olcapone's picture
Update app.py
b3af0f9 verified
raw
history blame
13.8 kB
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import LiteLLMModel, CodeAgent, Tool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Agent Tools ---
class MathSolver(Tool):
name = "math_solver"
description = "Safely evaluate basic math expressions."
inputs = {"input": {"type": "string", "description": "Math expression to evaluate."}}
output_type = "string"
def forward(self, input: str) -> str:
try:
# Safe evaluation of math expressions
allowed_names = {
k: v for k, v in __builtins__.items() if k in [
'abs', 'round', 'min', 'max', 'sum', 'pow'
]
}
allowed_names.update({
'int': int, 'float': float, 'str': str,
'__builtins__': {}
})
return str(eval(input, allowed_names))
except Exception as e:
return f"Math error: {e}"
class FileAttachmentQueryTool(Tool):
name = "run_query_with_file"
description = "Downloads a file mentioned in a user prompt, adds it to the context, and runs a query on it."
inputs = {
"task_id": {
"type": "string",
"description": "A unique identifier for the task related to this file, used to download it.",
"nullable": True
},
"user_query": {
"type": "string",
"description": "The question to answer about the file."
}
}
output_type = "string"
def forward(self, task_id: str | None, user_query: str) -> str:
if not task_id:
return "No task_id provided for file download."
file_url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
try:
file_response = requests.get(file_url)
if file_response.status_code != 200:
return f"Failed to download file: {file_response.status_code}"
# For text-based files, return content directly
file_content = file_response.text[:2000] # Limit content size
return f"Relevant information from file: {file_content}"
except Exception as e:
return f"File download error: {e}"
# --- Agent Implementation ---
def select_model(provider="groq"):
"""Select and return a model based on the provider."""
GROQ_MODEL_NAME = "groq/llama3-70b-8192"
HF_MODEL_NAME = "huggingfaceh4/zephyr-7b-beta"
if provider == "groq":
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
raise ValueError("GROQ_API_KEY environment variable is not set")
return LiteLLMModel(model_id=GROQ_MODEL_NAME, api_key=api_key)
elif provider == "hf":
api_key = os.getenv("HF_TOKEN")
if not api_key:
raise ValueError("HF_TOKEN environment variable is not set")
return LiteLLMModel(model_id=HF_MODEL_NAME, api_key=api_key)
else:
# Default to Groq if no valid provider specified
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
raise ValueError("GROQ_API_KEY environment variable is not set")
return LiteLLMModel(model_id=GROQ_MODEL_NAME, api_key=api_key)
class BasicAgent:
def __init__(self, provider="groq"):
model = select_model(provider)
tools = [
MathSolver(),
FileAttachmentQueryTool(),
]
self.agent = CodeAgent(
model=model,
tools=tools,
add_base_tools=False,
max_steps=15,
)
# System prompt to enforce exact answer format
self.agent.prompt_templates["system_prompt"] = (
"You are a GAIA benchmark AI assistant. Your sole purpose is to output the minimal, final answer. "
"You must NEVER output explanations, intermediate steps, reasoning, or comments β€” only the answer. "
"For numerical answers, use digits only, e.g., `4` not `four`. "
"For string answers, omit articles ('a', 'the') and use full words. "
"For lists, output in comma-separated format with no conjunctions. "
"If the answer is not found, say `- unknown`."
)
def __call__(self, question: str) -> str:
result = self.agent.run(question)
# Extract only the final answer without any wrappers
final_str = str(result).strip()
# Remove any potential prefixes
if final_str.startswith('[ANSWER]'):
final_str = final_str[8:].strip()
if final_str.startswith('Final answer:'):
final_str = final_str[13:].strip()
if final_str.startswith('Answer:'):
final_str = final_str[7:].strip()
return final_str
# --- Main Application Functions ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=30)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
# Progress tracking
progress_count = 0
total_questions = len(questions_data)
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
# Update progress
progress_count += 1
print(f"Processing question {progress_count}/{total_questions}")
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=120)
response.raise_for_status()
result_data = response.json()
final_status = (
f"βœ… Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"❌ Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "❌ Submission Failed: The request timed out. Please try again."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"❌ Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"❌ An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
def test_agent(question: str, provider: str):
"""Test the agent with a single question."""
try:
agent = BasicAgent(provider=provider)
answer = agent(question)
return f"Question: {question}\nAnswer: {answer}"
except Exception as e:
return f"Error testing agent: {e}"
# --- Build Gradio Interface using Blocks ---
with gr.Blocks(title="GAIA Agent Evaluator") as demo:
gr.Markdown("# πŸ€– GAIA Agent Evaluator")
gr.Markdown(
"""
This interface allows you to evaluate your agent against the GAIA benchmark questions.
**Instructions:**
1. Log in to your Hugging Face account using the button below
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit answers
3. View your results and score in the output panel
**For Testing:**
Use the test section below to verify your agent works correctly with sample questions.
"""
)
with gr.Tab("Evaluation"):
gr.Markdown("## πŸš€ Run Full Evaluation")
gr.LoginButton()
with gr.Row():
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="πŸ“Š Status / Submission Result", lines=8, interactive=False)
results_table = gr.DataFrame(label="πŸ“‹ Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
with gr.Tab("Testing"):
gr.Markdown("## πŸ§ͺ Test Your Agent")
with gr.Row():
with gr.Column():
test_question = gr.Textbox(
label="Question",
placeholder="Enter a test question...",
value="What is 2+2?"
)
provider_choice = gr.Radio(
choices=["groq", "hf"],
value="groq",
label="Provider"
)
test_button = gr.Button("Test Agent")
with gr.Column():
test_output = gr.Textbox(label="Agent Response", lines=10, interactive=False)
test_button.click(
fn=test_agent,
inputs=[test_question, provider_choice],
outputs=test_output
)
if __name__ == "__main__":
print("\n" + "="*50)
print("πŸš€ GAIA Agent Evaluator Starting")
print("="*50)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"βœ… SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL: https://{space_host_startup}.hf.space")
else:
print("ℹ️ Running locally (SPACE_HOST not found)")
if space_id_startup:
print(f"βœ… SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
else:
print("ℹ️ SPACE_ID not found (Repo URL cannot be determined)")
print("="*50)
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False)