),
|
| 343 |
-
gr.inputs.Image(type="pil", label="Ouput").style(height=240),
|
| 344 |
-
title=title,
|
| 345 |
-
description=description,
|
| 346 |
-
article=article,
|
| 347 |
-
examples=examples,
|
| 348 |
-
).launch(enable_queue=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
def greet(name):
|
| 4 |
+
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|