File size: 3,580 Bytes
5eb40a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel

from torch import cuda
from transformers import AutoModelForCausalLM, AutoTokenizer

import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


model = None
tokenizer = None

class TextInput(BaseModel):
    text: str
    min_length: int = 3
    # Apertus by default supports a context length up to 65,536 tokens.
    max_length: int = 65536

class ModelResponse(BaseModel):
    text: str
    confidence: float
    processing_time: float


@asynccontextmanager
async def lifespan(app: FastAPI):
    """Load the transformer model on startup"""
    global model, tokenizer
    try:
        logger.info("Loading sentiment analysis model...")
        # TODO: make this configurable
        model_name = "swiss-ai/Apertus-8B-Instruct-2509"

        # Automatically select device based on availability
        device = "cuda" if cuda.is_available() else "cpu"

        # load the tokenizer and the model
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
        ).to(device)
        logger.info("Model loaded successfully!")
    except Exception as e:
        logger.error(f"Failed to load model: {e}")
        raise e
    # Release resources when the app is stopped
    yield
    model.clear()
    tokenizer.clear()


# Setup our app
app = FastAPI(
    title="Apertus API",
    description="REST API for serving Apertus models via Hugging Face transformers",
    version="0.1.0",
    lifespan=lifespan
)

@app.get("/predict", response_model=ModelResponse)
async def predict(q: str):
    """Generate a model response for input text"""
    if model is None or tokenizer is None:
        raise HTTPException(status_code=503, detail="Model not loaded")

    try:
        import time
        start_time = time.time()

        input_data = TextInput(text=q)

        # Truncate text if too long
        text = input_data.text[:input_data.max_length]
        if len(text) == input_data.max_length:
            logger.warning("Warning: text truncated")
        if len(text) < input_data.min_length:
            logger.warning("Warning: empty text, aborting")
            return None

        # Prepare the model input
        messages_think = [
            {"role": "user", "content": text}
        ]
        text = tokenizer.apply_chat_template(
            messages_think,
            tokenize=False,
            add_generation_prompt=True,
        )
        model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

        # Generate the output
        generated_ids = model.generate(**model_inputs, max_new_tokens=32768)

        # Get and decode the output
        output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
        result = tokenizer.decode(output_ids, skip_special_tokens=True)

        # Checkpoint
        processing_time = time.time() - start_time

        return ModelResponse(
            text=result['label'],
            confidence=result['score'],
            processing_time=processing_time
        )

    except Exception as e:
        logger.error(f"Evaluation error: {e}")
        raise HTTPException(status_code=500, detail="Evaluation failed")

@app.get("/health")
async def health_check():
    """Health check and basic configuration"""
    return {
        "status": "healthy",
        "model_loaded": model is not None,
        "gpu_available": cuda.is_available()
    }