Spaces:
Runtime error
Runtime error
File size: 3,580 Bytes
5eb40a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from torch import cuda
from transformers import AutoModelForCausalLM, AutoTokenizer
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
model = None
tokenizer = None
class TextInput(BaseModel):
text: str
min_length: int = 3
# Apertus by default supports a context length up to 65,536 tokens.
max_length: int = 65536
class ModelResponse(BaseModel):
text: str
confidence: float
processing_time: float
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Load the transformer model on startup"""
global model, tokenizer
try:
logger.info("Loading sentiment analysis model...")
# TODO: make this configurable
model_name = "swiss-ai/Apertus-8B-Instruct-2509"
# Automatically select device based on availability
device = "cuda" if cuda.is_available() else "cpu"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
).to(device)
logger.info("Model loaded successfully!")
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise e
# Release resources when the app is stopped
yield
model.clear()
tokenizer.clear()
# Setup our app
app = FastAPI(
title="Apertus API",
description="REST API for serving Apertus models via Hugging Face transformers",
version="0.1.0",
lifespan=lifespan
)
@app.get("/predict", response_model=ModelResponse)
async def predict(q: str):
"""Generate a model response for input text"""
if model is None or tokenizer is None:
raise HTTPException(status_code=503, detail="Model not loaded")
try:
import time
start_time = time.time()
input_data = TextInput(text=q)
# Truncate text if too long
text = input_data.text[:input_data.max_length]
if len(text) == input_data.max_length:
logger.warning("Warning: text truncated")
if len(text) < input_data.min_length:
logger.warning("Warning: empty text, aborting")
return None
# Prepare the model input
messages_think = [
{"role": "user", "content": text}
]
text = tokenizer.apply_chat_template(
messages_think,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate the output
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
# Get and decode the output
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
result = tokenizer.decode(output_ids, skip_special_tokens=True)
# Checkpoint
processing_time = time.time() - start_time
return ModelResponse(
text=result['label'],
confidence=result['score'],
processing_time=processing_time
)
except Exception as e:
logger.error(f"Evaluation error: {e}")
raise HTTPException(status_code=500, detail="Evaluation failed")
@app.get("/health")
async def health_check():
"""Health check and basic configuration"""
return {
"status": "healthy",
"model_loaded": model is not None,
"gpu_available": cuda.is_available()
}
|