prithivMLmods's picture
Update app.py
23c94ef verified
raw
history blame
12.2 kB
import gradio as gr
from gradio.themes.ocean import Ocean
import torch
import numpy as np
import supervision as sv
from transformers import (
Qwen3VLForConditionalGeneration,
Qwen3VLProcessor,
)
import json
import ast
import re
from PIL import Image
from spaces import GPU
# --- Constants and Configuration ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = "auto"
CATEGORIES = ["Query", "Caption", "Point", "Detect"]
PLACEHOLDERS = {
"Query": "What's in this image?",
"Caption": "Select caption length: short, normal, or long",
"Point": "Select an object from suggestions or enter manually",
"Detect": "Select an object from suggestions or enter manually",
}
# --- Model Loading ---
# Load Qwen3-VL
qwen_model = Qwen3VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen3-VL-4B-Instruct",
dtype=DTYPE,
device_map=DEVICE,
).eval()
qwen_processor = Qwen3VLProcessor.from_pretrained(
"Qwen/Qwen3-VL-4B-Instruct",
)
# --- Utility Functions ---
def safe_parse_json(text: str):
"""Safely parse a string that may be JSON or a Python literal."""
text = text.strip()
# Remove markdown code blocks
text = re.sub(r"^```(json)?", "", text)
text = re.sub(r"```$", "", text)
text = text.strip()
try:
return json.loads(text)
except json.JSONDecodeError:
pass
try:
# Fallback to literal_eval for Python-like dictionary/list strings
return ast.literal_eval(text)
except Exception:
return {}
# --- Inference Functions ---
def run_qwen_inference(image: Image.Image, prompt: str):
"""Core function to run inference with the Qwen model."""
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": prompt},
],
}
]
inputs = qwen_processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
).to(DEVICE)
with torch.inference_mode():
generated_ids = qwen_model.generate(
**inputs,
max_new_tokens=512,
)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = qwen_processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)[0]
return output_text
@GPU
def get_suggested_objects(image: Image.Image):
"""Get suggested objects in the image using Qwen."""
if image is None:
return []
try:
# Resize image for faster suggestion generation
suggest_image = image.copy()
suggest_image.thumbnail((512, 512))
prompt = "List the main objects in the image in a Python list format. For example: ['cat', 'dog', 'table']"
result_text = run_qwen_inference(suggest_image, prompt)
# Clean up the output to find the list
match = re.search(r'\[.*?\]', result_text)
if match:
suggested_objects = ast.literal_eval(match.group())
if isinstance(suggested_objects, list):
# Return up to 3 suggestions
return suggested_objects[:3]
return []
except Exception as e:
print(f"Error getting suggestions with Qwen: {e}")
return []
def annotate_image(image: Image.Image, result: dict):
"""Annotates the image with points or bounding boxes based on model output."""
if not isinstance(image, Image.Image) or not isinstance(result, dict):
return image
original_width, original_height = image.size
scene_np = np.array(image.copy())
# Handle Point annotations
if "points" in result and result["points"]:
points_list = []
for point in result.get("points", []):
x = int(point["x"] * original_width)
y = int(point["y"] * original_height)
points_list.append([x, y])
if not points_list:
return image
points_array = np.array(points_list).reshape(-1, 2)
key_points = sv.KeyPoints(xy=points_array)
vertex_annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED)
annotated_image_np = vertex_annotator.annotate(
scene=scene_np, key_points=key_points
)
return Image.fromarray(annotated_image_np)
# Handle Detection annotations
if "objects" in result and result["objects"]:
boxes = []
for obj in result["objects"]:
x_min = obj["x_min"] * original_width
y_min = obj["y_min"] * original_height
x_max = obj["x_max"] * original_width
y_max = obj["y_max"] * original_height
boxes.append([x_min, y_min, x_max, y_max])
if not boxes:
return image
detections = sv.Detections(xyxy=np.array(boxes))
box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX, thickness=4)
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
annotated_image_np = box_annotator.annotate(
scene=scene_np, detections=detections
)
return Image.fromarray(annotated_image_np)
return image
@GPU
def process_qwen(image: Image.Image, category: str, prompt: str):
"""Processes the input based on the selected category using the Qwen model."""
if category == "Query":
return run_qwen_inference(image, prompt), {}
elif category == "Caption":
full_prompt = f"Provide a {prompt} length caption for the image."
return run_qwen_inference(image, full_prompt), {}
elif category == "Point":
full_prompt = (
f"Provide 2d point coordinates for {prompt}. Report in JSON format like "
`[{"point_2d": [x, y]}]` " where coordinates are from 0 to 1000."
)
output_text = run_qwen_inference(image, full_prompt)
parsed_json = safe_parse_json(output_text)
points_result = {"points": []}
if isinstance(parsed_json, list):
for item in parsed_json:
if "point_2d" in item and len(item["point_2d"]) == 2:
x, y = item["point_2d"]
points_result["points"].append({"x": x / 1000.0, "y": y / 1000.0})
return json.dumps(points_result, indent=2), points_result
elif category == "Detect":
full_prompt = (
f"Provide bounding box coordinates for {prompt}. Report in JSON format like "
`[{"bbox_2d": [xmin, ymin, xmax, ymax]}]` " where coordinates are from 0 to 1000."
)
output_text = run_qwen_inference(image, full_prompt)
parsed_json = safe_parse_json(output_text)
objects_result = {"objects": []}
if isinstance(parsed_json, list):
for item in parsed_json:
if "bbox_2d" in item and len(item["bbox_2d"]) == 4:
xmin, ymin, xmax, ymax = item["bbox_2d"]
objects_result["objects"].append(
{
"x_min": xmin / 1000.0,
"y_min": ymin / 1000.0,
"x_max": xmax / 1000.0,
"y_max": ymax / 1000.0,
}
)
return json.dumps(objects_result, indent=2), objects_result
return "Invalid category", {}
# --- Gradio Interface Logic ---
def on_category_and_image_change(image, category):
"""Generate suggestions when category or image changes."""
text_box = gr.Textbox(value="", placeholder=PLACEHOLDERS.get(category, ""), interactive=True)
if category == "Caption":
return gr.Radio(choices=["short", "normal", "long"], label="Caption Length", value="normal", visible=True), text_box
if image is None or category not in ["Point", "Detect"]:
return gr.Radio(choices=[], visible=False), text_box
suggestions = get_suggested_objects(image)
if suggestions:
return gr.Radio(choices=suggestions, label="Suggestions", visible=True, interactive=True), text_box
else:
return gr.Radio(choices=[], visible=False), text_box
def update_prompt_from_radio(selected_object):
"""Update prompt textbox when a radio option is selected."""
if selected_object:
return gr.Textbox(value=selected_object)
return gr.Textbox(value="")
def process_inputs(image, category, prompt):
"""Main function to handle the user's request."""
if image is None:
raise gr.Error("Please upload an image.")
if not prompt and category not in ["Caption"]:
# Caption can have an empty prompt if a length is selected
if category == "Caption" and not prompt:
prompt = "normal" # default
else:
raise gr.Error("Please provide a prompt or select a suggestion.")
# Resize the image to make inference quicker
image.thumbnail((1024, 1024))
# Process with Qwen
qwen_text, qwen_data = process_qwen(image, category, prompt)
qwen_annotated_image = annotate_image(image, qwen_data)
return qwen_annotated_image, qwen_text
# --- Gradio UI Layout ---
with gr.Blocks(theme=Ocean()) as demo:
gr.Markdown("# 👓 Object Understanding with Qwen3-VL")
gr.Markdown(
"### Explore object detection, visual grounding, and keypoint detection through natural language prompts."
)
gr.Markdown("""
*Powered by [Qwen/Qwen3-VL-4B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct). Inspired by the tutorial [Object Detection and Visual Grounding with Qwen 2.5](https://pyimagesearch.com/2025/06/09/object-detection-and-visual-grounding-with-qwen-2-5/) on PyImageSearch.*
""")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Input Image")
category_select = gr.Radio(
choices=CATEGORIES,
value=CATEGORIES[0],
label="Select Task Category",
interactive=True,
)
suggestions_radio = gr.Radio(
choices=[],
label="Suggestions",
visible=False,
interactive=True,
)
prompt_input = gr.Textbox(
placeholder=PLACEHOLDERS[CATEGORIES[0]],
label="Prompt",
lines=2,
)
submit_btn = gr.Button("Process Image", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### Qwen/Qwen3-VL-4B-Instruct Output")
qwen_img_output = gr.Image(label="Annotated Image")
qwen_text_output = gr.Textbox(
label="Text Output", lines=10, interactive=False
)
gr.Examples(
examples=[
["examples/example_1.jpg", "Query", "How many cars are in the image?"],
["examples/example_1.jpg", "Detect", "car"],
["examples/example_2.JPG", "Point", "the person's face"],
["examples/example_2.JPG", "Caption", "short"],
],
inputs=[image_input, category_select, prompt_input],
)
# --- Event Listeners ---
# When image or category changes, update suggestions
category_select.change(
fn=on_category_and_image_change,
inputs=[image_input, category_select],
outputs=[suggestions_radio, prompt_input],
)
image_input.change(
fn=on_category_and_image_change,
inputs=[image_input, category_select],
outputs=[suggestions_radio, prompt_input],
)
# When a suggestion is clicked, update the prompt box
suggestions_radio.change(
fn=update_prompt_from_radio,
inputs=[suggestions_radio],
outputs=[prompt_input],
)
# Main submission action
submit_btn.click(
fn=process_inputs,
inputs=[image_input, category_select, prompt_input],
outputs=[qwen_img_output, qwen_text_output],
)
if __name__ == "__main__":
demo.launch(debug=True)