File size: 8,960 Bytes
9c467d0 a5a2f78 c8fdefc 00f351b 9c467d0 e5cae3b 9c467d0 00f351b 9c467d0 00f351b 9c467d0 fa6d8a6 9c467d0 00f351b 9c467d0 ea5c0eb 00f351b 9c467d0 00f351b ea5c0eb 9c467d0 ea5c0eb 613a234 ea5c0eb 9c467d0 00f351b 9c467d0 00f351b 9c467d0 460e12a 021d87d 460e12a 021d87d 460e12a 021d87d 460e12a 021d87d 9c467d0 ae71a96 021d87d 9c467d0 8c296fe f7441e7 9c467d0 021d87d 9c467d0 021d87d 9c467d0 021d87d 9c467d0 460e12a 5d65301 021d87d 5d65301 124afe5 021d87d 730fe3a 021d87d 9c467d0 021d87d 9c467d0 00f351b fa4a854 3908f13 021d87d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
# import gradio as gr
# import kagglehub
# import pickle
# import numpy as np
# import os
# from surprise import SVDpp
# from sklearn.metrics.pairwise import cosine_similarity
# # --- Download model from KaggleHub ---
# def download_kagglehub_model():
# user = os.getenv("KAGGLE_USERNAME")
# MODEL_SLUG = 'book-recommender-svd'
# VARIATION_SLUG = 'v1'
# framework = "keras"
# model_handle = f"{user}/{MODEL_SLUG}/{framework}/{VARIATION_SLUG}"
# print("π₯ Downloading model from KaggleHub:", model_handle)
# model_path = kagglehub.model_download(model_handle)
# print("β
Model downloaded to:", model_path)
# return model_path
# # --- Load Models ---
# def load_models(model_dir):
# with open(f"{model_dir}/svd_model.pkl", "rb") as f:
# svdpp_model = pickle.load(f)
# with open(f"{model_dir}/content_features.pkl", "rb") as f:
# content_features = pickle.load(f)
# with open(f"{model_dir}/book_metadata.pkl", "rb") as f:
# mappings = pickle.load(f)
# return svdpp_model, content_features, mappings
# # --- Hybrid Prediction ---
# def hybrid_predict(user_id, book_id, alpha=0.7):
# try:
# # uid = user_encoder.transform([user_id])[0]
# # iid = item_encoder.transform([book_id])[0]
# uid = user_id
# iid = book_id
# except:
# return "β Unknown user_id or book_id"
# svd_pred = svdpp_model.predict(uid, iid).est
# user_liked = np.where(svdpp_model.trainset.ur[uid])[0]
# if len(user_liked) == 0:
# content_score = 0
# else:
# similarities = cosine_similarity(content_features[iid], content_features[user_liked])
# content_score = np.mean(similarities)
# hybrid_score = alpha * svd_pred + (1 - alpha) * content_score * 5
# return round(hybrid_score, 2)
# # --- Gradio Interface ---
# def recommend(user_id, book_id, alpha=0.7):
# return f"β Predicted Rating: {hybrid_predict(user_id, book_id, alpha)}"
# # Download and load model
# model_dir = download_kagglehub_model()
# svdpp_model, content_features, mappings = load_models(model_dir)
# # user_encoder = mappings["user_encoder"]
# # item_encoder = mappings["item_encoder"]
# # Start Gradio app
# demo = gr.Interface(
# fn=recommend,
# inputs=[
# gr.Textbox(label="User ID"),
# gr.Textbox(label="Book ID"),
# gr.Slider(0, 1, value=0.7, step=0.1, label="Hybrid Weight (alpha)")
# ],
# outputs="text",
# title="π Hybrid Book Recommender",
# description="Enter a user_id and book_id to get a predicted rating using a Hybrid SVD++ and Content-based model."
# )
# demo.launch()
import os
import pickle
import gradio as gr
import pandas as pd
import kagglehub
from surprise import SVDpp, Dataset, Reader
from sklearn.metrics.pairwise import cosine_similarity
import joblib
# π₯ Load Hybrid Model from KaggleHub
user = os.getenv("KAGGLE_USERNAME")
model_slug = 'book-recommender-svd'
variation_slug = 'v2'
framework = "keras"
model_handle = f"{user}/{model_slug}/{framework}/{variation_slug}"
model_dir = kagglehub.model_download(model_handle)
with open(f"{model_dir}/svd_model.pkl", "rb") as f:
svdpp = pickle.load(f)
with open(f"{model_dir}/content_features.pkl", "rb") as f:
content_features = pickle.load(f)
with open(f"{model_dir}/mappings.pkl", "rb") as f:
mappings = pickle.load(f)
ratings_df = mappings['ratings_df']
features_df = mappings['feature_df']
user_encoder = mappings['user_encoder']
item_encoder = mappings['item_encoder']
# Create mappings
item_id_to_idx = {bid: idx for idx, bid in enumerate(features_df['book_id'])}
global_mean_rating = ratings_df['rating'].mean()
# User liked books mapping (for content-based filtering)
user_liked_books = ratings_df[ratings_df['rating'] >= 4].groupby('user_id')['book_id'].apply(list).to_dict()
# π₯ Hybrid Predict Function
def hybrid_predict(user_id, book_id, alpha=0.7):
try:
cf_score = svdpp.predict(user_id, book_id).est
except:
cf_score = global_mean_rating
try:
idx_target = item_id_to_idx[book_id]
liked_books = user_liked_books.get(user_id, [])
if not liked_books:
content_score = global_mean_rating
else:
liked_indices = [item_id_to_idx[b] for b in liked_books if b in item_id_to_idx]
if not liked_indices:
content_score = global_mean_rating
else:
sims = cosine_similarity(content_features[idx_target], content_features[liked_indices])
content_score = sims.mean()
except:
content_score = global_mean_rating
return alpha * cf_score + (1 - alpha) * content_score
# def recommend_books(user_id, top_n):
# # uid = user_encoder.transform([user_id])[0]
# user_id = int(user_id)
# if user_id not in ratings_df['user_id'].unique():
# return pd.DataFrame([["Error", f"User {user_id} not found."]], columns=["Book Title", "Predicted Rating"])
# rated_books = set(ratings_df[ratings_df['user_id'] == user_id]['book_id'])
# unseen_books = set(features_df['book_id']) - rated_books
# if not unseen_books:
# return pd.DataFrame([["Error", "No unseen books left to recommend."]], columns=["Book Title", "Predicted Rating"])
# recommendations = []
# for book_id in unseen_books:
# score = hybrid_predict(user_id, book_id)
# title = features_df.loc[features_df['book_id'] == book_id, 'title'].values[0]
# recommendations.append((title, round(score, 3)))
# recommendations.sort(key=lambda x: x[1], reverse=True)
# return pd.DataFrame(recommendations[:top_n], columns=["Book Title", "Predicted Rating"])
def recommend_books(user_id, top_n):
user_id = int(user_id)
if user_id not in ratings_df['user_id'].unique():
# Cold start fallback β Top-N highest-rated books
top_books = (
ratings_df.groupby('book_id')['rating']
.mean()
.reset_index()
.sort_values(by='rating', ascending=False)
.head(top_n)
)
recommendations = []
for _, row in top_books.iterrows():
book_id = row['book_id']
avg_rating = row['rating']
book_info = features_df.loc[features_df['book_id'] == book_id]
if book_info.empty:
continue
title = book_info['title'].values[0]
image_url = book_info['image_url'].values[0] if 'image_url' in book_info else ""
recommendations.append(
(f"<img src='{image_url}' width='60'>", title, round(avg_rating, 3))
)
return pd.DataFrame(recommendations, columns=["Book Cover", "Book Title", "Predicted Rating"])
rated_books = set(ratings_df[ratings_df['user_id'] == user_id]['book_id'])
unseen_books = set(features_df['book_id']) - rated_books
if not unseen_books:
return pd.DataFrame([["", "No unseen books left to recommend.", ""]],
columns=["Book Cover", "Book Title", "Predicted Rating"])
recommendations = []
for book_id in unseen_books:
score = hybrid_predict(user_id, book_id)
row = features_df.loc[features_df['book_id'] == book_id]
title = row['title'].values[0]
image_url = row['image_url'].values[0] if 'image_url' in row else ""
recommendations.append((f"<img src='{image_url}' width='60'>", title, round(score, 3)))
recommendations.sort(key=lambda x: x[2], reverse=True)
return pd.DataFrame(recommendations[:top_n], columns=["Book Cover", "Book Title", "Predicted Rating"])
# Gradio UI
# with gr.Blocks() as demo:
# gr.Markdown("## π Hybrid Book Recommendation System")
# user_id_input = gr.Textbox(label="Enter User ID", placeholder="e.g. 123")
# top_n_input = gr.Slider(5, 20, value=10, step=1, label="Number of Recommendations")
# recommend_button = gr.Button("Get Recommendations")
# output_table = gr.Dataframe(headers=["Book Title", "Predicted Rating"], datatype=["str", "number"])
# recommend_button.click(
# recommend_books,
# inputs=[user_id_input, top_n_input],
# outputs=output_table
# )
# demo.launch()
with gr.Blocks() as app_ui:
gr.Markdown("## π Hybrid Book Recommendation System")
user_id_input = gr.Textbox(label="User ID", placeholder="Enter user ID")
# top_n_input = gr.Number(label="Number of Recommendations", value=5, precision=0)
top_n_input = gr.Slider(5, 20, value=10, step=1, label="Number of Recommendations")
recommend_btn = gr.Button("Recommend Books")
output = gr.HTML(label="Recommendations")
recommend_btn.click(
lambda uid, n: recommend_books(uid, int(n)).to_html(escape=False, index=False),
inputs=[user_id_input, top_n_input],
outputs=output
)
app_ui.launch()
|