File size: 12,230 Bytes
5075711
4306537
42957be
4306537
b808114
5075711
42957be
4306537
c902775
4306537
 
 
 
 
 
 
 
 
 
 
 
23c94ef
 
 
 
4306537
c902775
23c94ef
 
4306537
23c94ef
 
4306537
 
 
23c94ef
4306537
 
 
 
 
23c94ef
 
 
 
 
 
4306537
 
 
23c94ef
 
 
 
 
 
4306537
 
 
23c94ef
 
 
 
 
 
 
 
 
 
4306537
 
 
 
 
 
 
 
 
23c94ef
 
 
 
4306537
23c94ef
 
 
 
4306537
 
 
 
 
 
 
 
 
 
23c94ef
4306537
23c94ef
4306537
23c94ef
 
 
 
 
 
 
 
4306537
 
23c94ef
 
 
 
 
4306537
 
23c94ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4306537
 
 
 
23c94ef
4306537
 
23c94ef
4306537
 
 
23c94ef
4306537
 
23c94ef
 
5075711
4306537
 
23c94ef
 
 
 
 
 
 
 
4306537
 
23c94ef
 
5075711
4306537
 
23c94ef
 
 
 
 
 
 
 
 
 
 
 
 
 
4306537
 
5075711
42957be
4306537
 
23c94ef
4306537
42957be
4306537
23c94ef
 
4306537
 
42957be
23c94ef
 
 
 
 
 
 
 
 
 
 
 
42957be
eec5a19
4306537
23c94ef
4306537
 
 
23c94ef
 
 
 
 
4306537
23c94ef
 
4306537
23c94ef
4306537
23c94ef
4306537
 
 
 
 
 
 
23c94ef
 
 
 
 
 
4306537
 
 
 
 
23c94ef
 
 
 
4306537
 
23c94ef
 
 
 
4306537
 
23c94ef
 
 
4306537
23c94ef
4306537
 
 
 
23c94ef
 
 
4306537
 
 
23c94ef
 
 
 
4306537
 
42957be
eec5a19
4306537
23c94ef
4306537
 
 
 
42957be
4306537
 
 
 
42957be
23c94ef
 
 
 
 
 
 
 
 
4306537
 
 
 
c902775
5075711
 
23c94ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import gradio as gr
from gradio.themes.ocean import Ocean
import torch
import numpy as np
import supervision as sv
from transformers import (
    Qwen3VLForConditionalGeneration,
    Qwen3VLProcessor,
)
import json
import ast
import re
from PIL import Image
from spaces import GPU

# --- Constants and Configuration ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = "auto"

CATEGORIES = ["Query", "Caption", "Point", "Detect"]
PLACEHOLDERS = {
    "Query": "What's in this image?",
    "Caption": "Select caption length: short, normal, or long",
    "Point": "Select an object from suggestions or enter manually",
    "Detect": "Select an object from suggestions or enter manually",
}

# --- Model Loading ---
# Load Qwen3-VL
qwen_model = Qwen3VLForConditionalGeneration.from_pretrained(
    "Qwen/Qwen3-VL-4B-Instruct",
    dtype=DTYPE,
    device_map=DEVICE,
).eval()
qwen_processor = Qwen3VLProcessor.from_pretrained(
    "Qwen/Qwen3-VL-4B-Instruct",
)


# --- Utility Functions ---
def safe_parse_json(text: str):
    """Safely parse a string that may be JSON or a Python literal."""
    text = text.strip()
    # Remove markdown code blocks
    text = re.sub(r"^```(json)?", "", text)
    text = re.sub(r"```$", "", text)
    text = text.strip()
    try:
        return json.loads(text)
    except json.JSONDecodeError:
        pass
    try:
        # Fallback to literal_eval for Python-like dictionary/list strings
        return ast.literal_eval(text)
    except Exception:
        return {}

# --- Inference Functions ---
def run_qwen_inference(image: Image.Image, prompt: str):
    """Core function to run inference with the Qwen model."""
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": prompt},
            ],
        }
    ]
    inputs = qwen_processor.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_dict=True,
        return_tensors="pt",
    ).to(DEVICE)

    with torch.inference_mode():
        generated_ids = qwen_model.generate(
            **inputs,
            max_new_tokens=512,
        )

    generated_ids_trimmed = [
        out_ids[len(in_ids) :]
        for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = qwen_processor.batch_decode(
        generated_ids_trimmed,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False,
    )[0]
    return output_text


@GPU
def get_suggested_objects(image: Image.Image):
    """Get suggested objects in the image using Qwen."""
    if image is None:
        return []
    try:
        # Resize image for faster suggestion generation
        suggest_image = image.copy()
        suggest_image.thumbnail((512, 512))
        
        prompt = "List the main objects in the image in a Python list format. For example: ['cat', 'dog', 'table']"
        result_text = run_qwen_inference(suggest_image, prompt)
        
        # Clean up the output to find the list
        match = re.search(r'\[.*?\]', result_text)
        if match:
            suggested_objects = ast.literal_eval(match.group())
            if isinstance(suggested_objects, list):
                # Return up to 3 suggestions
                return suggested_objects[:3]
        return []
    except Exception as e:
        print(f"Error getting suggestions with Qwen: {e}")
        return []


def annotate_image(image: Image.Image, result: dict):
    """Annotates the image with points or bounding boxes based on model output."""
    if not isinstance(image, Image.Image) or not isinstance(result, dict):
        return image

    original_width, original_height = image.size
    scene_np = np.array(image.copy())

    # Handle Point annotations
    if "points" in result and result["points"]:
        points_list = []
        for point in result.get("points", []):
            x = int(point["x"] * original_width)
            y = int(point["y"] * original_height)
            points_list.append([x, y])

        if not points_list:
            return image

        points_array = np.array(points_list).reshape(-1, 2)
        key_points = sv.KeyPoints(xy=points_array)
        vertex_annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED)
        annotated_image_np = vertex_annotator.annotate(
            scene=scene_np, key_points=key_points
        )
        return Image.fromarray(annotated_image_np)

    # Handle Detection annotations
    if "objects" in result and result["objects"]:
        boxes = []
        for obj in result["objects"]:
            x_min = obj["x_min"] * original_width
            y_min = obj["y_min"] * original_height
            x_max = obj["x_max"] * original_width
            y_max = obj["y_max"] * original_height
            boxes.append([x_min, y_min, x_max, y_max])
        
        if not boxes:
            return image
        
        detections = sv.Detections(xyxy=np.array(boxes))
        box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX, thickness=4)
        label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
        
        annotated_image_np = box_annotator.annotate(
            scene=scene_np, detections=detections
        )
        return Image.fromarray(annotated_image_np)

    return image


@GPU
def process_qwen(image: Image.Image, category: str, prompt: str):
    """Processes the input based on the selected category using the Qwen model."""
    if category == "Query":
        return run_qwen_inference(image, prompt), {}
        
    elif category == "Caption":
        full_prompt = f"Provide a {prompt} length caption for the image."
        return run_qwen_inference(image, full_prompt), {}
        
    elif category == "Point":
        full_prompt = (
            f"Provide 2d point coordinates for {prompt}. Report in JSON format like "
            `[{"point_2d": [x, y]}]` " where coordinates are from 0 to 1000."
        )
        output_text = run_qwen_inference(image, full_prompt)
        parsed_json = safe_parse_json(output_text)
        points_result = {"points": []}
        if isinstance(parsed_json, list):
            for item in parsed_json:
                if "point_2d" in item and len(item["point_2d"]) == 2:
                    x, y = item["point_2d"]
                    points_result["points"].append({"x": x / 1000.0, "y": y / 1000.0})
        return json.dumps(points_result, indent=2), points_result
        
    elif category == "Detect":
        full_prompt = (
            f"Provide bounding box coordinates for {prompt}. Report in JSON format like "
            `[{"bbox_2d": [xmin, ymin, xmax, ymax]}]` " where coordinates are from 0 to 1000."
        )
        output_text = run_qwen_inference(image, full_prompt)
        parsed_json = safe_parse_json(output_text)
        objects_result = {"objects": []}
        if isinstance(parsed_json, list):
            for item in parsed_json:
                if "bbox_2d" in item and len(item["bbox_2d"]) == 4:
                    xmin, ymin, xmax, ymax = item["bbox_2d"]
                    objects_result["objects"].append(
                        {
                            "x_min": xmin / 1000.0,
                            "y_min": ymin / 1000.0,
                            "x_max": xmax / 1000.0,
                            "y_max": ymax / 1000.0,
                        }
                    )
        return json.dumps(objects_result, indent=2), objects_result
        
    return "Invalid category", {}


# --- Gradio Interface Logic ---
def on_category_and_image_change(image, category):
    """Generate suggestions when category or image changes."""
    text_box = gr.Textbox(value="", placeholder=PLACEHOLDERS.get(category, ""), interactive=True)

    if category == "Caption":
        return gr.Radio(choices=["short", "normal", "long"], label="Caption Length", value="normal", visible=True), text_box
    
    if image is None or category not in ["Point", "Detect"]:
        return gr.Radio(choices=[], visible=False), text_box

    suggestions = get_suggested_objects(image)
    if suggestions:
        return gr.Radio(choices=suggestions, label="Suggestions", visible=True, interactive=True), text_box
    else:
        return gr.Radio(choices=[], visible=False), text_box


def update_prompt_from_radio(selected_object):
    """Update prompt textbox when a radio option is selected."""
    if selected_object:
        return gr.Textbox(value=selected_object)
    return gr.Textbox(value="")


def process_inputs(image, category, prompt):
    """Main function to handle the user's request."""
    if image is None:
        raise gr.Error("Please upload an image.")
    if not prompt and category not in ["Caption"]:
         # Caption can have an empty prompt if a length is selected
        if category == "Caption" and not prompt:
            prompt = "normal" # default
        else:
            raise gr.Error("Please provide a prompt or select a suggestion.")

    # Resize the image to make inference quicker
    image.thumbnail((1024, 1024))

    # Process with Qwen
    qwen_text, qwen_data = process_qwen(image, category, prompt)
    qwen_annotated_image = annotate_image(image, qwen_data)

    return qwen_annotated_image, qwen_text


# --- Gradio UI Layout ---
with gr.Blocks(theme=Ocean()) as demo:
    gr.Markdown("# 👓 Object Understanding with Qwen3-VL")
    gr.Markdown(
        "### Explore object detection, visual grounding, and keypoint detection through natural language prompts."
    )
    gr.Markdown("""
    *Powered by [Qwen/Qwen3-VL-4B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct). Inspired by the tutorial [Object Detection and Visual Grounding with Qwen 2.5](https://pyimagesearch.com/2025/06/09/object-detection-and-visual-grounding-with-qwen-2-5/) on PyImageSearch.*
    """)

    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil", label="Input Image")
            category_select = gr.Radio(
                choices=CATEGORIES,
                value=CATEGORIES[0],
                label="Select Task Category",
                interactive=True,
            )
            suggestions_radio = gr.Radio(
                choices=[],
                label="Suggestions",
                visible=False,
                interactive=True,
            )
            prompt_input = gr.Textbox(
                placeholder=PLACEHOLDERS[CATEGORIES[0]],
                label="Prompt",
                lines=2,
            )
            submit_btn = gr.Button("Process Image", variant="primary")

        with gr.Column(scale=2):
            gr.Markdown("### Qwen/Qwen3-VL-4B-Instruct Output")
            qwen_img_output = gr.Image(label="Annotated Image")
            qwen_text_output = gr.Textbox(
                label="Text Output", lines=10, interactive=False
            )

    gr.Examples(
        examples=[
            ["examples/example_1.jpg", "Query", "How many cars are in the image?"],
            ["examples/example_1.jpg", "Detect", "car"],
            ["examples/example_2.JPG", "Point", "the person's face"],
            ["examples/example_2.JPG", "Caption", "short"],
        ],
        inputs=[image_input, category_select, prompt_input],
    )

    # --- Event Listeners ---
    # When image or category changes, update suggestions
    category_select.change(
        fn=on_category_and_image_change,
        inputs=[image_input, category_select],
        outputs=[suggestions_radio, prompt_input],
    )
    image_input.change(
        fn=on_category_and_image_change,
        inputs=[image_input, category_select],
        outputs=[suggestions_radio, prompt_input],
    )

    # When a suggestion is clicked, update the prompt box
    suggestions_radio.change(
        fn=update_prompt_from_radio,
        inputs=[suggestions_radio],
        outputs=[prompt_input],
    )

    # Main submission action
    submit_btn.click(
        fn=process_inputs,
        inputs=[image_input, category_select, prompt_input],
        outputs=[qwen_img_output, qwen_text_output],
    )

if __name__ == "__main__":
    demo.launch(debug=True)